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INTRODUCTION

For several decades, computer simulation models
have been used to explore plankton dynamics in
aquatic systems because of their ability to integrate

and synthesize a tremendous array of information. Mo-
dels have been used to describe interactions between
various components of the plankton community and
their physical-chemical environments which would
otherwise be difficult due to the complexity of the
interactions. Complexity of the plankton food web has
been addressed using allometric relationships, i.e. the
size-dependence of plankton metabolic processes (e.g.
Fenchel 1974, Peters 1983, Joint 1991). Incorporation
of such general size-scale relationships for planktonic
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ABSTRACT: An ecosystem simulation model was developed to investigate potential mechanisms
controlling the size-structured phytoplankton and nutrient dynamics in the mesohaline zone of the
York River estuary. The model included 12 state variables in a unit volume (m3) describing the distri-
bution of carbon and nutrients (nitrogen, phosphorus) in the surface mixed layer. General size-scale
relationships and density-dependent feedback control terms were used in the ecosystem model.
Forcing functions included incident solar radiation, water temperature, wind stress, river flow and
tide, which include advective transport and turbulent mixing. Advective transport and turbulent mix-
ing were incorporated into the model explicitly without coupling to other hydrodynamic models. The
ecosystem model was developed in Fortran90 using differential equations that were solved numeri-
cally using the fourth-order Runge-Kutta (explicit ) technique. After calibrating the ecosystem model,
forcing and state variables in the model were validated using pre-existing data and field data col-
lected over an annual cycle. Model predictions for forcing and state variables generally followed the
pattern of field observations and were within the range of field data. Model sensitivity analysis was
also performed to examine how sensitive model output was to specified changes in parameter values.
Model output was not sensitive to changes in most parameters, suggesting that the model is relatively
robust. These results suggested that the model including explicit feedback controls and hydro-
dynamic processes captures plankton/nutrient dynamics and can be used for additional modeling
analyses of phytoplankton and nutrient dynamics in the York River estuary, Virginia.
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dynamics has provided a straightforward approach for
plankton ecosystem modeling efforts (e.g. Moloney &
Field 1991, Painting et al. 1993, Armstrong 1994, Tam-
salu & Ennet 1995). Density-dependent feedback-
control terms (Wiegert 1979) have also been docu-
mented as being superior to empirical equations for
studying trophic interactions among biotic compart-
ments in the microbial food web (Wetzel 1994).

In estuarine environments, plankton population dy-
namics are complex mainly due to freshwater and tidal
energy inputs into the system. Physical processes in-
cluding advection and diffusion play an important role
in estuarine plankton population dynamics (Haas et al.
1981, Delgadillo-Hinojosa et al. 1997, Shen et al. 1999).
In this context, incorporation of physical processes
is essential in estuarine ecosystem process-modeling
and the relationship between physical processes and
plankton population-dynamics in coastal estuarine
systems have received increasing attention (Peterson
& Festa 1984, Cloern 1991, Eldridge & Sieracki 1993,
Vidergar et al. 1993).

The US Environmental Protection Agency (EPA)
Chesapeake Bay Program has supported biweekly to
monthly samples of water quality and biological data
along the York River estuary, Virginia (USA) since the
mid-1980s. Chl a content of different size classes of
phytoplankton (micro-, nano-, pico) were also deter-
mined during the yearly cycle between 1996 and 1997.
The historic and field data showed that phytoplankton
blooms have developed during winter-spring (domi-
nated by large cells), followed by smaller summer
blooms dominated by small-sized cells in the York
River (Sin et al. 1999, 2000). Although a large database
exists for the York River, no ecosystem nor sub-system
models have been developed to synthesize and use the
information to investigate potential mechanisms con-
trolling phytoplankton and nutrient dynamics on sea-
sonal time scales. The objectives of this study were 
to develop a realistic ecosystem model focusing on sea-
sonal size-structured plankton dynamics that employ-
ed allometric relationships as well as density-depen-
dent feedback-control terms and explicit hydrodynamics
for the York River estuary.

MATERIALS AND METHODS

Conceptual structure of the model. The conceptual
ecosystem model includes 12 state variables for de-
scribing the distribution of carbon and nutrients in the
surface mixed-layer of the mesohaline zone in the York
River estuary (Fig. 1). The state variables consist of
autotrophs including pico- (<3 µm), nano- (>3 and
<20 µm), and micro- (>20 µm) phytoplankton; hetero-
trophs including bacteria, flagellates+ciliates, micro-

zooplankton (>70 and <202 µm), and mesozooplank-
ton (>202 µm); the nutrients NO2

–+ NO3
–, NH4

+, and
PO4

–3, and non-living organic materials, DOC, and
POC. Groupings of autotrophs and heterotrophs are
based on cell size and ecological hierarchy; mixo-
trophy was not considered in the model.

Forcing functions include incident solar radiation,
temperature, tide, wind stress, and river flow. Incident
solar radiation and temperature were estimated using
empirical equations for Gloucester Point, Virginia
(Wetzel & Meyers 1993). Salinity and wind stress data
were collected by the Virginia Institute of Marine Sci-
ence (VIMS) at Gloucester Point. Daily river discharge
rates at the fall line were collected by the US Geolog-
ical Survey. The surface boundary condition is speci-
fied by a zero flux condition for all state variables at
the atmosphere-water interface. Vertical transport by
advection and diffusion, sinking of organisms, and
fluxes of nutrients were incorporated into the model
as the bottom boundary condition, in which the flux of
organisms and nutrients was specified by vertical
exchange or sinking rate times biomass and nutrient
flux from the bottom water respectively. Chl a and
nutrients collected from the bottom water over an
annual cycle (Sin et al. 2000) were used as input data
for the bottom boundary condition. The EPA Chesa-
peake Bay Program monitoring data for the York
River were used as input data for the up-river bound-
ary condition. The model was developed in Fortran90
(Microsoft® Fortran Power Station), and the differen-
tial equations were solved numerically using the
fourth order Runge-Kutta (explicit) technique. Table 1
gives the variable names, symbols and units for the
forcing functions, state variables and boundary condi-
tions used in the model.

Mathematical structure of hydrodynamic processes.
The tidally-averaged model was simulated for plank-
ton dynamics in the surface mixed-layer of the meso-
haline zone in the York River estuary (Fig. 2). The sur-
face mixed-layer depth, z1 was determined by an
empirical equation derived for the York River by Hay-
ward et al. (1986):

z1 = exp(3.0666 – 0.6064δS0.6528) (1)

where δS is the salinity difference between the surface
and bottom waters. δS was calculated as the top half of
a sine wave (e.g. Eldridge & Sieracki 1993):

(2)

where a is an amplitude of 5 psu and λ is a period of
28 d. Salinity gradients between the surface and bot-
tom layers are influenced by neap and spring tidal
cycles, with destratification of the water column occur-
ring at high spring tides and stratification developing
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Fig. 1. Conceptual structure describing biological and chemical processes coupled with forcing functions for the plankton 
model of the York River system. Symbols follow those of Odum (1983)
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during the intervening periods in the
York River (Haas 1975).

Table 2 presents the differential
equations for the state variables and
the symbols employed are given in
Table 3. As described in Table 2, every
state variable is affected by advective
transport and turbulent mixing. Longi-
tudinal transport in the surface mixed-
layer is determined by the residual
velocities (m s–1) of incoming (Qi) and
outgoing (river flow + estuarine circu-
lation, Q0) flows through the layer as
shown in the second terms on the left-
hand side of the equations. The flow
(Qi) entering and flow (Q0) leaving
Section n (Fig. 2) are estimated from
the basin equation (Eq. 3 Pritchard
1965), where Qk is incoming (Qi) or
outgoing (Q0) flow, BSk is bottom salin-
ity at Face i or o, SSk is surface salinity
at Face i or o, and RDk is vertically
integrated river flow at Face i or o; the
basin equation is based on the assump-
tion of steady state with water volume
and salt:

(3)

The surface and bottom salinities in the Face i and o
were estimated based on a 20 yr data record for the
York River (Wojcik 1981). Vertically integrated river-
discharge rates in Face i were predicted by running a
1-D hydrodynamic model (developed by J. Shen at
VIMS) under 6 different river-discharge rates at the
fall line of the York River. In order to account for effects
of river-discharge rates at the fall line (RDfl), the verti-
cally integrated river-discharge rates in Face i were
predicted by using the correlation (r2 = 0.98) between
the prediction and river-discharge rate at the fall line
(RDfl) as input data in the hydrodynamic model. The
vertically integrated river-discharge rate in Face i was
assumed to equal that in Face o:

RDk =  1.384RDfl + 2.62 (4)

Vertical advection is governed by the upward velocity
(w ) in the vertical axis (z), as shown in the third terms
on the left hand side of the equations in Table 2. The
upward velocity was determined by dividing the inter-
face area (m2) between surface mixed and bottom
layers into the upward flow (Qup, m3 s–1) which is de-
termined by subtracting the outgoing flow (Qo) from
the incoming flow (Q i) (see Fig. 2).

Turbulent mixing is governed by the empirical equa-
tion for the diffusion coefficient (D) (Denman & Gargett
1983):

D =  0.25εN –2 (5)

  
Q

BS

BS SS
RDk

k k
kk     =

−
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Variable Symbola Unitb

Forcing (or driving) variables
Incident radiation I (t) E m–2d–1

Temperature T(t) °C
Salinity S(t) psu
Wind U10(t) cm s–1

Flow Q(t) m3 s–1

State variables (components)
Picophytoplankton PP(t) mgchl m–3

Nanophytoplankton NP(t) mgchl m–3

Microphytoplankton MP(t) mgchl m–3

Heterotrophic bacteria HB(t) gC m–3

Heterotrophic flagellates + ciliates HFC(t) gC m–3

Microzooplankton Z1(t) gC m–3

Mesozooplankton Z2(t) gC m–3

Particulate organic carbon POC(t) gC m–3

Dissolved organic carbon DOC(t) gC m–3

Ammonium N1(t) µM
Nitrite + nitrate N2(t) µM
Orthophosphate P(t) µM

Boundary specifications:
Fluxes of state variables = 0 at interface of atmosphere-
surface water; fluxes = sinking, vertical exchange at
interface of surface mixed-layer and bottom layer; and
flows = inflow (Qi) and outflow (Qo) of surface layer
aAll state variables are a function of time
bUnit described above × depth of layers

Table 1. Forcing functions, state variables and boundary con-
ditions (t = time) used in the ecosystem simulation model

Fig. 2. (A) Schematic representation of net transport in an estuarine system and
(B) geometric structure of the ecosystem model developed for this study. The
surface mixed-layer depth, z1, was determined by an empirical equation for the
York River (Eq. 1, Hayward et al. 1986) For explanation of the other terms, see 

‘Materials and methods’
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The rate of dissipation of turbulent kinetic energy, ε, is ex-
pressed as Eq. (6), and the buoyancy frequency, N 2 (s–1 =
radians s–1) as Eq. (7), where ω* is turbulent frictional ve-
locity (m s–1), κ is von Karman’s constant, z1, z2 are water
depths of surface and bottom layers respectively, u* is
bed-shear velocity (0.01 m s–1), g is the acceleration due

to gravity, ρw is the density of water, and ∂ρ/∂z is the ver-
tical density gradient. In order to take into account the ef-
fects of bottom friction, u* (bed-shear velocity) was in-
corporated into the equation employed by Denman &
Gargett (1983), and typical values, i.e., 0.01 m s–1 (Young
& Southard 1978) were chosen for model simulation:

79

No. Variable

1 Picophytoplankton

2 Nanophytoplankton

3 Microphytoplankton

4 Heterotrophic bacteria

5 Heterotrophic flagellates & ciliates

6 Microzooplankton

7 Mesozooplankton

8 Particulate organic carbon

9 Dissolved organic carbon

10 Ammonium

11 Nitrite + nitrate

12 Orthophosphate
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Table 2. Differential equations employed for the 12 state variables. Symbols are described in Table 3
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(6)

(7)

The turbulent frictional velocity, ω* (Eq. 8), is a function
of windstress (τ), air and water densities (ρa = 1.2 kg m–3,
ρw, respectively), a drag coefficient (C10, 1.3 × 10–3), and
the mean wind speed 10 m above the sea surface (U10).
Water densities are determined by Eq. (9), where ρƒ is
the density of freshwater (103 kg m–3), k is a constant, 7.5
× 10–4, and S is salinity (Hamilton 1977):

(8)

where:
ρw =  ρƒ(1 + kS) (9)

Mathematical structure of biological and chemical
processes. Phytoplankton population densities are
determined by advective transport, turbulent mixing,
gross growth rate, respiration rate, sinking rate, mor-
tality (senescence) rate, exudation rate, and grazing
rate by herbivores (Table 2). Gross growth, G (Eq. 10)
is limited by light (Ltlim) and nutrients (Ntlim) acting
on the potential maximum growth rate (Gmax), which is
itself dependent on body size and temperature.

G =  Gmax × Ltlim × Ntlim (10)

Moloney & Field (1989) presented a significant relation-
ship between body mass (M; pg C) and maximal nutrient
uptake rates of phytoplankton (Eq. 11). The effect of
temperature on the maximum growth rates is also con-
sidered, since Eppley (1972) documented a significant
relationship between temperature and an upper physi-
ological limit to phytoplankton growth in conditions
where neither light nor nutrients were in limited supply.
The temperature effect (T(t)/kcal) is combined with Eq.
(11) as a function of the surface water temperature, T(t),
and constant kcal is defined as a calibration parameter:

Gmax =  3.6M–0.25 (11)

Light limitation is determined by ƒ, kd, z, Im and Io as
shown in Eq. (12) (DiToro et al. 1971), where ƒ is the
photoperiod as a fraction of a day (e.g. 0.5 at the
equinoxes), kd is the light attenuation coefficient (m–1),
z is the depth (m), and Im and Io are incident average and
optimal light (E m–2 d–1), respectively. Light attenuation
(kd) was measured over an annual cycle and used as
input data. Daily kd values were interpolated based on
the field data which appear to be affected by river-
discharge rates, ranging from 1.10 to 2.61 m–1 (Sin et
al. 2000). Io can differ between size classes of phyto-
plankton, and was determined in the process of calibra-
tion for the York River ecosystem model:
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Physical and Symbol Unit
biochemical processes

Residual velocity in x, z u,w m s–1

direction

Diffusion coefficient D m2 s–1

Picophytoplankton
Gross production PPG(t) g C m–3 d–1

Respiration PPR(t) g C m–3 d–1

Nanophytoplankon
Gross production NPG(t) g C m–3 d–1

Respiration NPR(t) g C m–3 d–1

Microphytoplankon
Gross production MPG(t) g C m–3 d–1

Respiration MPR(t) g C m–3 d–1

Grazing by heterotrophic HFCGz(t) g C m–3 d–1

flagellates + ciliates

Grazing by microzoo- Z1Gz(t) g C m–3 d–1

plankton

Grazing by mesozoo- Z2Gz(t) g C m–3 d–1

plankton

Sinking rate of phyto- rs m d–1

plankton

Exudation rate of phyto- rex d–1

plankton

Mortality rate of auto- rm d–1

and heterotrophs

Heterotrophic bacteria
Gross production HBG(t) mg C m–3 d–1

Respiration HBR(t) mg C m–3 d–1

Excretion ƒC:N or ƒC:PHBR(t) mg N or P m–3 d–1

Heterotrophic flagellate
Gross production HFCG(t) mg C m–3 d–1

Respiration HFCR(t) mg C m–3 d–1

Excretion ƒC:N or ƒC:PHFCR(t) mg N or P m–3 d–1

Microzooplankton
Gross production Z1G(t) mg C m–3 d–1

Respiration Z1R(t) mg C m–3 d–1

Excretion ƒC:N or ƒC:PZ1R(t) mg N or P m–3 d–1

Mesozooplankton
Gross production Z2G(t) mg C m–3 d–1

Respiration Z2R(t) mg C m–3 d–1

Excretion ƒC:N or ƒC:PZ2R(t) mg N or P m–3 d–1

Grazing by fishes Z2M mg C m–3 d–1

C:N and C:P ratios ƒC:N or ƒC:P dimensionless

Fraction of egestion ƒeg dimensionless
by grazers

Fraction of sloppy feeding ƒsf dimensionless
by grazers

Leaching rate of POC r l d–1

Grazing loss rate of POC r lo d–1

Nitrification NIT(t) g N m–3 d–1

Denitrification DENIT(t) g N m–3 d–1

Table 3. Symbols and units of physical, biological and chem-
ical processes incorporated in the model
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(12)

Nutrient limitation is detemined using the Monod
(1942) model (Eq. 13). Eq. (14) gives the derivation for
the half-saturation constant for each limiting nutrient.
The half-saturation constant (KN) for nitrogen is calcu-
lated using Moloney & Field (1991) equations based on
mean cell size (biovolume, µm3) which can be con-
verted to cell mass (M, pg C). KP is determined by
dividing KN by the N:P ratio:

(13)

where:

(14)

Estimation of respiration is a function of surface water
temperature (T(t)) and phytoplankton gross growth (G)
based on an empirical equation by (Biebl & McRoy
1971):

R = 0.5[0.5G(0.0104T(t) + 0.3432) + e(0.1370T(t) – 10.09)] (15)

Sinking rates of primary producers are based on 
allometric relationships (Moloney & Field 1989), as
0.029M 0.42. Mortality (senescence) rate (rm) and a con-
stant fraction of DOC release (cf. Malone & Ducklow
1990) by phytoplankton (exudation rate, rex) were de-
termined by model calibration, since equations or ki-
netics for the processes have not been well established.

Grazing by herbivores is based on an empirical, cell-
size relationship between grazer and prey, and a prey-
density function (given below). It is assumed that
heterotrophs feed only on prey within a size range
from 10 to 100 times smaller than themselves. The
mathematical equations employed to describe the rela-
tionships are based on nonlinear, donor- and recipient-
controlled feedback equations developed by Wiegert
(1973) and applied by Wiegert & Wetzel (1979) and
Wetzel & Christian (1984). Trophic interactions be-
tween prey (or resource, i) and predator (or recipient,
j) are regulated by feedback terms composed of 4
density-related parameters: Aij, the resource (donor)
density or concentration below which uptake by the
recipient is limited; Gij, the resource density or concen-
tration at which the donor resource is not available to
the recipient population; Ajj, the recipient density or
concentration above which uptake of a resource is less
than maximum (limited); Gjj, the maximum maintain-
able recipient density or concentration for a population
when other resources are not limiting. It was assumed
that the range in population densities observed over an
annual and/or inter-annual sampling cycles in the York
River estuary included threshold and limit levels of
each compartment in the ecosystem model. Donor-
controlled (fbij) and recipient-controlled (fbjj) feedback

terms were determined by standing stocks of donor
(Xi) and recipient (Xj) compartments, and the density-
dependent parameters (Eq. 16). The feedback terms
are constrained to range from 0 to 1 (maximum feed-
back-control) and are dimensionless:

(16)

The recipient-controlled feedback (ƒbjj) must be cor-
rected to allow for uptake or consumption by a popu-
lation at maximum density such that uptake or con-
sumption by the recipient from donor compartments
meets metabolic losses. The metabolic correction
term (Cij) accounts for respiration (Rhet), egestion (ƒeg)
and sloppy feeding (ƒsƒ) of grazers as in Eq. (17),
where Gzmax is the maximum grazing rate (explained
below).

(17)

The correction term is incorporated into the total mul-
tiplicative feedback terms TFij, combining both donor-
and recipient-controlled controls as Eq. (18), where
ƒbij’ are prime values of ƒbij, and determined as 1 – ƒbij.
Nomenclatures i and j follow the numbers of state
variables shown in Table 2 in the description of energy
flow below, where ‘i’ is the donor and ‘j’ is the recipient
compartment respectively:

TFij = 1 – [ƒbij’(1 – ƒbjj × Cij)] (18)

Heterotrophic bacterial production is determined by
gross growth, respiration, and grazing (Table 2). Bacte-
rial growth (Gb) was a function of bacterial maximum
growth rates (Gbmax

), bacterial density (X4) and total
multiplicative feedback-control (TFij) on DOC uptake
by bacteria:

Gb =  Gbmax 
× X4 (1 – TFij) (19)

where Gbmax
was derived as for phytoplankton growth

maximum rate (Eq. 11). Respiration rate (Eq. 20) is esti-
mated by a function of basal respiration (brb, 0.5 d–1),
bacterial density, recipient-controlled feedback term
(ƒbij) and a fraction (40%) of bacterial gross growth, Gb

(see Eldridge & Sieracki, 1993):

Rb =  brb × X4 × ƒbij + 0.4Gb (20)

The ‘assimilation efficiency’ of bacteria is assumed to
be 100%.

The ‘other‘ heterotrophs represented in the model
have a similar structure for controlling factors: advec-
tive transport, turbulent mixing, gross growth, grazing
by higher-level consumers, respiration, egestion and
sloppy feeding. Gross growth, Ghet (Eq. 21) is deter-
mined as a function of flux preference (TPij), maximum
grazing rate (Gzmax), predator compartments (Xj), and
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total multiplicative feedback (TFij) on energy flow from
prey to grazer or predator:

Ghet = TPij × Gzmax × Xj(1 – TFij) (21)

Gzmax was determined by cell size of each size class
(computed as 63Mhet

–0.25 where M equals mass of the
heterotroph in pg). TPij is a function of feeding prefer-
ence (Pij), flux preference value (PDj) and the donor-
controlled feedback term (ƒbij):

TPij =  Pij × PDj(1 – ƒbij) (22)

Feeding preference was considered since each pre-
dator has 2 classes of potential prey (autotrophs vs
heterotrophs) as shown in Fig. 1.

Respiration of grazers (Rhet) is estimated as a function
of a basal respiration rate (brhet, 0.4 d–1), grazer density
(Xj), recipient-controlled feedback of the grazer-
predator (fbjj) and fraction (30%) of the gross growth
(Ghet) of grazer-predator (Eq. 23):

Rhet =  brhet × Xj × ƒbjj + 0.3Ghet (23)

Grazers egest a proportion of ingested matter as faeces
as well as respiration; 10% of ingested materials is
assumed to be egested as faeces (cf. Barthel 1983,
Miller & Landry 1984).

POC dynamics were determined by inputs from
advective transport, turbulent mixing, mortality (sen-
escence) rate of plankton, egestion rate of grazers, rate
of sloppy feeding and losses due to leaching rate of
POC and uptake by higher-level consumers (Table 2).
Sloppy feeding and grazing loss to zooplankton were
defined as calibration parameters.

DOC concentrations were regulated by advective
transport, turbulent mixing, exudation of phytoplank-
ton, lysis of POC (leaching) and uptake by bacteria.
Leaching rate was determined by calibration within
the range of literature values (Kristensen 1994).

Ambient nutrient concentrations are determined by
advective transport, turbulent diffusion and phytoplank-
ton uptake rates and excretion rates of heterotrophs, as
shown in Table 2. Uptake rates of nutrients by phyto-
plankton are calculated by dividing gross growth rates
(G) by C:nutrient ratios; G /C:Nt. Assuming that phyto-
plankton prefer ammonium (NH4

+) as their source of N,
the preference (PR) was determined as a function of
concentrations of ammonium (NH4) and nitrite + nitrate
(NOx) concentrations and the half saturation constant
(KN) for nitrogen (Thomann & Fitzpatrick 1982:

(24)

The preference for ammonium is unity when nitrate is
absent, whereas it is zero when ammonium is absent.
The preference approaches unity when both ammonium

and nitrite + nitrate are abundant, whereas it decreases
when ammonium is scarce but nitrite + nitrate is abun-
dant. The use of nitrite + nitrate is not terminated when
ammonium is abundant and nitrite + nitrate is scarce un-
til nitrite + nitrate is completely depleted.

Excretion rates of heterotrophs are determined by
respiration rates (Rhet) and C:nutrient ratios; Rhet/C:Nt.
For the nitrogen pool, it was assumed that hetero-
trophs only excrete ammonium; however, nitrification
of ammonium is a source for nitrite + nitrate, as well as
input through turbulent mixing. Nitrification (NIT )
was determined by a temperature-dependent mecha-
nism as in Eq. (25) (Jaworski et al. 1972), where time is
1 d, kt is k20 × θ (temp –20), where k20 = nitrification rate
at 20°C (0.068 d–1), and θ = constant for temperature
adjustment of the nitrification rate (1.188):

NIT =  [NH4
+] × exp(kt × time) (25)

Denitrification was assumed to be 10% of the nitrite +
nitrate concentrations (e.g. Nowicki et al. 1997).

Model calibration and validation. The ecosystem
model was calibrated by adjusting values of parameters
which were not specified by the literature or field ob-
servations from the York River estuary. These parame-
ters included optimal light intensity for pico-, nano- and
microphytoplankton, mortality rate of phytoplankton,
exudation rate of phytoplankton, leaching rate of POC,
grazing loss rate of POC, fraction of sloppy feeding,
fraction of egestion by grazers, mortality rate of meso-
zooplankton, bed-shear velocity, grazer preference for
phytoplankton and heterotrophs (bacteria, flagellate +
ciliates and microzooplankton) (see Appendix 1).

Field data collected over an annual cycle from the York
River were used as validation data for the 3 size-struc-
tured phytoplankton populations and for nutrients (Sin
1998). Bacterial abundance and DOC data collected (Au-
gust 96 to May 97) by Schultz (1999) at VIMS were used
for model validation. The bacterial abundance data were
collected from a site close to the region of this study.
In order to convert bacterial abundance to bacterial
biomass, a conversion factor of 50 fg C µm–3 was used
(Fagerbakke et al. 1996). Field data were not available
for validation of heterotrophic flagellate + ciliate densi-
ties. Data for heterotrophic flagellate densities collected
by Kindler (1991) were used for the validation. The EPA
Chesapeake Bay Program monitoring data collected at a
station (WE4.2) near the mouth of the York River were
used for model validation of micro- and mesozooplank-
ton. The abundances of these heterotrophs were con-
verted to biomass using the conversion factors of 9.3 ng
cell–1 for microzooplankton and 9.3 µg cell–1 for meso-
zooplankton (Moloney & Field 1991). POC data (May
1995 to March 1996) collected at the mouth of the York
River by E. Canuel (VIMS) were used as validation data
for POC concentrations.
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Sensitivity analysis. Sensitivity analysis was per-
formed to examine how sensitive the model output was
to specified changes (±20%) in the values of all con-
stants and parameters used in the model. Model sensi-
tivity was estimated as the root mean square deviation
(RMS) between the daily values of state variables from
nominal model runs (Nk) and the outputs from sensitiv-
ity runs (Sk) for 3 yr simulations (n = 1095 d) and was
computed as:

(26)

In order to determine the effects of constant and para-
meter variations, the percent change in outputs was
calculated based on comparisons between RMS and
the means of each state variable for the nominal runs.

RESULTS

Model validation

Forcing variables

A comparison of functional fits and field data for the
principal forcing variables, solar radiation, water tem-
perature, and top-bottom salinity difference, shows
generally good agreement, although variation in the
mean daily solar radiation was especially prominent
and not captured by the functional fits used in the
model (Fig. 3). Field data for mean daily solar radiation
and surface temperature were collected at VIMS. The
salinity difference between surface and bottom waters
was calculated from EPA monitoring data (Stn WE4.2)
collected from 1994 to October 1994. It is difficult to
validate functional fits for top-to-bottom salinity differ-
ences since few data were available for the York River.
However, the function used to model salinity differ-
ence was previously verified based on field data (June
to September 1985) by Eldridge & Sieracki (1993).

State variables

The plankton ecosystem model was simulated for 3 yr
and model predictions of state variable concentrations
for the third year were used for validation. The simulated
state variables for nominal model runs were compared to
field measurements. Good agreement was generally
shown in terms of range and temporal distributions of
phytoplankton and nutrient state variables (Figs. 4 & 5).
The model output for total chlorophyll generally fol-
lowed field data, except for the peaks observed during
February and March (Fig. 4A). Simulated microphyto-
plankton densities matched very closely field observa-
tions (Fig. 4B). For nanophytoplankton, simulation out-

put was similar to that of field concentrations, except for
the peak observed during February and March (Fig. 4C).
Simulated picophytoplankton concentrations generally
followed the pattern of field measurements (Fig. 4D).

The modeled heterotrophic bacterial biomass in a
unit volume (m3) was close to that of measured bacter-
ial biomass (Fig. 4E). The minimum concentrations
during winter predicted by the model corresponded to
field observations. It was difficult to validate simulated
heterotrophic flagellate + ciliate biomass, since very
few data for protozoan biomass were available for the
York River. However, the range of predicted protozoan
biomass (Fig. 4F) was within that of heterotrophic fla-
gellate biomass alone measured by Kindler (1991), and
possibly underestimates total protozoan biomass. Sim-
ulated concentrations of microzooplankton were dis-
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Fig. 3. Comparison of model predictions with observed field
data for (A) surface daily PAR and (B) temperature collected
at Virginia Institute of Marine Science, Gloucester Point, from
August 1996 to July 1997. Salinity difference between surface
and bottom waters (C) was calculated from US EPA Chesa-
peake Bay Program monitoring data (Stn WE4.2) collected 

from June 1994 to October 1994
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tributed within the range of measured concentrations
which fluctuated greatly over the annual cycle
(Fig. 4G). Simulated mesozooplankton biomass was
comparable to field measurements, except for peak
observed in December (Fig. 4H).

Like protozoan biomass, it was difficult to validate
POC concentrations, since few data were available for
comparison, but it appears that the model underesti-
mates York River concentrations based on these very
limited observations (Fig. 5A). Measured DOC concen-
trations did not vary greatly over an annual cycle,
whereas simulated DOC concentrations revealed a
seasonal pattern: low concentrations during the warm
season and higher during the cold season, although the
range (ca. 1 to 4 g C m–3) is relatively small (Fig. 5B).
The modeled dissolved inorganic nitrogen (DIN), ammo-

nium, and nitrate + nitrite concentrations showed good
agreement with field data (Fig. 5C,D,E). The pattern of
simulated orthophosphate concentrations generally
followed measured concentrations, except for the peak
observed in August 1996 (Fig. 5F). In general, the
model results for nutrients fluctuated greatly with a
frequency of less than a month, which was not re-
flected in the field data.

Model sensitivity analysis

The constants and parameters tested for model sen-
sitivity included optimum light, cell mass, mortality
rate, exudation rate, grazer preference, bed-shear
velocity, fraction of sloppy feeding, fraction of eges-
tion, leaching rate, grazing loss rate (POC), C:N ratio,
denitrification, and C:P ratio. A total of 45 constants
and parameters were tested, and only 11 parameters
produced ≥10% change in the 3 yr average concentra-
tion of the state variables (microphytoplankton, micro
+ mesozooplankton, POC, ammonium and orthophos-
phate) relative to the nominal run (Table 4). This result
suggests that the ecosystem model is relatively robust
to parameter variations.
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Fig. 4. Validation results for size-fractionated chl a (total, mi-
cro-, nano- and pico-), heterotrophic bacteria, heterotrophic
flagellates + ciliates, and micro- and mesozooplankton in the
mesohaline zone of the York River estuarine system. Field chl a
data were collected from August 1996 to June 1997. Heterotro-
phic bacteria data were collected by Schultz (1999) and flagel-
late biomass (Kindler 1991) alone is shown in Fig. 4F. EPA mon-
itoring data were used for micro- and mesozooplankton biomass

Fig. 5. Validation results for particulate organic carbon (POC),
dissolved organic carbon (DOC) and nutrients (dissolved inor-
ganic nitrogen, ammonium, nitrite + nitrate and orthophos-
phate) in the mesohaline zone of the York River estuarine
system. POC was collected from May 1995 to March 1996
by E. Canuel, and DOC was collected by Schultz (1999). 

Observed nutrient data are from Sin et al. (2000)
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Small cells (pico- and nanophytoplankton) were
insensitive to changes in all parameters, whereas large
cells (microphytoplankton) were sensitive to change in
cell size (M ) and bed-shear velocity (u*), exhibiting 14
and 12% change in average concentration respec-
tively.

Heterotrophic bacteria, protozoans (flagellates +
cilates) were insensitive to changes in the parameters,
whereas microzooplankton responded to change in
bed-shear velocity, as did the microphytoplankton.
Unlike other heterotrophs, mesozooplankton were
highly sensitive to most parameters tested. They
showed high sensitivity (≥20%) to loss terms such as
mortality, sloppy feeding, egestion, and loss to higher
consumers (Z2M ). Change in cell size also produced
changes close to 20%.

POC was sensitive to changes in the loss term leach-
ing rate (rl) but not to changes in the loss rate by graz-
ing or to bed-shear velocity (rlo: Table 4). DOC and
nitrate were not sensitive to changes in leaching rate
and bed-shear velocity. Ammonium was sensitive to
the change in C:N ratio for heterotrophs. Nitrite +
nitrate was not sensitive to denitrification rate or to
bed-shear velocity. Orthophosphate concentration was
sensitive to changes in the C:P ratio, but it was not
sensitive to bed-shear velocity. The actual parameter
values are given in Appendix 1.

DISCUSSION

The microbial food web has become considered a
principal component influencing water-column pro-
cesses, and has been incorporated into modeling

efforts of plankton food webs (e.g. Pace et al. 1984,
Fasham et al. 1990, 1999, Ducklow & Fasham 1992,
Baretta-Bekker et al. 1994) since the ‘microbial loop’
concept was introduced by Pomeroy (1974) and Azam
et al. (1983). Moloney & Field (1989) analyzed data
from the literature and presented allometric relation-
ships between biological properties and body size. The
general size-scale relationship has been used to simu-
late dynamics of plankton food webs (Moloney & Field
1991, Painting et al. 1993, Armstrong 1994, Hurtt &
Armstrong 1996, Gin et al. 1998). This approach sim-
plifies the process of parameter calibration for various
size-class components in an aquatic food-web system,
reducing the number of parameters to be estimated
(Ducklow 1994). Size-based ecosystem models provide
a more complete simulation tool for understanding the
structure and function of pelagic ecosystems compared
to simple models, in which the entire system is mod-
eled as a single phytoplankton and zooplankton popu-
lation. However, the allometric approach alone may
greatly reduce the explanatory capability of the eco-
system model while it simplifies the problem of para-
meter estimation (Wetzel 1994). For the model given
here, allometric relationships were employed for esti-
mating maximum growth rate (Eq. 11), half saturation
constants (Eq. 14), and the sinking rate of phytoplank-
ton to differentiate the processes based on cell size.
The size-dependence of optimum light intensity has
not been well established to date. For this model, dif-
ferent values of optimal light intensity (Io) were used
for each size class of phytoplankton to account for
any size-dependence of the parameters. Lower light
optima were selected for large cells (cf. Laws 1975),
and the values were determined by model calibration.
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Parameters State variable
PP NP MP HB HFC Z1 Z2 POC DOC N1 N2 P

Optimum light (Io) – – –
Exudation rate (rex) – – –
Grazer preference (Pij) – – – – – –
Cell mass (M) – – 1.02/15 – – – 0.001/17
Mortality rate (rm) – – – – – – 0.002/28
Bed shear velocity (u*) – – 0.86/12 – – 0.008/17 – – – – – –
Fraction of sloppy feeding (ƒsf) – – 0.002/30
Fraction of egestion (ƒeg) – – 0.002/30
Grazing by fishes (Z2M) 0.001/21
Grazing loss rate (rlo) –
Leaching rate (rl) 0.039/13 –
C:N ratio (ƒC:N) 0.003/13 –
Denitrification – –
C:P ratio (ƒC:P) 0.0008/10

Table 4. Results (average RMS and % change) of sensitivity analyses for state variables given ±20% changes in parameter
values. –: % change < 10%. PP: picophytoplankton; NP: nanophytoplankton; MP: microphytoplankton; HB: heterotrophic bacte-
ria; HFC: heterotrophic flagellate + ciliates; Z1: microzooplankton, Z2: mesozooplankton; N1: ammonium; N2: nitrite + nitrate; 

P: orthophosphate
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The York River ecosystem model also employed den-
sity-dependent feedback-control-terms, a priori deri-
vations based on testable underlying assumptions (e.g.
Wiegert 1979). The ecosystem model employs these
derivations rather than mechanistic or empirical equa-
tions for carbon flows between predators and prey, and
also between heterotrophic bacteria and DOC. These a
priori derivations are considered superior to simple
mechanistic or empirical equations for exploring the
interactions among biotic components, especially pre-
dator-prey type interactions (Wetzel 1994).

Incorporation of hydrodynamic processes including
advection and diffusion is also essential in estuarine
ecosystem process-modeling, since estuaries represent
complex environments in which freshwater and tidal
energy inputs interact to affect biological and chemical
processes. Estuaries in the mid-Atlantic region are char-
acterized as partially-mixed (Beardsley & Boicourt 1983),
with longitudinal density gradients that result in baro-
clinic circulation superimposed on barotropic flow forced
by river-discharge (Hansen & Rattray 1965). Effects of
estuarine circulation on plankton dynamics have been
documented in previous studies (Malone et al. 1980,
Haas et al. 1981). The importance of tidal mixing in
plankton dynamics have been investigated more re-
cently using estuarine-processes models (e.g. Cloern
1991, Eldridge & Sieracki 1993, Koseff et al. 1993, Vider-
gar et al. 1993, Lucas et al. 1998). However, the incor-
poration of longitudinal advection into estuarine eco-
system models without linking to hydrodynamic
models is relatively scarce compared to tidal mixing (e.g.
Peterson & Festa 1984, Li et al. 1998, Lucas et al. 1999).
The ecosystem model presented here includes advection
and diffusion by incorporating empirical equations to
estimate residual velocities in x and z directions as in
Table 3 and diffusion terms reflecting spring-neap,
tidally induced stratification and destratification. Ap-
proximation of the physical description is simple and
not as realistic as other multidimensional hydrodynamic
models, but this approach does provide a technique for
investigating direct effects of hydrodynamic processes
on the phytoplankton and nutrient dynamics in the York
River estuary through modeling analyses.

The results of model validation (Figs. 3 to 5) indicated
that the ecosystem model captures to a large extent the
dynamics of the principal components of the phyto-
plankton community and nutrients. Based on the results
of the model sensitivity analysis (Table 4), the model is
also considered relatively robust, since it was not highly
sensitive to changes in most parameters. Therefore, the
model could be used to examine various hypotheses put
forward from previous studies concerning the controls
and limits on phytoplankton and nutrient dynamics in
the York River estuary (Sin et al. 1999, 2000). Although
the model given here is a useful tool for analyzing sea-

sonal variations of water-column processes within the
scope of the modeling efforts, it has limitations in pre-
dicting the behavior of the entire system. The model
represents only the mesohaline zone of the York River
estuary. Also, simulation of bottom-layer dynamics
ultimately needs to be included to describe nutrient
fluxes at the sediment-water interface and interactions
between phytoplankton and benthos in the system. Pref-
erence for ammonium by phytoplankton (Eq. 24) may
need to be replaced by a competitive inhibition equation
(e.g. Fasham et al. 1990), since Eq. (24) does not com-
pletely terminate the uptake of nitrite + nitrate when am-
monium is abundant and nitrite + nitrate is scarce. The
present model uses a fixed carbon:chlorophyll ratio (see
Appendix 1), although the ratio is highly variable as a
function of ambient light and nutrient conditions (Cloern
et al. 1995). Considering the complexity of the ecosystem
presented here, refinement in the DOC pool (i.e. refrac-
tory and labile) may also be required.

In summary, we have developed a tidally-averaged,
size-structured ecosystem model that incorporates feed-
back-control terms and physical mechanisms including
advection and diffusion with a neap-spring, fortnightly
tidal cycle for the study of plankton dynamics in the
mesohaline zone of the York River estuary. Feedback-
control terms are incorporated to better describe the
interactions among biotic components, especially preda-
tor-prey interactions. Incorporation of physical mecha-
nisms, especially longitudinal advection, leads to better
understanding of the direct effects of physical processes
on phytoplankton and nutrient dynamics. Few plankton
ecosystem models have incorporated the physical mech-
anisms thought to exercise control over many biological
processes in estuarine systems. General size-scale rela-
tionships for plankton dynamics were used to provide a
straightforward modeling approach for the ecosystem
model. The model presented in this paper also was
accompanied by studies of long-term historical and field
data to better understand phytoplankton and nutrient
dynamics in an estuarine system (Sin et al. 1999, 2000).
This resulted in a parallel structure between the model-
ing and other basic studies. Due to the complexity of
interactions between phytoplankton and other plankton
and between phytoplankton and the highly variable
physical-chemical environment, it is difficult to identify
the major controlling factors for the estuarine phyto-
plankton community by the analyses of historical and
field data alone. Model validation for forcing and state
variables suggested that the ecosystem-process model
captures the phytoplankton and nutrient dynamics and
is suitable for additional analyses of lower York River
estuarine processes including the investigation of mech-
anisms controlling phytoplankton dynamics and the
effects of nutrient inputs on the York River system in
Virginia. The results also indicate that a combination of
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allometric relationships, density-dependent feedback-
control terms and hydrodynamic descriptions deter-
mined by empirical relationships provides a suitable
approach for plankton-ecosystem modeling efforts in an
estuarine system influenced by freshwater and tidal
energy inputs. The York River system can be considered
as a weakly eutrophic system compared with other
tributaries in the Chesapeake Bay. However, nitrate and
total phosphorus loads have increased significantly in
the Pamunkey River (one of 2 rivers forming the York)
over the period July 1989 to December 1995 (Bell et al.
1996). The York River system may become more eu-
trophic over the next decade as anthropogenic input of
nutrients increases due to projected high population
growth rates and land-use conversion (Corish et al. 1995).
With anticipated refinements following these modeling

studies, the model can be used to study the behavior of
the ecosystem in response to potential changes in nutri-
ent input. In a companion paper (Sin & Wetzel 2002), we
use the model to investigate controls on phytoplankton
and nutrient dynamics in the York River estuary.
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Description Symbola Symbolb Value Source

State variables: initial conditions
Picophytoplankton X(1) PP(t) 6.0 mg chl a m–3 Sin (1998)
Nanophytoplankton X(2) NP(t) 18.0 mg chl a m–3 Sin (1998)
Microphytoplankton X(3) MP(t) 1.0 mg chl a m–3 Sin (1998)
Heterotrophic bacteria X(4) HB(t) 0.18 g C m–3 Kindler (1991)
Flagellates & ciliates X(5) HFC(t) 0.01 g C m–3 Kindler (1991)
Microzooplankton X(6) Z1(t) 0.01 g C m–3 EPA monitoring data
Mesozooplankton X(7) Z2(t) 0.002 g C m–3 EPA monitoring data
Particulate organic carbon X(8) POC(t) 0.60 g C m–3 Canuel (unpubl. data)
Dissolved organic carbon X(9) DOC(t) 2.65 g C m–3 Schultz (1999)
Ammonium X(10) N1(t) 5.63 µM Sin (1998)
Nitrite + nitrate X(11) N2(t) 0.07 µM Sin (1998)
Orthophosphate X(12) P(t) 2.26 µM Sin (1998)

Parameters and coefficients
Time step dt 0.0625 d Calculation
Starting time tzero 1.0 d Calculation
Ending time tend 1095.0 d Calculation
Optimum light for picophytoplankton xIo(1) Io 20.0 E m–2 d–1 Calibration
Optimum light for nanophytoplankton xIo(2) Io 5.0 E m–2 d–1 Calibration
Optimum light for microphytoplankton xIo(3) Io 1.0 E m–2 d–1 Calibration
Mass of picophytoplankton cell xM(1) M 0.088 pg Moloney & Field (1991)
Mass of nanophytoplankton cell xM(2) M 16.0 pg Moloney & Field (1991)
Mass of microphytoplankton cell xM(3) M 2800.0 pg Moloney & Field (1991)
Mass of heterotrophic bacteria cell hetM(1) M 0.088 pg Moloney & Field (1991)
Mass of heterotrophic flagellate+ciliate cell hetM(2) M 9.3 pg Moloney & Field (1991)
Mass of microzooplankton individual hetM(3) M 9300.0 pg Moloney & Field (1991)
Mass of mesozooplankton individual hetM(4) M 9.3 × 106 pg Moloney & Field (1991)
Denitrification rate rdenit 0.1 d–1 Assumption
C:N ratio CNrat ƒC:N 6.0 DiToro et al. (1971)
C:P ratio CPrat ƒC:P 42.0 Redfield (1958)
C:N ratio for heterotrophs hCNrat 5.0 Newell & Linley (1984)
C:chl a ratio cchl 50.0 DiToro et al. (1971)
Mortality rate of phytoplankton rm rm 1.0–10.0% Calibration
Exudation rate of phytoplankton rex rex 1.0–10.0% Calibration
Leaching rate of POC rl rl 20% Calibration
Grazing loss rate of POC rlo rlo 10% Calibration
Fraction of sloppy feeding fsf ƒsf 10% Calibration
Fraction of egestion by grazers feg ƒeg 10% Calibration
Mortality rate of mesozooplankton Z2M Z2M 25% Calibration

Appendix 1. Initial values for state variables and parameter values employed in the ecosystem model; Symbola represents state 
variables in the Fortran90 codes whereas Symbolb denotes state variables used in the text
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Description Symbola Symbolb Value Source

Air density airden ρa 1.2 × 10–3 g cm–3 Park & Kuo (1993)
Drag coefficient dgcoeff C10 1.3 × 10–3 Park & Kuo (1993)
Shear velocity shrvel u* 0.01 m s–1 Calibration
Surface area of surface layer As(1) 4.81 × 106 m2 Calculation
Surface area of bottom layer As(2) 2.41 × 106 m2 Calculation
Water volume of surface layer wvol(1) 40.40 × 106 m3 Calculation
Water volume of bottom layer wvol(2) 18.32 × 106 m3 Calculation
Conversion factor for time sdconv 86400.0 Calculation
Grazer preference for picophytoplankton pij(1) Pij 0.2 Calibration
Grazer preference for nanophytoplankton pij(2) Pij 0.2 Calibration
Grazer preference for microphytoplankton pij(3) Pij 0.2 Calibration
Grazer preference for bacteria pij(4) Pij 0.8 Calibration
Grazer preference for flagellates + ciliates pij(5) Pij 0.8 Calibration
Grazer preference for microzooplankton pij(6) Pij 0.8 Calibration
Donor threshold for picophytoplankton aij(1) Aij 2.0 mg chl a m–3 Assumption
Donor threshold for nanophytoplankton aij(2) Aij 8.6 mg chl a m–3 Assumption
Donor threshold for microphytoplankton aij(3) Aij 2.0 mg chl a m–3 Assumption
Donor threshold for bacteria aij(4) Aij 0.04 g C m–3 Assumption
Donor threshold for flagellates + ciliates aij(5) Aij 0.03 g C m–3 Assumption
Donor threshold for microzooplankton aij(6) Aij 0.009 g C m–3 Assumption
Donor threshold for mesozooplankton aij(7) Aij 0.002 g C m–3 Assumption
Donor threshold for POC aij(8) Aij 0.30 g C m–3 Assumption
Donor threshold for DOC aij(9) Aij 0.90 g C m–3 Assumption
Donor threshold for ammonium aij(10) Aij 0.50 µM Assumption
Donor threshold for nitrite + nitrate aij(11) Aij 0.71 µM Assumption
Donor threshold for orthophosphate aij(12) Aij 0.16 µM Assumption
Donor limit for picophytoplankton gij(1) Gij 0.70 mg chl a m–3 Sin (1998)
Donor limit for nanophytoplankton gij(2) Gij 4.60 mg chl a m–3 Sin (1998)
Donor limit for microphytoplankton gij(3) Gij 0.8 mg chl a m–3 Sin (1998)
Donor limit for bacteria gij(4) Gij 0.02 g C m–3 Kindler (1991)
Donor limit for flagellates + ciliates gij(5) Gij 0.01 g C m–3 Kindler (1991)
Donor limit for microzooplankton gij(6) Gij 0.007 g C m–3 EPA monitoring data
Donor limit for mesozooplankton gij(7) Gij 0.001 g C m–3 EPA monitoring data
Donor limit for POC gij(8) Gij 0.20 g C m–3 Canuel (unpubl. data)
Donor limit for DOC gij(9) Gij 0.6 g C m–3 Schultz (1999)
Donor limit for ammonium gij(10) Gij 0.21 µM Sin (1998)
Donor limit for nitrite + nitrate gij(11) Gij 0.21 µM Sin (1998)
Donor limit for orthophosphate gij(12) Gij 0.032 µM Sin (1998)
Recipient threshold for picophytoplankton ajj(1) Ajj 5.50 mg chl a m–3 Assumption
Recipient threshold for nanophytoplankton ajj(2) Ajj 20.6 mg chl a m–3 Assumption
Recipient threshold for microphytoplankton ajj(3) Ajj 20.3 mg chl a m–3 Assumption
Recipient threshold for bacteria ajj(4) Ajj 0.18 g C m–3 Assumption
Recipient threshold for flagellates + ciliates ajj(5) Ajj 0.05 g C m–3 Assumption
Recipient threshold for microzooplankton ajj(6) Ajj 0.065 g C m–3 Assumption
Recipient threshold for mesozooplankton ajj(7) Ajj 0.015 g C m–3 Assumption
Recipient threshold for POC ajj(8) Ajj 0.80 g C m–3 Assumption
Recipient threshold for DOC ajj(9) Ajj 3.0 g C m–3 Assumption
Recipient threshold for ammonium ajj(10) Ajj 5.0 µM Assumption
Recipient threshold for nitrite + nitrate ajj(11) Ajj 14.3 µM Assumption
Recipient threshold for orthophosphate ajj(12) Ajj 1.98 µM Assumption
Max. recipient density for picophytoplankton gjj(1) Gjj 6.7 mg chl a m–3 Sin (1998)
Max. recipient density for nanophytoplankton gjj(2) Gjj 23.6 mg chl a m–3 Sin (1998)
Max. recipient density for microphytoplankton gjj(3) Gjj 22.3 mg chl a m–3 Sin (1998)
Max. recipient density for bacteria gjj(4) Gjj 0.20 g C m–3 Kindler (1991)
Max. recipient density for flagellates + ciliates gjj(5) Gjj 0.06 g C m–3 Kindler (1991)
Max. recipient density for microzooplankton gjj(6) Gjj 0.075 g C m–3 EPA monitoring data
Max. recipient density for mesozooplankton gjj(7) Gjj 0.02 g C m–3 EPA monitoring data
Max. recipient density for POC gjj(8) Gjj 1.0 g C m–3 Canuel (unpubl. data)
Max. recipient density for DOC gjj(9) Gjj 3.60 g C m–3 Schultz (1999)
Max. recipient density for ammonium gjj(10) Gjj 14.3 µM Sin (1998)
Max. recipient density for nitrite + nitrate gjj(11) Gjj 35.7 µM Sin (1998)
Max. recipient density for orthophosphate gjj(12) Gjj 2.26 µM Sin (1998)

Appendix 1 (continued)
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