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INTRODUCTION

Phytoplankton dynamics in aquatic environments
may be regulated by abiotic mechanisms (nutrient
fluxes related to physical-chemical variability, i.e.
bottom-up control) and biotic processes (trophic

interactions, i.e. top-down control: Carpenter et al.
1987, Kivi et al. 1993, Armstrong 1994, Caraco et al.
1997). There has been continuing controversy and
debate over the relative importance of bottom-up
versus top-down controls and established concepts of
resource competition (Tilman 1982) and trophic cas-
cade (Carpenter et al. 1985) for many years. In river-
dominated estuaries, these controlling mechanisms
interact with phytoplankton in complex ways, mainly
due to freshwater and tidal energy inputs into the
system (Alpine & Cloern 1992, Pennock & Sharp
1994, Cloern 1996). Temporal variations in river-dis-
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charge to an estuary can affect phytoplankton pro-
duction, biomass accumulation and size structure
or taxon composition through several processes:
(1) altering inputs of nutrients from the surrounding
watershed; (2) altering light availability by way of
estuarine gravitational circulation, stratification, and
changing the turbidity maximum zone along the
estuary; (3) altering rates of dilution or advection of
phytoplankton; (4) altering the amount of detrital or
suspended organic matter supporting heterotrophs
in an estuarine system (e.g. Malone & Chervin 1979,
Malone et al. 1980, 1988, Cloern et al. 1983, Pennock
1985, Gallegos et al. 1992, Madariaga et al. 1992,
Boyer et al. 1993). While seasonal and interannual
fluctuations in river discharge produce low-frequency
oscillations in the phytoplankton populations, varia-
tions in tides (tidal mixing) result in high-frequency
oscillations (Haas 1975, Ray et al. 1989, Aksnes & Lie
1990, Cloern 1991).

In previous studies, phytoplankton and nutrient
dynamics were investigated by analyzing US Environ-
mental Protection Agency (EPA) long-term monitoring
data (Sin et al. 1999) and summarizing the results of an
annual sampling program in the York River estuary,

Virginia (Sin et al. 2000). These studies summarized
the general spatial-temporal characteristics of phyto-
plankton biomass and size structure as well as nutrient
dynamics in the York River estuary. Potential control-
ling factors were documented from the results, but it
was difficult to identify the major controlling factors for
the phytoplankton community due to the complexity of
interactions between phytoplankton and other plank-
ton, and between phytoplankton and the highly vari-
able physical-chemical environment.

The principal goal of this modeling effort was to
investigate major mechanisms controlling size-frac-
tionated phytoplankton and nutrient dynamics in the
mesohaline zone of the York River estuary, Virginia, by
using the York River ecosystem process model (Sin &
Wetzel 2002).

MATERIALS AND METHODS

Area of model application

The area of model application is located in the meso-
haline zone of the York River estuarine system, a 

sub-estuary of the Chesapeake Bay.
The estuarine system is composed of 3
rivers: the York, Pamunkey, and Mat-
taponi (Fig. 1). The York River is formed
by the confluence of the Pamunkey and
Mattaponi rivers at West Point (48 km
from its mouth). Total average freshwa-
ter discharge to the river system is 70
m3 s–1 (Hyer 1977). Salinity distribution
in the York River system is affected by
the interaction of freshwater, salt water,
tidal energy and wind. Salinity gradi-
ents between the surface and bottom
layers are influenced by neap and
spring tidal cycles, with destratification
of the water column occuring at high
spring tides and stratification develop-
ing during the intervening periods
(Haas 1975). The area of model applica-
tion is located in the mesohaline zone,
13 km from the mouth of the York River
estuary (Fig. 1). Average water depth
in this region is 16.7 m, and salinity
ranged from 12.0 to 17.5 in surface
water and from 16.0 to 22.2 in bottom
water during the period August 1996 to
June 1997.

Model description. A tidally aver-
aged plankton model with 12 state
variables was developed using a combi-
nation of allometric relationships, den-

92

Fig. 1. Area of model application ( ) in the mesohaline zone of the York River
estuarine system. Water samples were collected at the site over an annual cycle 

(see Sin et al. 2000)
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sity-dependent feedback-control functions and explicit
hydrodynamics. The model was calibrated and vali-
dated using values from the literature and field obser-
vations from the York River estuary. Sensitivity analy-
ses on the model was performed and indicated that the
model was relatively robust, since it was not highly
sensitive to changes (±20%) in most parameters which
were not specified in the literature or field observa-
tions. The ecosystem model was used to investigate
potential mechanisms controlling size-structured phy-
toplankton and nutrient dynamics. The conceptual,
mathematical structure and results of sensitivity analy-
ses of the York River ecosystem model are given in
Sin & Wetzel 2002.

Model analyses. To identify potential mechanisms
controlling phytoplankton and nutrient dynamics, the
model studies focused on sensitivity analyses. The
effect of variations in coefficients related to or values of
parameters hypothesized to be the major controlling
factors of phytoplankton dynamics in the York River
system were investigated after model calibration and
validation. Each parameter was varied relative to nom-
inal values in individual model runs.

To examine the effect of changes in forcing vari-
ables, model sensitivity was tested for the forcing
variables given ±10 E m–2 d–1 change in incident solar
radiation, ±2°C temperature change, ±20% changes
in the light-attenuation coefficient and top-to-bottom
salinity difference. Top-to-bottom salinity difference
was included in the analyses since it is an indi-
cator of water-column stratification and destratifica-
tion. Effects of changes in boundary conditions were
investigated given ±10 and ±20% changes in incom-
ing source water from upriver and bottom waters
respectively. To assess the potential impact of the
changes described above, a forcing variable or con-
stant was considered as ‘sensitive’ (controlling factor
for a state variable) if the specified change in the
values of variables produced a ≥10% change in 3 yr
average concentrations of the state variables relative
to the nominal model run. Effects of physical pro-
cesses including diffusion and advection on phyto-
plankton and nutrient dynamics were assessed by
removing diffusion, longitudinal advection, vertical
advection and diffusion + advection processes from
the model in the sensitivity analyses. A physical pro-
cess was considered to be ‘sensitive’ if removal of the
process resulted in a ≥100% change in 3 yr average
concentrations of the state variables relative to the
nominal model run. In the model sensitivity analyses,
the root mean-square deviation (RMS) between the
daily values of state variables from nominal model
runs and the outputs from sensitivity runs was com-
puted (Sin & Wetzel 2002) and compared with the
means of each state variable for the nominal runs.

RESULTS

Model sensitivity: parameter variation

Table 1 presents the computed RMS values of sensi-
tivity runs for a ±20% change in selected parameters
and the average % change in state variables for pico-,
nano- and microphytoplankton, ammonium, nitrite+
nitrate and orthophosphate. Picophytoplankton (PP)
were marginally sensitive to changes in certain para-
meter values, demonstrating changes of less than 6% in
average concentrations relative to the nominal model
run. Nanophytoplankton (NP) were generally insensi-
tive to changes in parameters related to metabolic pro-
cesses, although they appeared sensitive (9%) to a
change in cell size (mass, M). In contrast to small cells,
large cells (microphytoplankton, MP) were sensitive to
changes in M and bed-shear velocity (u

*
), exhibiting a

14% and a 12% change in average concentration re-
spectively. The effects of changes in cell size appeared
to increase with increasing cell size. The results suggest
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State variable Average RMS % change
Parameter

Picophytoplankton (PP)
Optimum light (Io) 0.17 –
Cell mass (M) 0.15 –
Mortality rate (rm) 0.21 5.3
Exudation rate (rex) 0.21 5.3
Grazer preference (Pij) 0.12 –
Bed-shear velocity (u

*
) 0.13 –

Nanophytoplankton (NP)
Optimum light (Io) 0.14 –
Cell mass (M) 1.06 9.0
Mortality rate (rm) 0.05 –
Exudation rate (rex) 0.07 –
Grazer preference (Pij) 0.29 –
Bed-shear velocity (u

*
) 0.25 –

Microphytoplankton (MP)
Optimum light (Io) 0.09 –
Cell mass (M) 1.02 14.5*

Mortality rate (rm) 0.43 6.1
Exudation rate (rex) 0.43 6.1
Grazer preference (Pij) 0.15 –
Bed-shear velocity (u

*
) 0.86 12.3*

NH4
+ (N1)

C:N ratio (C:N) 0.003 12.8*

Bed-shear velocity (u
*
) 0.042 –

NO2
–+NO3

– (N2)
Denitrification 0.007 8.7
Bed-shear velocity (u

*
) 0.092 –

PO4
3– (P)

C:P ratio (C:P) 0.0008 10.5*

Bed-shear velocity (u
*
) 0.006 –

Table 1. Results of sensitivity analyses (±20% change in para-
meter values) for phytoplankton and nutrient components in
the York River ecosystem model. –: % change <5% omitted; 

*: % change >10%, ‘sensitive’



Mar Ecol Prog Ser 228: 91–101, 2002

that, unlike small cells (pico-, nanophytoplankton), the
dynamics of large cells (microphytoplankton) may be
affected by hydrodynamic processes such as sinking
and vertical diffusion that are determined by cell size
and bed-shear velocity respectively.

Ammonium (N1) was sensitive to changes in the C:N
ratio for heterotrophs. Nitrite + nitrate (N2) was not
sensitive to denitrification rate or to bed-shear velocity.
Orthophosphate concentration (P) was sensitive to
changes in the C:P ratio, but was not sensitive to bed-
shear velocity. Sensitivity of the nutrient state variables
to changes in the C:N or C:P ratios indicate the im-
portance of using appropriate (confirmed) values for
the ratios in the model.

Mesozooplankton were not sensitive to bed-shear ve-
locity (u

*
), but were highly sensitive to changes in most

parameters tested, exhibiting high percentage changes
(≥20%) in biological loss terms such as mortality (rm),
sloppy feeding ( ƒsf), egestion ( ƒeg), and loss to higher
consumers (Z2M) as well as cell size (~20%) (Sin &
Wetzel 2002). These results suggest that mesozoo-
plankton dynamics are more likely to be affected by
biological processes than by hydrodynamic variables.

Model sensitivity: forcing variables and physical
properties

The average RMS and percentage change in the
concentrations of the state variables are presented in

Table 2 given ±10 E m–2 d–1 change in incident solar
radiation, ±2°C temperature change, ±20% changes
in the light attenuation coefficient and top-to-bottom
salinity difference. The combined effects of changes in
solar radiation and temperature are also presented
given the co-variance between the 2 variables. Pico-
phytoplankton (PP), microzooplankton (Z1), nitrite +
nitrate (N2) and orthophosphate (P) concentrations
were sensitive to changes in incident daily solar radia-
tion. All state variables except microphytoplankton
and POC were sensitive to changes in temperature and
light + temperature, suggesting that compared with
solar radiation, temperature is more probably the
dominant controlling factor. Small (pico- and nano-)
phytoplankton, microzooplankton and nutrient pools
were sensitive to changes in kd (light attenuation
coefficient). Nano- and microphytoplankton, mesozoo-
plankton, POC and nutrient pools were sensitive to
changes in top-to-bottom salinity difference (Table 2),
indicating that the water-column stratification and
destratification cycle plays an important role in the
dynamics of larger plankton and nutrients.

The different model responses of pico-, nano- and mi-
crophytoplankton to change in the forcing variables sug-
gest that solar radiation, temperature and vertical salin-
ity distribution may differentiate the production and
biomass accumulation of each phytoplankton size class.
Fig. 2 shows the different responses of pico-, nano- and
microphytoplankton to changes in incident solar radia-
tion and temperature. An increase (or decrease) in solar
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Description State variable
PP NP MP HB HFC Z1 Z2 POC DOC N1 N2 P

Forcing variable
Incident radiation 0.62/16 – – – – 0.012/23 – – – – 0.58/11 0.03/13
Temperature 0.42/11 2.86/24 – 0.025/22 0.003/180.019/39 0.004/62 – 0.3/16 0.31/18 0.85/16 0.05/21
Radiation + 1.05/27 2.97/25 – 0.030/26 0.003/190.020/41 0.004/62 – 0.33/18 0.36/20 1.40/26 0.068/28

temperature
Light attenuation 0.42/11 2.84/24 – – – 0.005/11 – – – 0.20/11 0.91/17 0.049/20
coefficient
Top-bottom salinity – 2.56/22 2.47/35 – – – 0.0007/110.045/15 – 0.35/20 1.12/21 0.056/23

difference

Boundary condition
PP from up-river 1.64/42 – – – – 0.005/10 – 0.037/12 – – – –
NP from up-river – 8.32/70 – 0.012/11 0.002/140.020/42 – 0.034/11 0.30/16 0.24/14 1.21/22 0.042/17
MP from up-river – – 9.6/136 – – – – – – – – 0.026/11
N2 from up-river – – – – – – – – – – 3.3/60 –
PP from bottom water – – – – – – – – – – – –
NP from bottom water – – – – – 0.010/20 – – – – – 0.039/16
MP from bottom water – – 1.71/24 – – – – – – – – –
N1 from bottom water – – – – – – – – – 0.37/21 0.61/11 –
P from bottom water – – – – – – – – – – – 0.069/29

Table 2. Results (average RMS and % change) of sensitivity analyses for state variables given specified changes in values of forc-
ing variables and boundary conditions. –: % change <10%. PP: picophytoplankton; NP: nanophytoplankton; MP: microphyto-
plankton; HB: heterotrophic bacteria; HFC: heterotrophic flagellate + ciliates; Z1: microzooplankton, Z2: mesozooplankton; 

N1: ammonium; N2: nitrite + nitrate; P: orthophosphate
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radiation and temperature increased (or
decreased) pico- and nano-chlorophyll a
(chl a) concentrations, whereas an in-
crease in light level and temperature did
not affect micro-chl a concentrations. The
effects of change in the top-to-bottom
salinity difference on phytoplankton and
nutrients are shown in Fig. 3. A change in
salinity difference did not affect pico-
phytoplankton chlorophyll concentra-
tions (Fig. 3A), but did affect both nano-
and microphytoplankton concentrations
(Fig. 3B,C). A 20% increase in the salinity
difference increased nano-chl a concen-
trations and decreased micro-chl a con-
centrations, suggesting a different re-
sponse of each cell size class to the York
River stratification-destratification cycle.
The result indicates that nanophyto-
plankton chl a biomass increases as the
water column becomes stratified, while
microphytoplankton chl a biomass de-
creases.

Ammonium and orthophosphate re-
sponded negatively to changes in sal-
inity difference, especially during sum-
mer (Fig. 3D,F) while nitrite + nitrate
responded positively to the change, espe-
cially during winter-spring (Fig. 3E).
This result indicates that concentra-
tions of ammonium and orthophos-
phate increased as the water column
destratified, but nitrite + nitrate con-
centrations increased as the water col-
umn became stratified.

Model sensitivity: 
boundary conditions

The average RMS and percentage
change in the state variables are also
presented in Table 2, given ±10 and
±20% changes in incoming source wa-
ter from upriver and from bottom water
respectively. Only picophytoplankton,
microzooplankton and POC were sen-
sitive to changes in picophytoplankton
densities in the incoming source water
from upriver. All state variables except
picophytoplankton, microphytoplank-
ton and mesozooplankton were sensi-
tive to change in nanophytoplankton
chl a concentrations in incoming source
water from upriver. Microphytoplank-
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Fig. 3. Sensitivity results for pico-, nano-, micro-chl a, ammonium, nitrite +
nitrate and orthophosphate. Effects of change in top-to-bottom salinity differ-
ence were examined by comparing chl a biomass and nutrient concentrations
between a nominal run and sensitivity runs, given ±20% change in top-to-

bottom salinity difference

Fig. 2. Sensitivity results for pico-, nano-, and micro-chl a (mg m–3). Effects of
change in light and temperature were examined, given ±10 E m–2 d–1 change 

in incident solar radiation and ±2°C change in temperature
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ton and orthophosphate were sensitive
to change in microphytoplankton chl a
concentrations in incoming source
water from upriver. The percentage
change in microphytoplankton was
highest (136%) compared with pico-
(42%) and nanophytoplankton (70%),
suggesting that microphytoplankton is
most affected by input of cells from
upriver, probably through longitudinal
transport (advection). Surprisingly, no
phytoplankton state variable was sen-
sitive to change in nitrite + nitrate con-
centrations of the incoming source
water. Only nitrite + nitrate was sensi-
tive to change in the incoming source,
suggesting that nitrite + nitrate from
upriver may not be a major factor con-
trolling phytoplankton production in
the lower, mesohaline area of the estu-
ary. No state variables were sensitive to
the incoming source for picophyto-
plankton from bottom water, whereas
microzooplankton and orthophosphate
were sensitive to changes in the incom-
ing source of nanophytoplankton from
bottom water. Unlike pico- and na-
nophytoplankton, microphytoplankton
were sensitive to changes in the incom-
ing source from bottom water, as were
ammonium and orthophosphate. These
results suggest that vertical diffusion
and advection may be a major mecha-
nism affecting the dynamics of large
phytoplankton and nutrients in surface
water, especially ammonium and ortho-
phosphate, by transporting large phy-
toplankton and nutrients regenerated
from the bottom water.

Model sensitivity: 
hydrodynamic processes

Since the removal of 1 or 2 hydro-
dynamic processes are not physically
realizable scenarios, it is necessary to
examine the time series of each term
for vertical flux (advection and diffu-
sion) including sinking, longitudinal
import/export (advection) and in situ
production in order to determine their
relative importance. Fig. 4 shows the
changes in concentrations of phyto-
plankton and nutrients arising from
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Fig. 4. Time series of daily changes in concentrations of pico-, nano-, and
micro-chl a and nutrient (ammonium, nitrite + nitrate, orthophosphate) arising 

from vertical advection/diffusion and longitudinal advection

Fig. 5. Time series of daily changes in concentrations of pico-, nano-, and micro-
chl a and nutrient (ammonium, nitrite + nitrate, orthophosphate) arising from
hydrodynamic mechanisms (advection + vertical diffusion) and biochemical 

processes
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vertical advection and diffusion versus
longitudinal advection. It is evident
that vertical flux serves as a ‘source’ of
phytoplankton and nutrients, whereas
longitudinal transport serves as a ‘sink’
in the model, suggesting that these
2 terms are offset in the model sim-
ulation. The scale or magnitude of the
source and sink terms also varies with
season, cell size and nutrient species.
The seasonality of microphytoplankton
is prominent (Fig. 4C), being high dur-
ing the cold season but low during the
warm season. Vertical flux is more im-
portant than longitudinal advection for
ammonium and orthophosphate pools
during the warm season, whereas lon-
gitudinal advection is more important
for nitrite + nitrate pools during the
cold season (Fig. 4D,E,F).

The direct effects of the combined
hydrodynamic processes were com-
pared with in situ production of phyto-
plankton and nutrients to determine
the role of hydrodynamics and biologi-
cal-chemical processes in the water-
column dynamics of the York River sys-
tem (Fig. 5). Since vertical advection/
diffusion serves as a source mechanism and longitudi-
nal advection is a sink mechanism in most cases (see
Fig. 4), positive values represent vertical flux alone
and negative values denote longitudinal export.
Changes in pico- and nanophytoplankton biomass due
to hydrodynamic processes are small and vary little
over time, whereas in situ production of small cells is
large and fluctuates greatly, except during the winter-
spring period (Fig. 5A,B). However, changes in micro-
phytoplankton biomass due to hydrodynamics are rel-
atively large, and fluctuate greatly between ‘source’
and ‘sink’ at the scale of neap-spring tidal cycles dur-
ing the winter-spring (Fig. 5C). In situ production also
fluctuates during winter-spring, but its impact is small
compared to that of hydrodynamic processes, although
the effects of the two are inversely related. The results
suggest that in situ production is more important than
hydrodynamic controls for small cells, whereas hydro-
dynamic processes are more important for large cells.

Hydrodynamics also play a role as a ‘source’ mecha-
nism for ammonium throughout the year, especially dur-
ing summer and fall, whereas biochemical processes
generally serve as a ‘sink’ mechanism, especially during
the winter season (Fig. 5D). The pattern is reversed for
nitrite + nitrate: here hydrodynamics serve as a ‘sink‘ and
bio-chemical processes serve as a ‘source’ mechanism
(Fig. 5E). For orthophosphate, hydrodynamics play a role

as a ‘source’ and biochemical processes serve as a ‘sink’
mechanism during summer and fall, but the roles are
reversed during winter and spring (Fig. 5F).

To further investigate the potential influences of
physical processes, Fig. 6 shows the model outputs for
phytoplankton chl a biomass and nutrients when the
processes of advection and diffusion were removed
from the model. The chl a concentrations of picophyto-
plankton did not change greatly but nanophytoplank-
ton chl a concentrations increased slightly. The winter-
spring blooms of microphytoplankton completely dis-
appeared when diffusion and advection were removed,
suggesting that these processes influence the accumu-
lation of large cells during winter-spring in the meso-
haline area of the York River estuary. Oscillations in
nutrient concentrations observed in the nominal model
run during the warm season in 1996 disappeared. The
1996 summer peaks in the nutrients also disappeared
indicating the importance of physical processes in
nutrient dynamics in the study area. Percentage chan-
ges in concentrations of microphytoplankton, meso-
zooplankton, and all nutrient pools were greater than
50% when diffusion and vertical advection were
removed from the model (data not shown).

In order to investigate the role of diffusion and verti-
cal advection as a factor influencing phytoplankton
and nutrient dynamics, we examined the relationship

97

Fig. 6. Sensitivity results for pico-, nano-, and micro-chl a and nutrients (ammo-
nium, nitrite + nitrate, orthophosphate) comparing chl a and nutrient con-
centrations between a nominal and sensitivity run when advection + vertical 

diffusion were removed from the model
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between upward flows as well as diffusion coefficients
(vertical eddy diffusivity, D) and the model predictions
for the chl a biomass of phytoplankton and nutrient
pools (Fig. 7). The chl a biomass of small (pico-, nano-)
cells was related negatively to the coefficients and
upward flows at the scale of neap-spring tidal cycles
(Fig. 7A,B). On the other hand, the chl a biomass of
large cells was related positively (slightly) to the coef-
ficients and upward flows (Fig. 7C), suggesting that
the influence of hydrodynamic processes on phyto-
plankton dynamics is dependent on size structure and
operates at the neap-spring fortnightly time scale.
Ammonium showed a positive relationship with verti-
cal eddy diffusivity and upward flow throughout the
annual cycle (Fig. 7D). Nitrite + nitrate and orthophos-
phate showed a positive relationship with eddy diffu-
sivity during the warm season, but were related
negatively during the cold season (Fig. 7E,F). These
results suggest that vertical diffusion (tidal mixing) and
advection may play an important role in size-struc-
tured phytoplankton and nutrient dynamics in the
surface water of the lower York River estuary.

DISCUSSION

Model sensitivity analyses of forcing variables
(Table 2) suggest that small (pico-, nano-) phytoplankton
cells may be regulated by light- and temperature-de-

pendent metabolism, since phytoplank-
ton size classes were sensitive to
changes in incident solar radiation and
temperature. Unlike large cells (micro-
phytoplankton), the seasonal distribu-
tions of small cells (see Fig. 2) were also
in phase with those of incident solar
radiation and temperature (high during
summer, low during winter), providing
additional support for the hypothesis.
Results from field observations over an
annual cycle (Sin et al. 2000) showed a
significant and positive correlation be-
tween pico-sized chl a and temperature,
indicating the importance of tem-
perature-dependent metabolism coupled
with light availability.

Nano- and microphytoplankton were
especially sensitive to changes in top-
to-bottom salinity differences, suggest-
ing that the phytoplankton may be
regulated strongly by physical pro-
cesses such as tidal mixing. However,
the response of the phytoplankton com-
munity to changes in top-to-bottom
salinity differences was dependent on

cell size (Fig. 3). The chl a biomass of small cells, espe-
cially nanophytoplankton, increased during the warm
season (especially in spring and fall) when the sal-
inity difference increased (+20%), whereas the bio-
mass of large cells (microphytoplankton) decreased
(Fig. 3A,B,C). This result suggests that the biomass
accumulation of small cells may be enhanced by strat-
ification whereas that of large cells may be enhanced
by destratification. This conclusion was reinforced
when we examined the relationship between phyto-
plankton and diffusion coefficient distributions. The
relationships were negative for small cells and positive
for large cells over a fortnightly cycle (Fig. 7). The pat-
tern for small cells agrees with observations by Ray
et al. (1989) in the mesohaline zone of the York
River estuary. Peak abundances of cyanobacteria and
diatoms observed during periods of stratification and
minima during periods of destratification (Ray et al
1989). Using a numerical algal growth model con-
trolled only by light limitation, Ray et al. (1989) con-
cluded that cyanobacterial growth is limited by light
availability in the surface water, since vertical mixing
increases the mixed layer depth and decreases light.
A food-web model (Eldridge & Sieracki 1993) docu-
mented that changes in mixed-layer depth determines
light availability regulating cyanobacterial growth
rates in the mesohaline zone of the York River estuary.
Therefore, light availability coupled with the water-
column stratification-destratification cycle may be the
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Fig. 7. Distributions of diffusion coefficient, chl a (pico-, nano-, and micro) and 
nutrients from the nominal model run of the ecosystem model
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major controlling factor of the growth of small cells
during the warm season in surface waters of the meso-
haline zone. Based on long-term data analysis and a
simulation model for the South San Francisco Bay,
Cloern (1991) also documented that the temporal vari-
ation of phytoplankton biomass and production is
largely driven by variations in physical forcing that
control vertical tidal mixing. The model simulated
the bloom dominated by nanophytoplankton which
occurred under slow vertical mixing conditions as a
result of rapid phytoplankton growth in the euphotic
zone, coupled with slow sinking and vertical diffusion
from the surface water to the lower water column and
sediment where grazing occurs. The models (Ray et al.
1989, Cloern 1991, Eldridge & Sieracki 1993), however,
did not include nutrients, which also serve as an impor-
tant controlling factor for phytoplankton dynamics.
The results of the present study suggest that tidal mix-
ing may be a major mechanism for supplying benthic-
regenerated nutrients, especially ammonium and ortho-
phosphate, to the surface water during the warm
season, and that the nutrients released from the bottom
water may be an important source for growth of small
cells under elevated light levels during stratification.
During late summer and early fall, high temperatures
increase the remineralization of organic nitrogen and
phosphate in sediments, thereby releasing ammonium
and orthophosphate which accumulate in bottom
water under stratified conditions and are supplied to
the surface water through spring-tide destratification
(tidal mixing) in the lower York River (Webb & D’Elia
1980). The importance of the water column stratifica-
tion-destratification cycle for nutrient supply was also
indicated by positive correlations between bottom
water ammonium and orthophosphate versus surface-
bottom salinity difference (Sin et al. 1999). Tremblay et
al. (1997) also observed that small-sized phytoplankton
(>5 µm) were dominant when nitrate concentrations
were low and the water column was stratified during
summer in the Lower St. Lawrence Estuary.

Microphytoplankton were sensitive to changes in bed-
shear velocity as well as changes in the top-bottom salin-
ity difference (Table 1). The chl a biomass of large cells
was positively related to diffusion coefficients and verti-
cal flows on a short-term basis during winter-spring
(Fig. 7C). These results suggest that the biomass of large
cells may be controlled by the physical processes of ver-
tical diffusion and advection. The effects of diffusion and
advection on phytoplankton dynamics were investigated
by examining changes in the chl a biomass of phyto-
plankton attributable to hydrodynamics (Figs. 4 & 5) by
removing the physical terms from the nominal model
(Fig. 6). Microphytoplankton were highly sensitive to
hydrodynamics (Figs. 5C & 6C), suggesting that these
populations may be controlled by physical processes

including advection and diffusion in the lower part of the
York River system. These model analyses also suggested
that winter-spring blooms of large cells are most proba-
bly the consequence of vertical mixing and transports
rather than in situ production, considering their response
to the physical processes (Figs. 5C & 6C) and nutrient
input from upriver and bottom water (Table 2). Based on
the field observations and long-term data analyses
alone, it was difficult to clarify the relative importance of
in situ production supported by riverine N input versus
advective transport from the upper river and/or bottom
water as a major source of winter-spring blooms of
microphytoplankton (Sin et al. 2000). Seasonal distribu-
tions of chl a from long-term EPA monitoring data
showed that maximum chl a blooms which may be con-
trolled by riverine N inputs develop in a region further
upriver than the region of the estuary modeled here
(Sin et al. 1999). The importance of hydrodynamic pro-
cesses to the large-sized phytoplankton was also docu-
mented by Tremblay et al. (1997). The production of
large-sized phytoplankton was mainly controlled by the
vertical mixing of the water column associated with
longitudinal advection, which affects nutrient supply
and the residence time of diatoms in the euphotic zone in
the lower St. Lawrence Estuary.

Results from long-term EPA data analyses also
showed that bottom concentrations of chlorophyll were
much higher than surface concentrations during win-
ter-spring at the mouth (Stn WE4.2) of the York River
(Fig. 8). The major contribution to the higher chloro-
phyll in the bottom water was made by microphyto-
plankton-sized cells, based on field observations at a
station in the mesohaline zone of the York River estu-
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Fig. 8. Temporal distributions of chl a in the surface and bot-
tom water at Stn WE4.2 (near mouth of the York River estu-
ary) from 1985 to 1994. Stn WE4.2 is one of the stations which
have been monitored by EPA Chesapeake Bay Monitoring 

Program in the York River
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ary (Sin et al. 2000). These observations suggest that
high bottom-water chl a concentrations of large cells is
most probably the major source for winter-spring
blooms of large cells by vertical transport, including
advection and diffusion, in the lower York River estu-
ary. In the model sensitivity analyses of incoming
sources of microphytoplankton from bottom water
(Table 2), microphytoplankton alone were sensitive to
changes in the incoming source, while other size
classes were not. The role of advective transport in the
development of winter-spring blooms was also docu-
mented by Malone et al. (1980) in the lower Hudson
River estuary, which is a partially mixed estuary as is
the York River estuary. Malone et al. (1980) found that
chl a concentrations of net phytoplankton (>20 µm) in
the lower estuary were controlled by advective trans-
port of bottom chl a from adjacent coastal waters
during winter and early spring when phytoplankton
growth and grazing by macrozooplankton appeared
low. Although it is difficult to identify the principal
mechanisms resulting in the high chlorophyll in the
bottom water of the lower York River estuary, it is
hypothesized that the major processes may be sinking
of large-sized cells advected from upriver in surface
water and/or net upstream transport of large cells in
bottom water from Chesapeake Bay.

Based on the results from these modeling analyses
coupled with field observations, size-structured phyto-
plankton dynamics are more likely to be controlled by
physical processes such as light, temperature and
hydrodynamics than by biological or chemical pro-
cesses in the lower mesohaline York River estuary. The
long-term EPA data analyses (Sin et al. 1999) sug-
gested that phytoplankton dynamics in the York River
estuary may be controlled by abiotic mechanisms (i.e.
bottom-up control) rather than trophic, biotic interac-
tions (i.e. top-down control). The results of the model
sensitivity analyses (Table 1) support this conclusion,
since phytoplankton were not sensitive to changes in
parameters related to trophic interactions or other bio-
logical processes including feeding preference (Pij),
mortality rate (rm) and exudation rate (rex). Microphyto-
plankton were sensitive to change in cell size (mass,
M) and bed-shear velocity (u

*
) related to hydrody-

namic processes such as sinking and vertical mixing.
However, mesozooplankton were sensitive to changes
in parameters related to biological processes, suggest-
ing that they may be controlled by biotic factors (e.g.
grazing) rather than abiotic mechanisms.

CONCLUSIONS

We used a tidally-averaged, size-structured ecosys-
tem model that incorporated physical mechanisms in-

cluding advection and diffusion with a neap-spring,
fortnightly tidal cycle to investigate factors potential
controlling size-structured phytoplankton and nutrient
dynamics in the mesohaline zone of the York River es-
tuary. The realistic ecosystem model and analyses with
the model showed that growth of small cells (pico-,
nano-) may be regulated by light availability and tem-
perature dependent metabolism on a seasonal basis.
The simulated high-frequency (daily) fluctuations of
small-cell population densities were phased with the
neap-spring (fortnighty) tidal cycle indicating that
growth of cells over shorter time frames may be con-
trolled by light availability coupled with water column
stratification-destratification, and supported by the in-
put of benthic-regenerated nutrients into the surface
water through vertical mixing, especially during the
warm season in the mesohaline zone. Their growth may
be limited by light availability during destratification
(tidal mixing), since vertical mixing increases the mixed
layer depth and decreases light. In contrast to small
cells, the biomass accumulation of large cells may be a
consequence of vertical and longitudinal transport of
cells through advection and diffusion from upriver and
bottom water rather than in situ production in the re-
gion of model application. The model analyses sup-
ported the hypothesis established from analyses of
long-term EPA datasets that phytoplankton dynamics
appear to be controlled to a large extent by resource
limitation (bottom-up control) rather than by biotic
interactions such as zooplankton grazing (top-down
control). Larger mesozooplankton appear to be con-
trolled by biotic mechanisms. This study suggests that it
is important to refine the physical description in the
ecosystem simulation model and to consider quality
(size structure) as well as quantity (biomass) of phyto-
plankton to better understand phytoplankton and nutri-
ent dynamics in coastal estuarine environments.
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