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INTRODUCTION

Heterocapsa (= Peridinium)triquetra (Ehrenberg) Stein
is one of the most common bloom-forming dinoflagel-
lates found in the coastal and estuarine waters of the

world. Regular blooms have been observed in the North
Sea, the north and south Atlantic, the Mediterranean,
and in the eastern Pacific (Braarud & Pappas 1951,
Braarud 1962, Marshall 1967a,b, 1980, Mulford 1972,
Anderson et al. 1983, Yamochi & Joh 1986, Marshall &
Alden 1990, Kim et al. 1990, Pierce & Turner 1994,
Kononen et al. 1999). A large dinoflagellate bloom dom-
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ABSTRACT: Heterocapsa triquetra is one of the most common bloom-forming dinoflagellates found in
estuaries and near shore regions around the world. This work examined the environmental factors
associated with 3 separate wintertime H. triquetra blooms in the shallow tidally mixed Newport River
estuary, North Carolina, USA. During 2 of the blooms in 1982 and 1983, the estuary was sampled from
a fixed, single location every hour for 14 d. During the third study, the estuary was sampled at 9 fixed
locations over its entire length each week from late December 1997 through March 1998. This time
period included the formation and decline of the H. triquetra bloom. Barometric pressure, precipitation,
photosynthetically active radiation, salinity, temperature, nutrient concentrations, and chl a were mea-
sured in each study. During the 1997–1998 study, pigments were analyzed using HPLC to characterize
the phytoplankton assemblages and the dominant dinoflagellates in each sample were counted. The
prevailing environmental conditions associated with the wintertime blooms were largely the result of
atmospheric forcing. Low pressure systems moved through the study area at 3 to 4 d intervals and were
accompanied by low ambient air temperatures and regular rainfall. Runoff following the rainfall events
supplied inorganic nutrients critical for bloom initiation and development. It also created a mesohaline
frontal zone in the middle portion of the estuary with salinity and hydrodynamic conditions favorable for
H. triquetra growth. Here, the H. triquetra bloom reached its maximal development with chl a levels
>100 µg l–1 and cell densities between 1 and 6 × 106 l–1. As the H. triquetra bloom developed, nutrient in-
puts from the river became insufficient to meet growth demand and H. triquetra began feeding mixo-
trophically, supplementing its nutritional requirements and reducing competition from co-occurring
dinoflagellates. Cloud cover associated with the low pressure systems transiently limited H. triquetra
growth as did low temperatures. More importantly though, low temperatures limited micro- and macro-
zooplankton populations to such an extent that grazing losses were minimal. Hence, in order to bloom,
H. triquetra optimizes a suite of factors including low grazing pressure, increased nutrient inputs,
alternative nutrient sources, and favorable salinity and hydrodynamic conditions, as well as the nega-
tive factors of temperature-limited growth, short day lengths, and periods of transient light limitation.
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inated by H. triquetra usually occurs sometime between
January and March in North Carolina estuaries (Hobbie
1971, Hobbie et al. 1972, Campbell 1973, Kuenzler et al.
1979, Lapennas 1980, Lee et al. 1990, Rudek et al. 1991).
These blooms generally begin as a mixture of different
dinoflagellate species, but rapidly become dominated by
H. triquetra. At the height of these blooms, H. triquetra
chl a levels typically exceed 150 µg l–1 and can account
for up to one-half of the annual phytoplankton carbon
production in North Carolina estuaries (Paerl et al. 1998,
Pinckney et al. 1998). The occurrence of these highly
productive winter blooms is somewhat surprising be-
cause they develop when water temperatures are at, or
near, the annual minimum and incident light fluxes are
low compared with other times of the year (Litaker et al.
2002, this volume).

To better understand how Heterocapsa triquetra ex-
ploits the wintertime environment, we sampled the
Newport River estuary, North Carolina (34° 45’ N,
76° 40’ W) during 3 different winter blooms. In the first 2
studies, the middle portion of the estuary was sampled
time-intensively, every h for 2 wk, from a single station
during February 1982 and February 1983. In the third
study, samples were taken weekly from late December
1997 through the end of March 1998 at 9 stations along
the length of the estuary. The physical, chemical, and
biological factors associated with bloom formation were
measured. Despite suboptimal temperatures and light
levels, H. triquetra was able to utilize the prevailing
nutrient and salinity conditions, and low grazing envi-
ronment, to bloom during January and February.

MATERIALS AND METHODS

Time-intensive studies (1982 and 1983). The New-
port River estuary, North Carolina, is a shallow (ca. 1 m

depth), well-mixed estuary covering 27 km2 (Litaker
et al. 1987). During this study, a station located in the
geographic middle of the estuary was monitored
hourly from 11 to 25 February 1982 and from 30 Janu-
ary to 13 February 1983 (Stn 7 in Fig. 1). These 2 stud-
ies spanned the period when Heterocapsa triquetra
blooms regularly occur in the Newport River estuary.
Basin residence times for water near the sampling sta-
tion ranged from 7 to 45 d, longer than for the narrower
oligohaline upper estuary and the higher salinity,
tidally flushed lower estuary (Hyle 1976).

Salinity (psu) as conductivity and water temperature
were determined using an Industrial Instruments RS-5-
2 salinometer. Photosynthetically active radiation
(PAR, µE m–2 s–1) was determined with a Li-Cor 192S
sensor attached to a recording integrator. Secchi depth
(SD) was measured using a 0.3 m Secchi disk attached
to a calibrated pole. Attenuation coefficients (k) were
calculated empirically from the simultaneous SD and
light attenuation measurements. The relationship was
found to be k = 1.35/SD. Cumulative daily PAR was de-
termined by summing the average hourly water column
fluxes (Riley 1957). Residual NO3

–, NO–
2, and PO–

4
3 were

measured using a Technicon II autoanalyzer. NH4
+ was

measured using the phenol hypochlorite method (Ko-
roleff 1970). Chl a (µg l–1) was determined by fluoro-
metric analysis (Turner Design III fluorometer) of par-
ticulate material collected by gentle suction onto glass
fiber filters (Gelman A/E) and extracted into 90% ace-
tone (Yentsch & Menzel 1963, Parsons et al. 1984).

Spatially intensive study (1997 to 1998). The New-
port River estuary was sampled at 9 locations every
week from 23 December 1997 through 27 March 1998
(Fig. 1). The 1982 and 1983 studies showed no signifi-
cant vertical differences in temperature, salinity or pH.
Hence, only surface samples were collected. Tempera-
ture was measured at each station with a thermometer.
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Fig. 1. Location of the Newport River estuary, North Carolina, and the various sampling sites. The fixed-point sampling station
for the 1982 and 1983 studies is located at Stn 7. Stns 1 through 9 were sampled during the 23 December 1997 through 

27 March 1998 study
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Salinity was determined with a model 180 Orion con-
ductivity meter. Chl a was determined as in the time-
intensive studies. For nutrient analysis, 100 ml of water
from each station was filtered through a Gelman GF/F
glass fiber filter into an acid cleaned container. The fil-
trate was frozen immediately at –80°C. These nutrient
samples were subsequently thawed and analyzed for
NO3

–+ NO–
2, NH4

+, and PO4
3– using a Model QuikChem

8000 Lachat autoanalyzer system. Samples for HPLC
pigment analyses were obtained by filtering 80 to
400 ml samples through a 45 mm Gelman GF/F glass
fiber filter. Excess water was removed from the filters
by blotting before freezing the samples at –80°C. The
HPLC pigment profiles for each sample were deter-
mined using the methods described in Tester et al.
(1995) and Pinckney et al. (1998).

Surface water samples (~125 ml) were taken at each
station, preserved with Utermöhl solution (Guillard
1973), and kept tightly capped in dark bottles. A total
of 103 samples was counted for the presence of the
dinoflagellate Heterocapsa triquetra and the ciliate
Mesodinium rubrum (= Myronecta rubra,Cyclotrichium
meunieri, Halteria rubra) at either 100× or 200× using
an inverted Wild microscope (Lund et al. 1958). The
volumes of the sample chambers were between 2.07
and 3.03 ml. Normally half of the chamber was counted.
When samples were too concentrated to allow accurate
counts (>500 cells per half chamber), an aliquot was
diluted 1:3 or 1:10 prior to counting. Prorocentrum
minimum was also abundant from 23 January through
13 February 1998, and counts were recorded for all
samples where there were >100 cells ml–1. At no time
during this winter bloom was any other dinoflagellate
species more abundant than this.

Laboratory studies have shown that Heterocapsa tri-
quetra increases in size by approximately 60% when it
switches from autotrophic growth to feeding mixo-
trophically on other phytoplankton species (Legrand et
al. 1998). To determine if a similar size shift occurred in
the field, the width and length of 100 cells were mea-
sured from the station with the highest H. triquetra
concentrations on 16 January, 6 February, and 20 Feb-
ruary 1998. These sampling periods were selected as
representative of the pre-bloom, bloom, and bloom
decline. A calibrated eyepiece micrometer was used to
determine if the dimensions and volume of H. triquetra
cells changed during the course of the bloom, indicat-
ing a switch to mixotrophic feeding. Cell volume was
calculated as described in Hillebrand et al. (1999).

Net tows for zooplankton were made at the surface
with a 333 µm mesh (0.5 m diameter) net on 13 and 20
February 1998 to assess the abundance of macrozoo-
plankton grazers. Three to 5 min tows were made at
speeds between 0.5 to 1 m s–1. The filtered volume was
calculated using a General Oceanics, Inc. flow meter

(Model 2030). On 13 February 1998, the zooplankton
from 16.6 and 25.8 m3 tows was almost entirely (>95%)
Acartia tonsa. A. tonsa strongly dominated the zoo-
plankton again on 20 February with ca. 10% of the
material in the tow composed of resuspended particu-
late material. Zooplankton abundances (excluding gela-
tinous plankton) were estimated by settling the filtered
plankton in volumetric cylinders. The displacement
volumes of the tows were 1.0 (13 February) and 1.3 ml
(20 February). Final copepod abundance estimates
were calculated using a displacement volume to dry
weight conversion (Wiebe 1988) and a mean dry weight
of 6.44 µg adult female–1 A. tonsa (Ambler 1982).

The grazing rate of Acartia tonsa on a Heterocapsa
triquetra bloom population was determined as follows.
Copepods were returned to the laboratory in insulated
coolers and sorted within 1 to 2 h of collection. They
were allowed to acclimate to laboratory conditions for
24 h before the start of the grazing experiments. All
experimental copepods were robust and actively
swimming A. tonsa. Twenty adult female A. tonsa were
placed in each of 5 replicate containers with 370 to
390 ml of Newport River water with ambient concentra-
tions of H. triquetra (~5550 to 6800 cells ml–1). Cope-
pods were allowed to graze in the dark for 26.18 to
26.25 h at 18 to 19°C. An initial sample was fixed at t = 0
and a control sample without copepods was maintained
under the same conditions as the grazing samples to
account for the growth of phytoplankton during the
experiment. At the end of each experiment, the grazing
containers were visually inspected to ensure that all
copepods were actively swimming and then fixed in
Utermöhl’s solution. Aliquots of at least 2 ml of the H.
triquetra cells from the grazing experiments were set-
tled in an Utermöhl chamber and counted using a Wild
inverted microscope. Filtration (clearance) rates were
calculated using the equations of Frost (1972).

Microzooplankton abundances were estimated by
settling 25 ml of Utermöhl preserved material and
counting the number of ciliates at 100× for all 9 stations
on 30 January, 13 February, and 27 February 1998.
These dates represent the beginning, middle and end
of the Heterocapsa triquetra bloom during the spatially
intensive study.

Analysis of historical data to establish annual pat-
terns of runoff, temperature, copepod abundance,
and chl a. The monthly runoff for the major coastal
North Carolina rivers and streams was estimated by
averaging the mean monthly flow rates for the Neuse
River measured at the US Geological Survey station
(02089500), Kinston, NC (35° 15’ N, 77° 35’ W), from
1930 to 1998 (Fig. 2). The Neuse River was chosen
because it has a drainage basin of 6972 km2 and is
representative of the major rivers and streams entering
North Carolina estuaries.
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Unfortunately, no flow rate monitoring stations are
located on the Newport River, which supplies the
major freshwater input into the Newport River estuary.
Monthly runoff values were therefore estimated using
a program written by Albrecht (Stone et al. 1971) and
based on work by Thornthwaite & Mather (1955, 1957).
Both mean monthly rainfall and temperatures are
required inputs for this model, and those data were
available from 1946 to 1998 for Cherry Point and More-
head City, NC. These 2 locations are on opposite sides
of the Newport River drainage basin. Flow rates calcu-
lated for each of the 2 sites were averaged to estimate
the runoff over the entire drainage basin (Fig. 2). The
Newport River estuary is representative of the smaller
sub-estuaries located along the coast and sounds of
North Carolina that receive input from small localized
watersheds. The average monthly runoff pattern in
these smaller watersheds can vary slightly from those
of the major river basins due to a greater influence of
localized differences in rainfall.

The annual temperature cycle was determined by
averaging mean monthly temperature from 1950 to
1998 (Fig. 2). The mean monthly abundances of cope-
pods in the Newport River estuary were calculated by
averaging data for a 3 yr period presented in Fulton
(1982) and expressed as copepodites × 103 m–3 (Fig. 2).
The annual pattern of chl a in the middle to upper estu-
ary was determined by averaging the chl a data for
each month taken from Thayer (1971), Pfaender &
Paerl (1984), and Litaker et al. (1987, 1993), as well as
the values measured in these studies.

RESULTS

Prevailing air temperatures were at, or near, the
annual low during each of the 3 studies (Figs. 2, 3 & 4).
These cold temperatures reduced evapotranspiration
rates to the lowest point of the year. Strong, well-orga-
nized frontal systems moved through the study area at
regular 3 to 4 d intervals as evidenced by low pressure
waves accompanied by precipitation (Fig. 3). As a con-
sequence, runoff following the rainfall events was
higher than at other times of the year (Fig. 2) and pro-
vided maximal loading of inorganic NO2

–, NO3
–, NH4

+,
and PO4

3– into the Newport River estuary during Janu-
ary and February. In the time-intensive studies (1982
and 1983), sampling was done from a fixed point. In-
creased runoff was indicated by a drop in mean sal-
inity through time, and an increase in nutrients as the
lower salinity, higher nutrient water moved past the
sampling site (Fig. 4). Nutrients were taken up rapidly
upon entering the estuary (Figs. 3 & 4). The only ex-
ception to this was observed during the spatially inten-
sive study for one period in early March when the NO3

–
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Fig. 2. The mean monthly values ± SD for stream flow (m–3 s–1)
for the Neuse River at Kinston, North Carolina, from 1930 to
1998, estimated mean monthly flow of the Newport River, air
temperature from 1930 to 1998, copepod densities from data in
Fulton (1982), and chl a concentrations from studies of the mid-
dle portion of the Newport River estuary (Thayer 1971, Pfaender 

& Paerl 1984, Litaker et al. 1987, 1993, and present study)
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Fig. 3. Data for barometric pressure (mbars), rainfall (mm h–1),
salinity (psu), chl a (µg l–1), Procentrum minimum (cells ml–1),
Heterocapsa triquetra (cells ml–1), and Mesodinium rubrum
(cells ml–1), photosynthetically active radiation (µE m–2 s–1),
ammonia (µM), nitrate + nitrite (µM), phosphate (µM), and
water temperature (°C) for the study period from 23 Decem-
ber 1997 to 27 March 1998. Sampling dates are indicated by
lines at the bottom of the lower panels. Contours were esti-

mated using Surfer 7
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+ NO2
– levels were elevated at Stns 6 and 7, which are

opposite some of the larger creeks entering the estuary
(Figs. 1 & 3). A small salinity anomaly during that same
time period indicates the increased NO3

– + NO2
– inputs

originated in one or more of the local creeks. Inorganic
phosphate concentrations were generally below detec-
tion (<0.2 µM) during all 3 studies due to a net uptake
of PO4

3– by the sediments during winter in North
Carolina estuaries (Kuenzler et al. 1977).

In each study, the winter dinoflagellate bloom started
in mid-January and was initially dominated by a mixture

of Heterocapsa triquetra and Prorocentrum minimum.
By early February, the bloom was essentially mono-
specific for H. triquetra (Fig. 3). On average, the H. tri-
quetra blooms required approximately 2 to 3 wk to
develop. All 3 blooms were preceded by a drop in the av-
erage salinity and an increase in inorganic nutrient input
(Figs. 3 & 4). During each study period, the highest chl a
concentrations were located in the intermediate salinity
section of the estuary. The steep salinity gradient in this
mesohaline region represents a frontal zone, where
dispersion rates are lower than in the upper and lower

50

Fig. 4. High-resolution
time series measured
every hour for 2 wk at
Stn 7 for the following vari-
ables: chl a (µg l–1), salinity
(psu), dissolved inorganic
nitrogen (NO3

– + NO2
– +

NH4
+) µM, water tempera-

ture (°C), and average wa-
ter column photosyntheti-
cally active radiation (PAR,
µE m–2 s–1). Sampling dates
were from 11 February to
25 February 1982 and 30
January to 13 February
1983. The environmental
conditions were very similar
during late January and
February of 1982 and 1983.
To show the bloom progres-
sion more clearly, the data
from the first 2 weeks in
February 1983 were plotted
before the data from the last 

2 weeks in 1982
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portions of the estuary (Figs. 1 & 5). The relationship be-
tween chl a concentrations and the mesohaline structure
was evident during all of the 1982 fixed point time-
intensive series and in the later part of the 1983 series
(Fig. 4). During these periods, chl a levels varied dra-
matically over a tidal cycle as the chla maximum moved
back and forth past the study site (Figs. 4 & 5). In each
study, the overall bloom progression can be seen as
changes in the mean chl a levels with time. Maximal chl
a concentrations at the height of the February 1982
bloom were in excess of 100 µg l–1 and occurred when
salinities were between 7 and 20 psu and at tempera-
tures between 7 and 14°C. The samples taken during
February 1983 represented the pre-bloom and bloom
initiation periods and were generally far less than 35 µg
l–1. During the spatially intensive study (1997 to 1998),
chl a concentrations at the height of the H. triquetra
bloom again exceeded 100 µg chl a l–1 and were located
in a mesohaline patch that ranged from 6 to 18 psu
(Fig. 3). Chl a levels during the H. triquetra bloom typi-
cally exceeded those at any other time of the year (Fig. 2).

Macrozooplankton and microzooplankton abundances
were estimated during the 1997 to 1998 study. The
dominant macrozooplankton species capable of con-
suming Heterocapsa triquetra was the copepod Acartia
tonsa. A. tonsa densities were estimated to be 642 to
832 individuals m–3 and agree with the wintertime
copepod densities of <1000 m–3 determined previously
for the Newport River estuary (Fig. 2; Fulton 1984a,b)
and other nearby estuaries (Mallin & Paerl 1994). Adult
female A. tonsa isolated at the peak of the H. triquetra
bloom were used for grazing experiments with ambi-

ent concentrations of H. triquetra (5 to 7 × 106 cells l–1).
Ingestion rates ranged from 605 to 1400 H. triquetra
cells copepod–1 h–1 and corresponded to filtration rates
of 0.09 to 0.24 ml copepod–1 h–1 (Fig. 6). Using these
grazing estimates and a copepod abundance of
~1 copepod l–1, A. tonsa could graze approximately 1%
of the H. triquetra cells d–1 during the bloom. Decreas-
ing filtration rates with increasing food concentrations
indicated the copepods were food-saturated and un-
likely to feed continuously at the maximal rate.

The dominant microzooplankton grazers were pri-
marily tintinnids (average 94.3 ± 6.6 µm in length) and
oligotrichs (average 38.1 ± 12.8 µm in length). Rotifers
were rare. Combined tintinnid and oligotrich densities
ranged from ~200 to 3500 individuals l–1 (Table 1).
Tininnids made up >90% of the microzooplankton
assemblage in most of the samples, though there were
a few stations where oligotrichs constituted as much as
80% of the population. Tintinnid grazing rates on Het-
erocapsa triquetra can be as high as 15 cells h–1, but
are more typically in the range of 0.7 to 3 cells h–1

(Stoecker & Evans 1985). Using the observed densities,
and assuming a relatively high ingestion rate of 3 cells
h–1, microzooplankton would only be capable of re-
moving between 0.04 and 4% of the H. triquetra bloom
population per day.

During the 1997–1998 field study, Heterocapsa tri-
quetra was observed engulfing whole Prorocentrum
minimum through an opening in the sulcul region.
This ingestion was accompanied by an increase in
width and length of the H. triquetra cells. The average
cell volume changed from 2168 ± 1192 µm3 on 16 Jan-
uary 1998 when the H. triquetra bloom was just begin-
ning, to 3432 ± 1253 µm3 on 6 February 1998 at the
height of the H. triquetra bloom, to 3197 ± 1262 µm3 on
20 February 1998 when few P. minimum cells remained.
This increase in volume of H. triquetra cells was ac-
companied by a significant increase in the % of the
population with lengths and widths exceeding 25 µm
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Table 1. Microzooplankton abundances (tintinnids and oligo-
trich ciliates) (l–1) measured at 9 sampling stations in the New-
port River estuary, North Carolina, on 30 January, 13 Febru-

ary and 27 February 1998

Stn 30 Jan 13 Feb 27 Feb

1 1300 400 2160
2 380 200 720
3 1480 800 600
4 640 480 520
5 400 600 280
6 800 1480 1120
7 1840 2760 440
8 1160 3040 680
9 1480 3360 1600
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(Fig. 7). The average cell volume increased by 58%
from the pre-bloom to bloom period.

The succession of dominant phytoplankton groups
during the winter was estimated by HPLC pigment
analysis of samples taken during the 1997–1998
study (Fig. 8). The assemblage was initially domi-
nated by cryptophytes (as indicated by alloxanthin),
cyanobacteria (zeaxanthin), and diatoms (fucoxan-
thin). Starting in late January, a bloom of Prorocen-
trum minimum and Heterocapsa triquetra began.
This dinoflagellate bloom (seen as peridinin in Fig. 8)
was initially dominated by P. minimum, but by the
first week in February, H. triquetra was the most
abundant species (Fig. 3). The H. triquetra bloom
declined in mid- to late February and was followed
by a bloom of the ciliate Mesodinium rubrum. The
M. rubrum bloom (alloxanthin from endosymbiotic
cryptophytes) was followed in mid- to late March by
a sudden increase in the diatom population (as indi-
cated by fucoxanthin) as water temperatures began
to rise (Figs. 3 & 8).

DISCUSSION

Atmospheric forcing in the form of low temperatures
and strong frontal systems moving through coastal
regions at 3 to 4 d intervals creates a seasonal niche
favorable to Heterocapsa triquetra blooms during win-
ter in temperate estuaries. H. triquetra exploits these
conditions and out-competes co-occurring species,
even though some of the prevailing conditions, such
as temperature and light, are suboptimal for phyto-
plankton growth (Hobbie 1971, Hobbie et al. 1972,
Campbell 1973, Kuenzler et al. 1979, Lapennas 1980,
Palumbo 1982, Pfaender & Paerl 1984, Stanley &
Daniel 1985, Litaker et al. 1993, Mallin et al. 1991,

Tester et al. 1995). How H. triquetra exploits and
responds to the various environmental conditions is
discussed below.
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Fig. 7. Heterocapsa triquetra size (length and width) and vol-
ume changes during the course of the 1997 to 1998 bloom re-
flect the shift from phototrophy to mixotrophy. The percent-
age of the cells in the H. triquetra population that were in
various width, length, or volume size classes change from
16 January - J (early bloom), 6 February - J (full bloom devel-

opment), and 20 February 1998 - h (declining bloom)
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Abiotic factors associated with atmospheric forcing
and frontal systems (rainfall, light, nutrient inputs,
salinity regime, and a runoff-induced frontal zone)

The passage of strong wintertime low pressure sys-
tems affects a suite of abiotic factors, including rainfall,
nutrient loading, and the prevailing light and salinity
regimes. Specifically, as low pressure systems move
through the area at 3 to 4 d intervals, they are associ-
ated with regular rainfall events that frequently ex-
ceed 50 mm d–l (Fig. 3). These rainfall events coincide
with the coldest part of the year (<12°C), when evapo-
transporation rates are suppressed (Fig. 2). Even
though rain falls equally in the winter and summer,
significantly greater runoff occurs in the December to
March period than at any other time of the year,
excluding hurricane runoff events (Thornwaithe &
Mather 1957, Kuenzler et al. 1977; Fig. 2). Higher
runoff elevates nutrient inputs into the system and
produces mesohaline conditions throughout much of
the estuary (Figs. 3 & 4).

The passage of low pressure systems is also associ-
ated with the increased cloud cover that transiently
reduces PAR relative to other times of the year (Litaker
et al. this volume). Low PAR in combination with an
average 9 h day length versus a 16 h day length in mid-
summer produces the lowest incident light levels of the
year. In situ growth rate studies conducted during the
1983 time-intensive study indicate that Heterocapsa
triquetra blooms undergo transient day to day light
limitation due to increased cloud cover (Litaker et al.
2002). The transient light limitation, however, does not
affect bloom formation, indicating that H. triquetra is
well adapted to low light conditions.

Inputs of nitrate, and to a lesser extent ammonium,
appear to be crucial for Heterocapsa triquetra bloom
formation (Hobbie et al. 1972, Harrison & Hobbie
1974, Hobbie & Smith 1975, Kuenzler et al. 1977, 1979,
Lapennas 1980, Stanley & Daniel 1985, Marshall &
Alden 1990, Mallin et al. 1991). Major runoff events are
most frequent from November to March in the North
Carolina coastal plain, with maximal runoff and inor-
ganic nutrient inputs occurring in late January to early
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Fig. 8. Succession of dominant phytoplankton groups as de-
termined by HPLC pigment analysis. A total of 109 samples
from all the 1997 to 1998 sampling stations were analyzed.
The diagnostic pigments included zeaxanthin (cyanobacteria
and rhodophytes), peridinin (dinoflagellates), alloxanthin
(cryptophytes), and fucoxanthin (contributed by diatoms in
this season). The chl a measured by HPLC does not include
chlorophyllide or chl c1, c2 or c3 as does the fluorescence tech-
nique used to determine chl a in Fig. 3. This accounts for the
difference in the amount of chl a reported (Figs. 3 & 8). How-
ever, the patterns of abundance are the same. Pigment con-
centrations are reported in µg l–1. Contours were estimated 

using Surfer 7
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March (Hobbie 1970, Kuenzler et al. 1977; Fig. 2). The
H. triquetra blooms tend to occur during the January to
early March period. There are, however, occasional
years when the winter conditions are unusually warm
and dry, and mean daily air temperatures seldom drop
below 14°C. Under these conditions, nutrient inputs are
severely curtailed, and the H. triquetra bloom either
fails to develop or is significantly reduced relative to
years when normal runoff occurs (Mallin et al.1991).

Heterocapsa triquetra is physiologically well suited
to take advantage of episodic nutrient inputs. It pos-
sesses a high NO3

– uptake and assimilation capacity
and readily takes up NH4

+ (Harrison 1973). Uptake
rates of NO3

– are nearly the same in the dark as in the
light, even when the cells are nutrient replete (Paasche
et al. 1984). H. triquetra is also capable of producing
high levels of the extracellular enzyme alkaline phos-
phatase, allowing it to escape P limitation, which tran-
siently occurs in late winter or early spring in North
Carolina estuaries (Thayer 1971, Kuenzler et al. 1979,
Rudek et al. 1991).

Heterocapsa triquetra’s ability to respond to episodic
N inputs was best documented by the work of Lapen-
nas (1980). She studied the demographic characteris-
tics of over 30 phytoplankton species in the South River
estuary, North Carolina (34° 58’ N, 76° 35’ W), over a
2 yr period.H.triquetra was the most consistent bloomer
of any species studied relative to the number of cell
divisions needed to reach bloom concentration. It was
observed to be the dominant or co-dominant bloom
species on 22 occasions during the course of the study.
These blooms all occurred in the winter or early spring
and were associated with episodic N inputs following
runoff events. On average, 2 to 3 wk and 7 cell divi-
sions were required for H. triquetra to reach bloom
concentrations, defined as >50 µg C l–1. A 2 to 3 wk
estimate for bloom formation is consistent with the
development period observed in this study (Figs. 3 & 4).

The input of NO3
–-rich water, though essential for

Heterocapsa triquetra bloom development, is not
always sufficient to trigger bloom formation. For exam-
ple, Harrison (1973) found that salinities decreased
and nutrient inputs increased more than a month
before H. triquetra began to bloom in the Pamlico
River estuary. Indeed, NO3

– and NH4
+ inputs are often

abundant in November, yet most of the blooms in the
Pamlico River (Harrison 1973), South River (Lapennas
1980), and Newport River estuaries are restricted to
the early January to March period.

A secondary benefit of the increased runoff is the
production of a large mesohaline region in the estuary
favorable to growth. Ecologically, Heterocapsa trique-
tra is often classified as a mesohaline species (Marshall
& Alden 1990), even though it is functionally euryha-
line. In culture, H. triquetra grows at salinities ranging

from <5 to >45 psu (Braarud 1961). H. triquetra’s toler-
ance for a broad range of salinities is further supported
by blooms reported from waters with salinities as low
as 3 to 4 psu (Hobbie 1971, Hobbie et al. 1972, Kuenz-
ler et al. 1979) and as high as 35 psu (Pieterse & Van
der Post 1967). Under optimal nutrient and light con-
ditions, H. triquetra can achieve >80% of maximal
growth over a salinity range of 10 to 30 psu, with max-
imal growth occurring between 15 to 20 psu (Braarud
& Pappas 1951). The salinity regimes during this study
were generally between 5 to 25 psu and were often
within the range reported for optimal growth (Figs. 3 & 4).

The mesohaline region also represents a frontal
zone, where dispersion is reduced relative to the river
flushed uppermost portions of the estuary and the
tidally flushed lower estuary (Hyle 1976; Figs. 1, 3 & 6).
It was in this region where the Heterocapsa triquetra
blooms were found to reach their fullest development
(Figs. 3, 4 & 6). Accumulation of cells in excess of max-
imal measured growth rates during the 1997–1998
study indicate that H. triquetra was physically concen-
trated in this zone (Litaker et al. this volume). Proro-
centrum minimum (= P. mariae-lebouriae) and Meso-
dinium rubrum, species that were prominent in the
mesohaline frontal region before and after the H. tri-
quetra bloom, are also known to concentrate along
frontal zones with sharp nutriclines or salinity gradi-
ents (Tyler & Seliger 1978, Lindholm & Mork 1990).
In Chesapeake Bay, the accumulation of H. triquetra
along frontal zones is so pronounced that these blooms
are visible on satellite images (Tyler & Stumpf 1989).

Frontal zones, functionally analogous to those in the
Newport River estuary, are also found during the win-
ter in the lateral sub-estuaries of the nearby Albe-
marle-Pamlico estuary, NC (35° 21’ N, 76° 32’ W), the
largest lagoonal estuary in the US. Blooms in the sub-
estuarine systems form as follows. Heterocapsa trique-
tra begins to bloom in late January in the uppermost
portions of the river systems as winter runoff increases.
This runoff generally continues to increase through
February and into March. As a consequence, the
bloom is pushed into the middle portions of the estu-
ary, where the water entering the main channel of the
estuary is relatively fresh and carries large inputs of
nutrients (Hobbie 1971, Kuenzler et al. 1979). This
nutrient-rich water moves laterally into the peripheral
sub-estuaries forcing a limited 2 layer flow circulation
with sharply defined salinity gradients (Lapennas
1980, Ustach et al. 1986). H. triquetra is positively pho-
totactic and can migrate in such a way as to exploit
these flow regimes to maintain higher than expected
population densities (Braruud & Pappas 1951, Pietrese
& Van der Post 1967, Anderson & Stolzenbach 1985,
Lindholm & Nummelin 1999). As a result, H. triquetra
densities commonly exceed 1 × 108 cells l–1 (chl a con-
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centrations >250 µg l–1) in these sub-estuaries. Higher
dilution rates in the main channel of the estuary during
the same bloom periods limit the corresponding H. tri-
quetra cell densities to ~1 to 5 × 106 l–1 (Hobbie 1971).

Heterocapsa triquetra blooms also can develop as
aggregations at stable thermohaline boundaries.
These boundaries represent a rich source of inorganic
nutrients and have stability properties favorable to
H. triquetra accumulation. Kononen et al. (2000) for ex-
ample observed intense blooms of H. triquetra local-
ized in 0.2 to 5 m thick layers 20 to 40 m below the sur-
face of the water at the entrance to the Gulf of Finland
in July 1998. Horizontal patch sizes were generally in
the order of 1 km. In every case, the densest concen-
trations of H. triquetra were located at the sharpest
part of the nitrocline. Given the strong swimming abil-
ity of H. triquetra, it was presumed that these bloom
concentrations simply represented H. triquetra behav-
iorally aggregating in order to take up nutrients before
migrating higher in the water column, where they
began active photosynthesis upon exposure to surface
illumination.

Low temperatures impose growth limitation on
Heterocapsa triquetra and potential grazers

(copepods, cilitates, juvenile fish, ctenophores,
and benthic filter feeders)

The primary negative effect imposed on Hetero-
capsa triquetra by low temperatures is severe growth
limitation. H. triquetra has a broad temperature
growth optimum, with rates >0.45 d–1 observed from
15 to 26°C, and maximal rates of between 0.55 and
0.69 d–1 occurring at 19 to 20°C (Braarud & Pappas
1951, Yamochi 1984, Chang & Carpenter 1988). How-
ever, below 15°C, maximal H. triquetra growth rates
decline rapidly from 0.4 d–1 at 15°C, to 0.1 d–1 at 10°C.
Cell division ceases altogether at 4 to 5°C. The signifi-
cantly lower growth rate below 15°C is also supported
by field data. Minimal daily in situ growth rates for H.
triquetra estimated during the 1983 study varied from
0.02 to 0.14 d–1 over a 7.6 to 12.0°C temperature range
(Litaker et al. 2002). Each of the observed H. triquetra
blooms occurred when average daily water tempera-
tures were generally <12°C, and often <10°C. Despite
the severe growth limitations imposed by these low
temperatures, blooms were still able to develop over a
2 to 3 wk period (Figs. 2, 3 & 4).

In contrast to the negative effects on Heterocapsa tri-
quetra growth, low ambient water temperatures lim-
ited macro- and microzooplankton abundance, thereby
reducing grazing losses. Both H. triquetra’s size (~17 ×
26 µm) and palatability make it an excellent food
source for copepods (Uye & Takamatsu 1990) and

many common ciliate species (Gifford 1985). Copepod
population densities estimated in the 1997–1998 study
were 1000-fold lower than in the summer, when cope-
pods can remove up to 25% of the phytoplankton bio-
mass as chl a day–1 (Stearns et al. 1987). Approximately
1% of the H. triquetra cells d–1 were grazed by Acartia
tonsa, the dominant macrozooplankter present during
this study.

There is a parallel argument for reduced microzoo-
plankton grazing during these winter blooms. Micro-
zooplankton grazing rates often exceed those of macro-
zooplankters, particularly when water temperatures
are elevated and the average cell size is <10 µm
(Burkhill et al. 1987, Litaker et al. 1988). In contrast,
during winter in temperate estuaries, microzooplank-
ton concentrations are generally too low to graze
significant numbers of phytoplankton cells, although
there are exceptions to this general trend (Verity 1986,
Sanders 1987, Baird & Ulanowicz 1989, Mallin 1991,
Kamiyama 1994, 1997, Gallegos & Jordon 1997). The
microzooplankton assemblage measured during the
spatially intensive study (1997 to 1998) was dominated
by tintinnids and oligotrichs. The tintinnid/oligotrich
cell concentrations ranged from ~200 to 3500 individ-
uals l–1 (Table 1). These population densities, like those
of the macrozooplankton grazers, were too low to
cause significant gazing losses in the Newport River
estuary. Similarly, low grazing losses during dino-
flagellate blooms have been reported by Sellner &
Brownlee (1990) in the Chesapeake Bay.

Juvenile Atlantic menhaden Brevortia tyrannus are
the only major species of planktivorous fish present in
the estuary between December and March, but they
are not capable of reducing Heterocapsa triquetra
numbers substantially. Menhaden have an unusual life
history in that the early larvae feed only on zooplank-
ton, but during metamorphosis increase their capacity
to retain smaller phytoplankters. The adults are planti-
vores and their distribution is positively correlated
with the abundance of microflagellates, diatoms, and
to a limited extent, dinoflagellates (Friedland et al.
1989). The switch from feeding on zooplankton to
becoming filter feeders occurs as the larvae increase in
size from about 30 to 45 mm fork length (FL) (June &
Carlson 1971, Govoni et al. 1983). The average size of
menhaden that migrate into the Newport River estuary
from offshore between December and early March,
however, is between 23 to 30 mm FL (Warlen 1994).
Hence, most of the larval menhaden are too small to be
effective filter feeders during the period when the H.
triquetra bloom occurs. Furthermore, the abundances
of menhaden larvae in the Newport River estuary
between December and early March is in the order of
7 to 8 per 100 m3 (Warlen 1994), far too low to signifi-
cantly impact phytoplankton standing stocks.
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Ctenophores were also observed during the study,
and were particularly abundant during several weeks
of the bloom. However, they, like the juvenile men-
haden, are not capable of grazing particles the size of
Heterocapsa triquetra either (Stoecker et al. 1987).
If anything, grazing by ctenophores on zooplankton
would further reduce grazing pressure on H. triquetra
(Robertson 1983). The only other members of the estu-
arine community with the potential to remove signifi-
cant amounts of phytoplankton are benthic filter feed-
ers. However, water temperatures <12°C can severely
limit filtration and growth rates, rendering them inca-
pable of removing significant quantities of phytoplank-
ton (Grizzle et al. 2001).

Success strategies: cysts and mixotrophic nutrition

Resting cysts, keyed to the annual temperature
cycle, may be important in controlling the timing of
Heterocapsa triquetra bloom formation. Yamochi &
Joh (1986) studied the effects of temperature on the
excystment of 7 species of red tide algae found in the
sediments of Osaka Bay, including H. triquetra. They
examined the hypothesis of Anderson & Wall (1978)
that a close correlation exists between germination of
benthic cysts and initiation of certain dinoflagellate
blooms. At incubation temperatures <10°C, H. trique-
tra germinated in 56 to 94% of the sediment samples.
Very few of the samples incubated >20°C contained
H. triquetra, and none of the samples incubated >23°C
produced vegetative cultures. The appearance of H.
triquetra was attributed to the germination of benthic
cysts and not the growth of vegetative cells se-
questered in the sediments. During the same period,
H. triquetra was abundant in the water column only at
temperatures <15°C as is commonly the case in the
Newport River estuary. Whether a similar excystment
occurs in the Newport River estuary is unknown
because cyst densities there were not measured.
However, H. triquetra hypnocysts have been reported
for the nearby South River (Lapennas 1980) and Gales
Creek estuaries (Campbell 1973). Evolution of cyst
germination timed to the annual temperature mini-
mum, or slightly higher, would allow H. triquetra to
take advantage of the recurrent wintertime conditions
formed by atmospheric forcing in many temperate
estuaries. Temperature regulated excystment could
also account for the fact that blooms often lag the initial
input of nutrients into the estuary by more than a
month.

Laboratory studies have shown that Heterocapsa
triquetra grew phototrophically when sufficient inor-
ganic nutrients were available, but fed mixotrophically
when nutrients became limiting (Legrand et al. 1998).

The switch to mixotrophy was characterized by a 61
to 64% increase in average cell volume. In contrast,
nutrient-starved cells in the absence of available
phytoplankton prey actually decreased in size. Mixo-
trophic feeding provided a means for nutrient-depleted
cells to meet their N and P demands. In the 1997–1998
study, H. triquetra began consuming Prorocentrum
minimum cells once the bloom became established.
The switch to mixotrophy was accompanied by a 58%
increase in cell volume. Nutrient depleted H. triquetra
cells ingest 0.2 to 0.4 algal cells d–1 in laboratory stud-
ies, implying grazing rates in the field were significant
when H. triquetra cell numbers exceeded 2000 cells
ml–1. Interestingly, laboratory studies of P. minimum,
the primary food source available to H. triquetra dur-
ing the bloom, showed that this species also switched
to mixotrophic consumption of co-occurring phyto-
plankton when nutrients became limiting (Stoecker et
al. 1997). The consumption of dinoflagellate blooms by
other dinoflagellates may therefore be relatively com-
mon in estuarine and near shore regions (Jeong 1999,
Jeong et al. 1999). An ancillary benefit of mixotrophy is
the reduction of co-occurring species that compete for
similar resources (Thingstad et al. 1996).

Changes in the phytoplankton community structure
reported during other Heterocapsa triquetra blooms
also suggested that this species frequently resorted to
mixotrophy. At the start of these blooms, H. triquetra
almost always co-occurred with 1 or more of the fol-
lowing dinoflagellate species: Alexandrium tamarense,
Ceratium fusus, Gonyaulax spinifera, Gonyaulax sp.,
Karoldinium micrum (= Gymnodinium galatheanum),
Gyrodinium aureolum, Katodinium rotundatum, Pro-
rocentrum micans, Prorocentrum minimum, Protoperi-
dinium sp., or Scrippsiella trochoidea (Marshall 1967,
Pieterse & Van Der Post 1967, Anderson et al. 1983,
Stoecker et al. 1983, Anderson & Stolzenbach 1985,
Lee & Yoo 1990, Marshall & Alden 1990, Mallin 1994,
Akselman 1996). The association between H. triquetra
and P. minimum was particularly strong. As these
blooms progressed, however, the community often
changed with H. triquetra becoming numerically dom-
inant.

Fate of the Heterocapsa triquetra bloom?

The decline of a phytoplankton bloom can be caused
by either single or concomitant factors including dilu-
tion, grazing or disease. The only data in this study
from a bloom decline comes from the 1997 to 1998
period. In this instance, washout appeared to be the
major factor responsible for the bloom decline. A large
drop in salinity, associated with a significant runoff
event, coincided with a sharp decline in Heterocapsa
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triquetra cell numbers (Fig. 3). Besides reducing H. tri-
quetra cell numbers, the runoff event supplied new
nutrients to the system. H. triquetra, however, did not
respond with renewed growth (Figs. 3 & 8). One possi-
bility for H. triquetra’s lack of response is that the cells
were already senescing after a period of nutrient
depletion indicated by the switch to mixotrophy.

Studies of other Heterocapsa triquetra blooms from
different North Carolina estuaries indicated that these
blooms all declined abruptly. Often this decline oc-
curred by mid- to late February, with blooms seldom
lasting beyond mid-March or the first week in April as
water temperatures reached 17 to 19°C (Hobbie 1971,
Hobbie et al. 1972, Carpenter 1973, Kuenzler et al.
1979, Tester et al. 1995). Though the general period
when the blooms declined was fairly similar, the
causes appeared variable. Sometimes the bloom de-
cline was directly correlated with decreased inorganic
N input. This typically occurred when runoff declined
as evapotranspiration rates accelerated with warming
air temperatures. Indeed, in extremely dry years, when
the nutrient input dropped below a critical threshold,
the H. triquetra blooms failed to materialize (Mallin
1994).

Other studies, however, have documented the de-
mise of Heterocapsa triquetra blooms while nutrient
and temperature conditions were apparently still con-
ducive to growth (Mallin et al. 1991, Rudek et al. 1991).
Since these declines are not likely due to grazing as
discussed above, there must be other reasons for H. tri-
quetra bloom termination. Typically the decline of a
dinoflagellate bloom, when environmental conditions
are favorable for growth, is generally attributed to
either cyst formation (Anderson et al. 1983) or disease
(Wommack & Colwell 2000). There is evidence that H.
triquetra has cysts that germinate at low temperatures,
which may help initiate bloom formation. However,
whether H. triquetra is capable of forming cysts when
conditions are still favorable for growth is not known.

The role of viruses or bacteria in limiting Hetero-
capsa triquetra blooms is similarly unknown. However,
there is mounting evidence suggesting that common
viral and bacterial diseases can quickly spread through
a phytoplankton population causing rapid cell death
(Wommack & Colwell 2000). To the extent that this is
true, these pathogens will play a critical role in the
overall structuring and functioning of marine food
webs (Proctor 1997, Guixa-Boixereu et al. 1999).

Fate of the carbon fixed by the Heterocapsa triquetra
bloom?

The Heterocapsa triquetra bloom represents large
quantities of highly utilizable carbon. Up to 50% of the

annual C fixation in North Carolina estuaries can be
attributed to the winter dinoflagellate blooms domi-
nated by H. triquetra (Paerl et al. 1998, Pinckney et al.
1998). Studies in the Chesapeake Bay indicate that
most of the C from H. triquetra and other dinoflagellate
blooms was metabolized before reaching the sedi-
ments (Sellner et al. 1991, 1993). Given that macro-
and microzooplankton grazing was negligible during
the bloom, it was unlikely that the large amount of C
contained in the winter dinoflagellate bloom was
transferred directly to higher trophic levels. Instead C,
N, and P were probably being cycled indirectly to
higher trophic levels through the microbial loop (Rie-
mann et al. 2000).

Heterocapsa triquetra in the context of 
seasonal succession

The succession of the winter phytoplankton commu-
nity was evident from HPLC pigment analyses (Fig. 8).
The assemblage was dominated by cryptophytes and
picoplanktonic cyanobacteria from late December to
late January, when chl a levels were <10 µg l–1 . Salin-
ities were generally declining during this period, indi-
cating increased nutrient inputs. Cryptophytes in
particular increased during mid-January. Similar in-
creases in cryptophyte abundance in response to
runoff events have also been documented for the
nearby Neuse River estuary (Mallin et al. 1991). The
cryptophyte community was then succeeded by a
dinoflagellate community dominated by Prorocentrum
minimum and to a lesser extent Heterocapsa triquetra
in late January (Figs. 3 & 8). Recent studies have shown
that P. minimum feeds mixotrophically, and has a pref-
erence for cryptophyte species (Stoecker et al. 1997).
This raises the possibility that some of the decline in
the cryptophyte assemblage was due to mixotrophic
consumption as the P. minimum bloom developed.

An even more intense Heterocapsa triquetra bloom
succeeded the Prorocentrum minimum bloom. This
combined H. triquetra-P. minimum bloom is represen-
tative of the common wintertime dinoflagellate-domi-
nated blooms that occur sometime between January
and March. These blooms are a persistent feature of
North Carolina estuaries (Pinckney et al. 1998). Evi-
dence suggests that the decline in P. minimum num-
bers was due to the mixotrophic consumption by H. tri-
quetra. The decline in H. triquetra abundance, in turn,
was attributed to washout caused by a major runoff
event (Fig. 3).

The next plankton species to dominate was the cili-
tate Mesodinium rubrum. This organism has an un-
usual nutritional ecology. It ingests cryptophytes and
utilizes their chloroplasts to achieve extraordinarily
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high rates of photosynthesis (Barber et al. 1969, Smith
& Barber 1979, Gustafson et al. 2000). Presumably an
assemblage of free-living cryptophytes benefited from
the nutrient input during the washout event and began
to grow (Figs. 3 & 8). Otherwise the increasing M.
rubrum population would not have been able to
acquire its requisite cryptophytes. The close corre-
spondence between the cryptophyte pigment alloxan-
thin and the cell counts of M. rubrum indicated that a
majority of the cryptophyte pigment was contained
within M. rubrum.

In mid-March, the wintertime cryptophyte and
dinoflagellate assemblages were succeeded by the
spring diatom bloom, indicated by fucoxanthin (Fig. 8).
This increase in diatom biomass was associated with
the rapid increase in water temperatures that occurred
in late March and appears to be a regular occurrence
in North Carolina estuaries (Tester et al. 1995, Pinck-
ney et al. 1998). The beginning of the annual increase
in copepod abundances also coincides with this rapid
increase in ambient temperatures (Fig. 2).

Heterocapsa triquetra: a dynamic model for harmful
algal blooms (HABs)

While Heterocapsa triquetra is not a toxic algal spe-
cies, many of the seasonal and environmental factors
that allow it to form dense (>106 l–1), nearly monospe-
cific blooms in estuaries and coastal regions through-
out the world (Kim 1997, Kononen et al. 1999, Lind-
holm & Nummelin 1999) are important to most
harmful species as well. H. triquetra blooms are nutri-
ent-driven and are identified with seasonal coastal
dynamics similar to those proposed to promote the
formation of Alexandrium tamaranse blooms in NE
US waters (Keafer & Anderson 1993). Further, there is
mounting evidence that nutrient inputs are required
to sustain the extraordinarily high cell densities found
during Karenia brevis (= Gymnodinium breve) blooms
in the near shore waters of the eastern Gulf of Mexico
(Vargo et al. 2000). K. brevis, like H. triquetra, is a
superior nutrient competitor, capable of taking up
both inorganic and organic nutrients (Steidinger et al.
1998). Like H. triquetra, K. brevis effectively adapts to
low light conditions, so neither low ambient light con-
ditions nor self-shading during a bloom significantly
affects its growth. The H. triquetra bloom is driven by
meteorological forcing events that alter the physical
environment of the estuary in a manner favorable for
bloom formation. Similar environmental forcing or cir-
culation patterns are associated with the development
of other HAB blooms including Pseudo-nitzschia spp.
(Hickey 2000), A. tamaranse (Anderson et al. 2000)
and K. brevis (Steidinger et al. 1993, Tester & Stei-

dinger 1997). Finally, H. triquetra exploits seasonal
niches to avoid grazing losses that would inhibit
bloom formation. Other HAB species accomplish this
by mucus production or being unpalatable (Turner &
Tester 1997). Understanding the common conditions
conducive to harmful algal bloom formation, as well
as how individual harmful species in a successional
series respond to a recurrent suite of biotic and abiotic
factors, will provide greater predictive power as to
when and where blooms are likely to occur.

SUMMARY

Late winter blooms of Heterocapsa triquetra in tem-
perate estuaries are usually associated with low ambi-
ent water temperatures and atmospheric forcing
events that produce extensive runoff. This runoff
delivers inorganic nutrients to the estuary, reduces
salinities, and creates frontal zones in the mesohaline
portions of the estuary. Low pressure waves associated
with the rain events that occur every 3 to 4 days also
bring increased cloud cover that transiently light-limits
H. triquetra growth. The low ambient water tempera-
tures also suppress the growth of both macro- and
microzooplankton grazers whose populations are at
an annual low when H. triquetra blooms. H. triquetra
effectively utilizes the nutrient inputs, mesohaline
conditions, low grazing pressure, and favorable hydro-
dynamic conditions to bloom, despite suboptimal tem-
perature and light conditions. As nutrients become
depleted, H. triquetra switches to a mixotrophic feed-
ing mode and begins to consume co-occurring algae to
meet its nutritional needs. Mixotrophy has the added
benefit of reducing competing algae.

Despite low levels of Heterocapsa triquetra being
found throughout most of the year, there are several
studies that indicate that H. triquetra has evolved a
cyst that excysts at temperatures <10°C. Low tem-
perature excystment would provide a seed population
at exactly the right time to exploit the late winter con-
ditions. A number of factors including dilution from
high runoff, senescence, encystment, and viral dis-
eases could be responsible for the decline of H. tri-
quetra blooms. Evidence suggests that of all these pos-
sibilities, washout from a high runoff event in
mid-February was primarily responsible for the 1997 to
1998 bloom decline (Fig. 3). The wintertime microzoo-
plankton and macrozooplankton grazing rates were
insufficient to significantly influence the succession of
phytoplankton species. Hence, mixotrophic feeding
relationships between the various phytoplankton
groups, particularly dinoflagellates, may greatly influ-
ence species composition and the succession of various
phytoplankton species during winter in temperate
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region estuaries. The dynamics of H. triquetra blooms
serve as a general model for dinoflagellate bloom
development including harmful or toxic species.
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