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INTRODUCTION

Processes that influence the establishment of a
seedling from a seed are often diverse and complex
(Wenny 2000). Several factors can account for seed
losses, e.g. pathogens, predation, inter- and intra-
specific competition, movement to unsuitable germi-
nation sites, or simply failed germination (Harper et al.
1965, Chambers & MacMahon 1994). Harper (1977)
viewed the landscape as a ‘lattice’ of safe and unsafe
seed-germination sites, with seeds having to pass

through an ‘environmental sieve’ (defined as a suite of
environmental obstacles in the path of a seed from the
time of release to the time of germination) before arriv-
ing at a ‘safe site’ (defined as a zone where seeds find
the required stimuli and resources to germinate and
grow, and where mortality factors are absent). Many of
these factors may be density-dependent, although
there is conflicting evidence of density-dependence in
terrestrial seed-ecology literature (Waite & Hutchings
1978, 1979, Cabin et al. 2000). For seagrasses, there
is very little information about density-dependent
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effects on seed germination or seedling establishment
(Granger et al. 2000) or about what constitutes a ‘safe
site’ for a seagrass seed.

Zostera marina L. (eelgrass) is the most common tem-
perate seagrass throughout the Northern Hemisphere
(den Hartog 1970). Annual seed-production ranges
from 6176 to 24 460 seeds m–2 (Olesen 1999); however,
the reported seedling numbers are actually signifi-
cantly less than the numbers of seeds produced (Olesen
& Sand-Jensen 1994, Olesen 1999). In the Chesapeake
Bay region, seedlings are nearly always observed each
spring within seagrass beds, but also in unvegetated,
shallow-water sand flats at varying distances from
potential donor beds (R. J. Orth unpubl. data).

The colonization history of these seedlings is not well
known, although it probably arises from the previous
year’s reproductive effort, as persistent seed banks are
not characteristic of this species in this region (Orth et
al. 2000a). In addition, small patches (1 to 3 m2) over
1 yr old have been observed 1 to 100 km from existing
beds in this region (Harwell & Orth 2002a). We assume
that these patches developed from seeds delivered by
rafting reproductive shoots (Harwell & Orth 2002a)
because floating vegetative shoots are unlikely to suc-
cessfully re-establish (Olesen & Sand-Jensen 1994,
Ewanchuk & Williams 1996). Yet the level of seed input
required to establish these patches is unknown, as is
the subsequent mortality from density-dependent or
independent processes. Olesen & Sand-Jensen (1994)
also reported numerous Zostera marina seedlings in
unvegetated areas adjacent to an established bed in
Denmark that developed from a seed bank of 26 seeds
m–2, but seed-density processes were not determined
in that study.

Density-dependent processes have not been identi-
fied relative to Zostera marina germination and early
seedling survival, but could hypothetically influence
germination positively or negatively. For example, if
seedling–seedling interactions exist that inhibit initial
development we would expect to see an inverse rela-
tionship between seed-density and initial establish-
ment rates. Similarly, an inverse relationship might
emerge if seed predators were attracted to high densi-
ties of seeds.

In the terrestrial environment, seed–predator inter-
actions are very important, often driven by density-
dependent processes (Janzen 1971, Crawley 1992,
Hulme 1994, Marone et al. 2000), with both plant and
predator evolving various strategies to ensure their
survival by altering encounter rates. For example,
plants can produce large numbers of seeds either
annually or in alternate years (i.e. masting), thus
ensuring that some seeds survive predation through
predator satiation or starvation (Silverton 1980, Craw-
ley & Long 1995). Predators can adjust their foraging

strategies based on the density of seeds, through either
cache-hoarding, entering diapause, or migrating to
sites with greater food resources (Janzen 1971). Sev-
eral studies have shown that some species, such as
decapod crustaceans, can feed on seagrass seeds
(Wassenberg & Hill 1987, Wigand & Churchill 1988,
Wassenberg 1990, O’Brien 1994, Fishman & Orth 1996,
Holbrook et al. 2000) and thus have the potential to
influence seed-density and seedling establishment. 

In this study, our primary interest was to determine if
density-dependence exists for Zostera marina seed
germination and initial seedling establishment. We
designed seed-addition experiments (seed introduc-
tion sensu Turnbull et al. 2000) at 2 scales at several
sites in the Chesapeake Bay region. At the smaller
scale (4 m2), we tested if germination and initial
seedling establishment were affected by initial seed-
densities. We then tested whether germination and
initial seedling establishment differed at a larger
spatial scale (100 m2 unvegetated plots), based on the
hypothesis that higher seed abundances in larger plots
could either satiate seed predators, resulting in higher
germination, or attract more predators, resulting in
lower germination. 

MATERIALS AND METHODS

Collection and storage of seeds followed procedures
outlined in Orth et al. (1994). Reproductive shoots with
mature seeds were harvested by hand in late May to
early June 1999 and 2000, returned to the laboratory,
and held in 3.8 m3, aerated, flow-through outdoor sea-
water tanks until seed release was complete. Seeds
were subsequently sieved from decomposing plant
material and held in the tanks until initiation of the
experiments. A seed was considered viable if it had
a rigid seed coat and a high fall velocity (Orth et al.
1994). Appropriate numbers of viable seeds were
obtained via direct counts or sub-sampled estimation
of sieved material.

In order to assess the viability of the seeds used in
our experiments, at the initiation of each experiment
100 seeds were randomly chosen from the batch of
seeds to be used in the experiments, and 10 seeds were
placed in the sediment in each of 10 peat pots approx-
imately 10 mm below the sediment surface. Sediments
were from an unvegetated shoal area where seed
experiments had been successfully conducted in previ-
ous years (Orth et al. 1994, Fishman & Orth 1996, Har-
well & Orth 1999) and consisted predominantly of sand
with a low organic content (<1%). Peat pots were
placed in outdoor seawater tanks supplied with air and
continuously running seawater from the York River
(following procedures of Moore et al. 1993). In Decem-
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ber 1999 and 2000, the contents of the peat pots were
sieved through a 1.0 mm sieve. All seeds were as-
sessed for germination, indicated by the emergence of
the cotyledon (Stage 1 of Churchill 1983). We did not
adjust the percentages of seedlings calculated in the
experiments because factors influencing germination
under laboratory conditions may be different than
those in the field. The sole objective was to confirm
that we had a viable batch of seeds for our experi-
ments.

Seed experiments were initiated in the fall of 1999
and 2000, prior to the November period of seed germi-
nation (Moore et al. 1993) at several sites in the Chesa-
peake Bay region. All experimental sites historically
supported dense stands of Zostera marina (Orth &
Moore 1984), but were either completely unvegetated
or had small patches of naturally occurring Z. marina
within a few 100 m of the experimental plots (Orth et
al. 1999, 2000) at the time of the experiments.

We selected 10 sites in 1999 and 4 sites in 2000 to test
the first question of how initial seed-densities affected
germination rates (Fig. 1): 4 m2 plots were created at
4 seed-densities (2.5, 25, 250 and 1250 seeds m–2) by
releasing 10, 100, 1000 or 5000 seeds just above the
sediment surface. These densities are within the range
of seed-densities found in established beds (Harrison
1993, Olesen & Jensen 1994, Harwell & Orth 2002b).
The plot was marked with corner stakes to allow pre-
cise relocation of the plot the following spring. At each
site, 3 replicates of each seed-density were established
in a transect parallel to shore, with 20 and 30 m sepa-
rating each seed-density plot in 1999 and 2000, respec-
tively. In 2000, plots with no seeds were established
to determine if natural recruitment was occurring or
if seeds were moving among plots. All plots were
arranged relative to the shore so that water depth,
currents, and exposure were similar for all plots.

To address the second question of effects of scale, we
broadcast seeds at a single density (500 seeds m–2) but
at a much larger plot size (100 m2 or 25 times the size of
the small plots) at 5 sites (Fig. 1) in 2000, resulting in a
seed abundance of 50 000 seeds plot–1. At the South
Bay site, we established 2 plots, 1 inshore, and 1
approximately 300 m offshore of the first plot. Seeds
were dispersed as evenly as possible by hand, by a sin-
gle individual walking across the plot, similar to the
method employed by Orth et al. (1994).

Assessment of seedling abundance began in mid-
March of the following year, when seedlings could be
observed and accurately counted. Seeds germinate in
early to late November (Moore et al. 1993) and grow
slowly during the winter months (when water temper-
atures range from 0 to 5°C). We have no evidence of a
seed bank for Zostera marina in this region (Moore et
al. 1993, Harwell & Orth 1999) and are confident that

there were no viable, ungerminated seeds remaining
in the sediment at the time of sampling. Water temper-
atures at the time of sampling ranged from 8 to 13°C.
Seedlings were counted using snorkel or SCUBA
within the 4 or 100 m2 plots for the respective experi-
ments, and in an additional 4 m perimeter surrounding
the entire plot. This additional area allowed assess-
ment of the few seedlings that appeared outside the
plot. Previous experiments (Orth et al. 1994, Harwell &
Orth 1999) showed that seeds move only a few meters
from where they settle on the sediment surface. We
counted every seedling by placing 4 m2 quadrats
divided into 16 equal-area (0.25 m2) cells over each
plot and counting all seedlings in each cell. This
yielded a total area assessed for seedlings of 100 m2 for
the 4 m2 plots and 324 m2 for the 100 m2 plots. In addi-
tion, divers scanned the surrounding area; they noted
almost no seedlings outside the sampled area. To
ensure that counts were of actual seedlings and not
multiple shoots from 1 seedling, we occasionally
had to completely excavate and separate individual
seedlings, or fan away the top layer of sediment,
exposing the rhizomes and the original seed coat
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Fig. 1. Zostera marina. Location of sites where seed-density
experiments were conducted in Chesapeake Bay and 

coastal bays
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(which can remain attached to the root/rhizome com-
plex for at least 6 to 7 mo after germination: R. J. Orth
pers. obs.). At some sites, extensive vegetative growth
made counting seedlings difficult, and in these cases
we recorded the number of shoots present in small
areas of <100 cm2, completely excavated the areas,
examined the ratio of shoot numbers per seedling in
the laboratory and calculated an estimated seedling
abundance.

To ensure that the site was suitable for plant survival
and growth, adult plants were transplanted into two
4 m2 plots next to the seed experiments at the same
time the seed was broadcast. These shoots were har-
vested from a large donor bed in the York River and
were planted 20 cm apart following the technique of
Orth et al. (1999a). Survivorship of these adult plants
was assessed using direct counts 30 d after transplant-
ing and at the time of the seedling counts, approxi-
mately 180 d after the seeds were broadcast.

Additionally, 3 sediment samples were collected at
each site using a small, 20 cm long, Plexiglas corer.
The top 2 cm of the sample were analyzed for per-
cent sand, silt, and clay fractions and total organic
matter, except for Chincoteague Bay where the top
5 cm was used. Sand fractions (2000 to 62.5 µm) were
analyzed by a rapid sediment analyzer, while silts
and clays (<62.5 µm) were analyzed by the pipette
method (Folk 1980). Total organic matter was mea-
sured by drying and combusting a 10 g sample for
24 h at 550°C, and data are presented as percent ash-
free dry weight.

In the 1999 experiments we observed significantly
greater than expected seed input from outside the
experimental area at the Chincoteague and James
River sites, despite the fact that the sites we chose had

very sparse populations of Zostera marina. In addition,
we noted at 1 site a higher degree of seed movement
than observed previously between plots (Orth et al.
1994), and hence increased the distance between plots
in the 2000 experiment. As a result, the percentages of
seedlings in the low-density treatments were highly
skewed due to the input of these extraneous seeds.
This complicated the interpretation of low-density
treatments, but the effect is trivial in the higher density
treatments (e.g. 5 extraneous seeds in the lowest den-
sity treatment creates a much larger artifact than 5
extraneous seeds in the highest density treatment).
Consequently, we only compared the 1000 and 5000
density treatments because of experimental artifacts in
the 2 lower density treatments. In 1999 we also ex-
cluded the 2 South Bay sites located behind a barrier
island. One of the South Bay sites located immediately
behind a sand spit at the north end of this barrier island
was completely buried by 1 m of sand, as several win-
ter storms moved the adjacent sand spit over both the
seed and adult plant plots. The other South Bay site
was shallower than the other sites and may have been
exposed at low tide, a process undoubtedly lethal to
emerging seedlings. The site had very few seedlings,
and all were stunted in growth, while plants in the
nearby slightly deeper adult plot were present and
had grown. Because of these results, the plots for the
2000 experiments in South Bay were located in a more
suitable area.

For both the 1999 and 2000 data, the proportion
of initial seeds that were counted as germinated
seedlings was calculated for each plot, and arcsine
square-root transformed for analysis. For each year’s
experiment, a 2-factor ANOVA with factors Site and
Density was conducted with site as a random factor.
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Site % Sand (±SD) % Clay (±SD) % Silt (±SD) % Organic (±SD) Salinity (range)

Chincoteague Bay 95.98 (0.42) 2.96 (0.96) 1.06 (0.76) 0.57 (0.02) 26.9 (24.7–29.7)
Eastern Bay 97.37 (0.79) 1.85 (0.12) 0.78 (0.83) 0.57 (0.03) 13.8 (9.9–15.1)0
Gloucester Point 97.19 (1.4)0 2.84 (1.44) 0.00 (0.00) 0.53 (0.13) 21.2 (19.8–23.6)
Honga River 91.10 (10.67) 2.97 (3.93) 5.92 (6.77) 0.56 (0.17) 16.2 (11.5–18.5)
James River 97.09 (0.34) 0.87 (0.85) 2.04 (1.19) 0.46 (0.06) 19.1 (13.6–23.2)
Lynnhaven River 88.44 (2.89) 4.85 (0.97) 6.71(1.96) 0.83 (0.15) 24.1 (21.1–28.0)
Magothy Bay 92.82 (2.02) 4.34 (0.79) 2.84 (1.24) 0.73 (0.23) 27.3 (24.0–35.0)
Mumfort Island 95.16 (0.72) 0.21 (0.31) 4.63 (0.92) 0.38 (0.06) 21.2 (19.8–23.6)
Rappahannock River 97.36 (0.23) 1.87 (0.24) 0.76 (0.32) 0.67 (0.04) 18.0 (17.2–18.5)
Solomons Island 96.55 (1.05) 0.19 (0.33) 3.26 (1.27) 0.63 (0.03) 14.7 (9.5–16.6)0
South Bay Inshore 82.69 (6.27) 7.53 (3.62) 9.78 (2.64) 1.03 (0.23) 27.3 (24.0–35.0)
South Bay Offshore 85.3 (1.24)0 6.76 (0.41) 7.94 (0.98) 0.93 (0.12) 27.3 (24.0–35.0)
St. Mary’s River 87.73 (4.49) 2.31 (0.51) 9.96 (4.04) 1.03 (0.24) 15.4 (11.9–17.7)

Table 1. Sediment characteristics (clay, silt, sand, organic matter) and salinity at sites used in the seed experiments. Salinity data
for Chesapeake Bay sites from Chesapeake Bay Program Water Quality Monitoring Program (CBP 2001), for Chincoteague Bay 

from US National Park Service, and for South Bay from Virginia Institute of Marine Science Wachapreague Laboratory
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The data satisfied the assumptions for ANOVA
(Zar 1996). Following a significant ANOVA, a Stu-
dent-Newman-Keuls (SNK) post hoc multiple com-
parisons test was used to identify significantly dif-
fering sites.

RESULTS

The sediments at all sites were predominantly sand,
with <13% clay and silt (Table 1). The percent total
organic matter was low, usually 1% or less (Table 1).
Adult plant survivorship (percent of initial planting
units surviving) was high at nearly all sites (31 to 99%
after 6 mo), indicating that water quality and sediment
conditions at the experimental sites were adequate to
support eelgrass growth. Germination of seeds under
our laboratory setting was 66.5% in 1999 and 77.5% in
2000, similar to germination in previous trials (Orth et
al. 1994, Fishman & Orth 1996, Harwell & Orth 1999,
R. J. Orth unpubl. data), indicating that the seeds used
in the experiment were viable. Salinity ranged from a
mean of 13.8 psu at Eastern Bay to 27.3 psu at the
South Bay site.

Seedlings were present in most plots analyzed in the
1999 and 2000 seed-density analysis, and ranged from
0.6 to 15.4% of the number of seeds initially released
in 1999, and from 3.3 to 9.0% in 2000, except for the
lowest density treatment at South Bay where seedling
success was 23.3%. Only 5 plots in 2000 had no
seedlings, all of which were 10-seed treatments. Only

1 seedling was observed in the 12 control plots in 2000,
and visual inspection of all 2000 plots revealed few, if
any, seedlings outside the treatment plots. Almost all
our previous dispersal experiments have shown lim-
ited transport of seeds broadcast on the sediment sur-
face (Orth et al. 1994, Harwell & Orth 1999). While we
noted some seed movement in several seed-density
treatments at Gloucester Point, 93.4% of all seedlings
observed were found within the original 4 m2 plot in
which the seeds were dispersed; in 100 m2 plots, 87.3%
were within the plot. Almost all the remaining
seedlings that were not inside the plot were found
within 4 m of the plot; divers rarely observed any
seedlings outside this area.

There was no significant effect of seed-density in
4 m2 plots (1999: p = 0.214; 2000: p = 0.958) in 1999 or
2000, but a significant site effect in both years (1999:
p = 0.000; 2000: p = 0.002) (Tables 2 & 3; Figs. 2 & 3).
There was no significant interaction effect in either
year (1999: p = 0.414; 2000: p = 0.121). In the 100 m2

plots, the number of seedlings within the measured
area (324 m2) ranged from 4.3 to 13.9% of the initial
number of seeds released (Table 4).

In both the large plots and in the higher density
treatments of the small plots, we occasionally observed
extremely high seedling densities in very small areas
within the plots (up to 100 seedlings within 100 cm2

clumps). Most of the seedlings in these clumps had
only 1 or 2 shoots seedling–1 compared with 5 to
8 shoots seedling–1 for more isolated seedlings in the
rest of the plot area (R. J. Orth pers. obs.).
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Parameter Effect Error F p
df MS df MS

Site 7 0.0752 32 0.0025 29.521 0.000
Density 1 0.0050 7 0.0027 1.863 0.214
Site × Density 7 0.0027 32 0.0025 1.055 0.414

Table 2. Results of 2-factor ANOVA comparing Zostera
marina seedling counts in 4 m2 plots with 1000 or 5000 seeds 

at 8 sites in 1999

Parameter Effect Error F p
df MS df MS

Site 3 0.0639 31 0.0108 5.908 0.003
Density 3 0.0019 9 0.0188 0.099 0.959
Site × Density 9 0.0188 31 0.0108 1.739 0.122

Table 3. Results of 2-factor ANOVA comparing Zostera
marina seedling counts in 4 m2 plots with 10, 100, 1000 or 

5000 seeds at 4 sites in 2000

Fig. 2. Mean (+1 SD) number of Zostera marina seedlings in
1000 and 5000 seed-density treatments in 4 m2 plots in 1999.
Horizontal lines indicate sites that were not significantly 

different (SNK post-hoc multiple comparison test)
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DISCUSSION

From the moment of a seed’s release to its establish-
ment as a seedling at a ‘safe site’, it must pass through
an environmental ‘sieve’ (Harper 1977). This ‘sieve’
represents the sum of different processes (e.g.  species-
specific germination requirements) operating at the
scale of the seed at that site that eventually determines
whether a seedling will emerge. The results of the
seed-addition experiments provide some insights into
how Harper’s (1977) environmental ‘sieve’ may operate
in a seagrass system in the Chesapeake Bay region.
First, our results support the conclusions of terrestrial
studies in that few seeds actually establish as seedlings

(Harper 1977, Cook 1979, Cabin et al. 2000). Second,
we did not detect a significant density-dependent effect
on seed germination and initial seedling establishment.
Third, we noted a significant site effect each year, sug-
gesting that the processes regulating the proportion of
seeds germinating are site-specific. Lastly, the percent-
age of seedlings in the 100 m2 plots (4.3 to 13.9%) was
similar to that in the smaller plots (3.3 to 23.3%), sug-
gesting that, within the size range examined, such pro-
cesses are not likely to be scale-dependent.

It thus appears that density-dependence is not a sig-
nificant issue in seed germination and initial establish-
ment in Zostera marina systems in Chesapeake Bay,
although the terrestrial literature has reported conflict-
ing evidence. Unlike their laboratory results, Waite &
Hutchings (1978, 1979) found no density-dependence
in field experiments with Plantago coronopus, but
Cabin et al. (2000) found strong density-dependence in
seed-predation experiments with the desert mustard
Lesquerella fendleri. 

Seed predation is pervasive and significant in the
terrestrial environment (Janzen 1971), and has been
shown to be important in several seagrass studies
(Wassenberg & Hill 1987, Wigand & Churchill 1988,
Wassenberg 1990, O’Brien 1994, Fishman & Orth 1996,
Holbrook et al. 2000, Orth et al. 2002). One mechanism
employed by plants to escape predation is to produce
seed abundances high enough to satiate a seed preda-
tor. While we did not directly measure predator den-
sity or behavior, the conclusion that initial seedling
success was not affected by seed-density or total abun-
dance indicates that seed predation was unlikely to
have played an important role. Thus, predation on
seeds (as demonstrated by Fishman & Orth [1996] in
a series of predator enclosure and exclosure experi-
ments) may have inconsistent effects on seedling
recruitment if potential seed predators are absent or
scarce, or if a predator alters its behavior in response to
preferred food availability. Potential seed predators
noted in previous seagrass studies such as decapod
crustaceans (crabs, shrimps, hermit crabs: Wassenberg
& Hill 1987, Wigand & Churchill 1988, Wassenberg
1990, O’Brien 1994, Fishman & Orth 1996, Holbrook et
al. 2000) were observed at our sites, but almost all of
these are opportunistic omnivores that prefer animal
tissue over plant tissue, as evidenced by feeding-habit
studies (Laughlin 1982, Hines et al. 1990).

This study does not support the hypothesis that
seedling–seedling interactions reduce germination
rates. Observations of extremely high seedling abun-
dance in small clumps (up to 100 seedlings in areas as
small as 100 cm2) demonstrate that germination occurs
even at the highest of seed-densities (Granger et al.
2000). Instead, these clumps may imply that hydro-
dynamics play an important role in transporting and
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Fig. 3. Mean (+1 SD) number of Zostera marina seedlings in
10, 100, 1000 and 5000 seed-density treatments in 4 m2 plots
in 2000. Horizontal lines indicate sites that were not sig-
nificantly different (SNK post-hoc multiple comparison test)

Site Total # Percent of
seedlings 50 000 seeds

James River 6921 13.8
Rappahannock River 2333 4.7
South Bay offshore 3237 6.5
South Bay inshore 2127 4.3
Magothy Bay 5147 10.3
Lynnhaven River 2352 4.7

Table 4. Total number of Zostera marina seedlings developing 
from 50 000 seeds in 100 m2 plots in 2000
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concentrating seeds at ‘safe sites’. While we do not have
a complete understanding of what constitutes a ‘safe site’
in our system, we suggest that ‘safe sites’ may be related
to the topography of the bottom. When seeds are rolled
along the bottom by tides and currents, they become
lodged against some discontinuity in the sediment sur-
face, and eventually get buried. Harper et al. (1965)
found positive relationships between seed germination
and soil surface heterogeneity for several terrestrial
species. Flume experiments on prepared, smooth sand
have found that surface relief as little as 1 mm high could
stop a Zostera marina seed from rolling (Orth et al. 1994).
Micro-sites could be formed hydrodynamically or by
benthic infaunal species through bioturbation or bur-
rowing activities (Rhoads & Young 1970, Rhoads 1974).
Luckenbach & Orth (1999) found that increasing den-
sities of the infaunal polychaete Clymenella torquata
caused increased retention of Z. marina seeds by
enhancing the vertical relief of the sediment surface
through feeding and defecation. Mobile fauna such as
decapod crustaceans can create small grooves on the
sediment surface as they move, by pushing their ap-
pendages into the sediment and creating deformities
large enough to trap seeds. The relative influence of
these biotic and abiotic mechanisms in creating ‘safe
sites’ remains a topic for future studies but may be key to
understanding the rates of seed survival.

Although these observations do not show reduced
germination in dense clumps, the ultimate survival
rate of the small, dense clumps of Zostera marina
seedlings remains in doubt. Seedling competition can
result in much lower seedling survival when closely
spaced seedlings compete for limiting resources
(Harper 1977). Granger et al. (2000) followed laboratory-
germinated seeds of Z. marina and recorded a reduc-
tion in shoots per seedling in experimental treatments
that had high densities of germinated seeds. In this
study, the few shoots per seedling in dense clumps
compared to the higher numbers of shoots per seedling
in less dense areas (R. J. Orth pers. obs.) supports the
hypothesis that these seedlings were resource-limited,
and raises the question as to whether the shoot densi-
ties that would eventually develop in these clumps
would be lower than the densities observed after initial
seedling establishment. Investigations into the effect of
high seedling densities on ultimate shoot density are
the next logical research step.

Our germination data, in conjunction with recently
published data on the long-distance dispersal potential
of Zostera marina via rafting of reproductive shoots
containing viable seeds (Harwell & Orth 2002a, Reusch
2002), provide insights into the seed-delivery rates
necessary to form the patches of seedlings observed
each spring in areas at varying distances from source
populations in the Chesapeake Bay region (Harwell &

Orth 2002a, R. J. Orth pers. obs.). Reusch (2002)
recorded Z. marina seed-densities of 1340 m–1 shore-
line in reproductive shoots washed up in beach detrital
wrack and, based on genetic microsatellite data, calcu-
lated that 130 seeds m–1 shoreline came from distant
locations. Harwell & Orth (2002a) also found up to
31 viable Z. marina seeds in 20 cm diameter detrital
patches (987 seeds m–2) along a 34 km stretch of shore-
line in Chesapeake Bay. Based on the seed-densities in
beach detritus, noted by Reusch (2002) and Harwell &
Orth (2002a), it appears that there is the potential for a
high delivery rate of seeds to areas distant from source
populations. Given the germination rates observed in
our experiments, we believe that rafting reproductive
shoots transport adequate numbers of seeds to estab-
lish new patches at distant sites determined by winds
and currents. The data also imply that seed supply
rather than micro-site availability may be the primary
factor preventing re-colonization of unvegetated sites
that have adequate water quality (Eriksson & Ehrlen
1992, Dennison et al. 1993, Harwell & Orth 2002a,
Reusch 2002). Future work on the relative roles of
these 2 processes should include the use of seed traps
that collect both rafting shoots and seeds.

The apparent lack of density-dependent germina-
tion observed in our study combined with recent data
on seed dispersal (Harwell & Orth 2002a, Reusch 2002)
and patch dynamics (Olesen & Sand-Jensen 1994) pro-
vides valuable information for seagrass conservation
and restoration strategies. Since established beds may
be important sources of seeds that ultimately create
new patches at distant sites (Hanski 1982, Harwell &
Orth 2002a), protection of existing beds (regardless of
size or density) as a source of propagules needs careful
consideration. Also, while almost all restoration work
to date has been conducted with adult plants (Fonseca
et al. 1998), successful establishment of seedlings dur-
ing the present study suggests that seeds should be
considered as a viable alternative or addition in future
projects. Although there was no consistent density-
effect on germination, further work is needed to
understand shoot–shoot interactions so that restoration
projects can optimize seed dispersal, thus achieving
the highest proportional seedling survival.
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