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INTRODUCTION

Seagrass meadows occur in shallow coastal waters of
most continents (den Hartog 1970). During the past
several decades, they have received increasing atten-
tion from scientists and natural resource managers
because of the valuable functional roles they play in
coastal ecosystems (Costanza et al. 1997) and because
of the accelerating trend of worldwide seagrass loss
(Short & Wyllie-Echeverria 1996). Valuable functions

generally associated with seagrasses and cited fre-
quently in the seagrass literature include nutrient recy-
cling, detrital production and export, sediment stabi-
lization, and provision of optimal habitat for growth,
survival and reproduction of a diverse array of verte-
brate and invertebrate taxa. One of the more fre-
quently cited measures of seagrass habitat value, and
one that is very often argued for its conservation and
restoration, is its ‘nursery function’. The concept of the
seagrass nursery function has been principally derived
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from the numerous studies that report higher densities
of juvenile animals in seagrass than in adjacent unveg-
etated areas (see Orth & van Montfrans 1987, Heck et
al. 1997, Beck et al. 2001 for overviews of the evidence
supporting the nursery concept).

The nursery concept, as originally developed, pro-
posed that entire estuaries were nurseries. Subse-
quently, specific habitats within the estuary came to be
referred to as nursery areas because higher abun-
dances of juvenile fish and invertebrates were rou-
tinely found in structurally complex habitats, such as
marshes, mangroves and seagrasses (Beck et al. 2001).
However, the concept of a nursery must extend beyond
simply the numbers of juveniles present, but also may
entail higher survival, owing to protection from preda-
tors, and higher specific growth rates, due to the abun-
dance of food resources within seagrass meadows,
both of which are likely to result in more juveniles
reaching the adult stage. The pressing need to priori-
tize areas for preservation and conservation, together
with the results of some studies that have failed to find
a significant seagrass nursery function for certain
species (Heck et al. 1989, Gillanders & Kingsford 1996,
Butler & Jernakoff 2000), are forcing a re-evaluation of
the seagrass nursery concept and its general applica-
bility (Beck et al. 2001).

The goals of this paper are to review and critically
evaluate published studies in which seagrass beds are
purported to be nurseries. In addition, we sought to
identify factors that create spatial variation in the
nursery function of seagrass habitats, and to use well-
documented declines of seagrass to address whether
loss of seagrass habitat has led to corresponding
declines in species believed to use these habitats as
nurseries. Here, we use the definition of nursery habi-
tat provided by Beck et al. (2001): ‘a habitat is a nurs-
ery for juveniles of a particular species if its contribu-
tion per unit area to the production of individuals that
recruit to adult populations is greater, on average, than
production from other habitats in which juveniles
occur.’ Beck et al. (2001) also argue that ‘the ecological
processes operating in nursery habitats, when com-
pared to other habitats, must support greater contribu-
tions to adult recruitment from any combination of 4
factors: (1) density, (2) growth, (3) survival of juveniles
and (4) movement to adult habitats.’

MATERIALS AND METHODS

Literature search and data selection. We reviewed
papers containing information pertinent to the nursery
role of seagrasses by both searching Cambridge Scien-
tific Abstracts (CSA) and also our personal libraries in
order to include any relevant papers not identified in

the CSA search. From the nearly 200 papers identified,
we selected only those that fulfilled the following crite-
ria, consistent with our (Beck et al. 2001) definition of a
nursery: (1) The study provided data on at least 1 of the
4 variables that could indicate a nursery function for a
particular seagrass meadow for a given animal species:
juvenile density, growth rate, survivorship and/or suc-
cess of movement from juvenile to adult habitats.
(2) The species being studied possesses a ‘transient’ life
history consistent with the nursery role hypothesis (i.e.
juvenile and adult habitats do not entirely overlap).
Considerable work has been done on the effects of sea-
grass characteristics (e.g. blade morphology, shoot den-
sity) on predation risk for seagrass residents, such as
amphipods and grass shrimp (see reviews by Heck &
Crowder 1991, Williams & Heck 2001). However, these
species’ life histories make them inappropriate for
questions regarding nurseries; thus, papers concerning
permanent seagrass residents, including commercially
important species, such as bay scallop, were not in-
cluded in our analysis. Similarly, papers that presented
only aggregate data for multiple species (e.g. ‘total
number of fish per trawl’) were not considered, because
it is highly likely that the data included seagrass per-
manent residents as well as potential ‘nursery’ species.
(3) The study examined seagrass habitat and at least
one other habitat type (e.g. salt marsh, oyster reef, adja-
cent unvegetated sediment). While a great many stud-
ies of the fauna of seagrass meadows have been carried
out, we could not include many of them in our analyses
because they did not include comparative data from at
least one other type of habitat. Therefore, the number
of studies that we used was far less than the number of
studies published on the fauna of seagrass meadows.

All the references used in the analyses described
below are listed in Table 1.

Data analysis. We used the traditional ‘vote-
counting’ approach to examine density of juveniles
(e.g. Connell 1983, Schoener 1983, Sih et al. 1985)
among habitats because of dissimilarities in sampling
methodology, and because it usually was not possible
to extract the information necessary for meta-analysis
from the existing literature. The data we report are the
number of times abundances were reported to be
statistically larger or smaller than in other habitats, as
well as the number of times when there were no sta-
tistically significant differences among habitats. The
vote-counting is known to be biased toward finding ‘no
effect’, especially when sample sizes and effects are
relatively small (Hedges & Olkin 1985), and this must
be kept in mind when interpreting vote-counting
results. It is also an important reason why meta-
analysis is the preferred to vote-counting, when per-
mitted by the characteristics of the body of data being
analyzed (Gurevitch & Hedges 2001).
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However, it is important to recognize that meta-
analysis is designed to combine the results of separate
studies to reach general conclusions, and of necessity it
overlooks some specifics of individual studies in a
search for large patterns (Gurevitch & Hedges 2001).
Therefore, it is up to the individual carrying out the
meta-analysis to ensure that the question being asked
is best answered by meta-analytic techniques.

In our assessment, the data sets for survival and
growth rates were considerably smaller, more man-
ageable, and more similar in methodology across stud-
ies and thus, were more appropriate for meta-analysis.
Because virtually no information was available on the
success of movement of organisms from juvenile to
adult habitats, and what little exists has recently been
summarized by Gillanders et al. (in press), we do not
consider this issue here.

Non-independence of data. In all analyses that
combine or compare results across studies, non-inde-
pendence of data is a recurrent issue and at some
level may be unavoidable (for a discussion of non-
independence in meta-analysis see Gurevitch et al.

1992). Non-independence may occur because a num-
ber of experiments were performed by the same
investigator or laboratory group; it also may occur
because experiments were done in the same geo-
graphic region or on the same species. We investi-
gated potential commonalities among data that
shared the latter characteristics, but assumed that any
non-independence caused by investigator or labora-
tory group would not substantially bias interpretation
of results. Thus, if a study presented results of several
experiments in a single publication, these experi-
ments were usually entered as separate lines of data
in the meta-analysis or vote-count. In our analysis of
juvenile density in seagrass meadows versus other
habitats, multiple censuses taken over consecutive
years or at different sites were considered indepen-
dent, only if it was clear that the temporal or spatial
scale of replication meant that different cohorts or
populations were being measured in each compari-
son. When a study provided density comparisons for
multiple species, each species with an appropriate
life history was entered into the vote-count indepen-
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Type of Source
comparison

A Arrivillaga & Baltz (1999)
A Bayer (1981)
A Bell & Westoby (1987)
A Briggs & O’Connor (1971)
A Connolly (1994a)
A Connolly (1994b)
A Costa (1994)
A De Freitas (1986)
A Dean & Haldorson (2000)
A Dennis (1992)
A Edgar & Shaw (1995)
A Eggleston & Etherington (1998)
A Gillanders (1997)
A Gray et al. (1996) 
A Gray et al. (1998), Guidetti & Bussoti (2000)
A Halliday (1995), Hanekom & Baird (1984) 
A Haywood et al. (1995)
A Holt et al. (1983)
A Howe & Wallace (2000)
A Hyndes et al. (1986)
A Jenkins & Sutherland (1997)
A Jenkins & Wheatly (1998) 
A Jordan et al. (1996)
A Kenyon et al. (1997)
S Kenyon et al. (1999)
S Laprise & Blaber (1992)
A, S, G Levin et al. (1997)
A Loneragan et al. (1998)
G Malloy et al. (1996)
A Mattilla et al. (1996)

Table 1. Studies meeting the criteria (as described in the text) that were used in comparisons of density, growth and survival in
seagrass meadows and other habitats. A: studies used in the abundance comparisons; S: studies used in survival comparisons; 

G: studies used in growth comparisons. Some studies were used in more than 1 type of comparison

Type of Source
comparison

A McMichael & Peters (1989)
A Morgan et al. (1996), Nagelkerken et al. (2000)
S Olmi & Lipcius (1991)
A Olney & Boehlert (1988)
A Orth & van Montfrans (1987) 
S, G Perkins-Visser et al. (1996)
A Petrik et al. (1999)
S Pile et al. (1996)
A Raposa & Oviatt (2000)
S, G Ray & Stoner (1995)
A Robertson & Duke (1987)
G Rooker et al. (1997)
S Rooker et al. (1998)
A Rozas & Minello (1998)
S Ryer et al. (1997)
A Sedberry & Carter (1993)
A, G Sogard (1992)
S Stoner (1982)
S Stoner & Sandt (1991)
A Stoner & Waite (1990)
G Stoner et al. (1996)
A Thomas et al. (1990)
A Tolan et al. (1997)
A, S, G Tupper & Boutilier (1995)
A Weinstein & Brooks (1983)
A Williams et al. (1990)
S Wilson et al. (1987)
A, S Wilson et al. (1990)
A Worthington et al. (1991), Young (1978)
A Young & Carpenter (1977)



Mar Ecol Prog Ser 253: 123–136, 2003

dently. Inappropriate species, according to the defini-
tion in Beck et al. (2001), such as permanent seagrass
residents, were removed from the analyses.

Deciding what constituted independent comparisons
was more difficult in the survival and growth rate data
sets than in the density data set, because papers in the
first 2 groups tended to report the results of experi-
ments rather than those of sampling efforts. Complica-
tions occurred in determining whether a given ‘treat-
ment‘ implemented by the authors actually constituted
an independent comparison. Another issue arose
when similar or identical field experiments were
implemented in multiple seasons in the same location.
Clearly, the individual organisms being tested differed
between seasons, but other factors directly influencing
survival or growth rate (e.g. the assemblage of pre-
dators) may have been constant over the time scale
examined. To determine whether these decisions
regarding independence qualitatively affected the
results of the meta-analysis, we analyzed the data sets
in 2 ways: (1) with each potential independent compar-
ison entered separately; and (2) with all data ‘lumped‘
into a single comparison.

Analysis of growth and survival data. To be in-
cluded in the meta-analyses, each study had to provide
3 things: (1) the group mean, (2) SD and (3) sample size
for both an ‘experimental‘ group and a ‘control‘. In our
analysis, the seagrass habitat was considered the
experimental treatment, and the other habitat type the
control. If this basic information could not be found or
inferred from the paper, the study could not be used. In
many cases, group means and some measure of vari-
ance were presented in the form of a graph, and we
had to estimate parameters from them. If the SE was
reported, SD = SE/n, where n is sample size.

All analyses were performed using MetaWin 2.0
(Rosenberg et al. 2000). From the information culled
from each individual study, we calculated an effect
size for each independent comparison, using bias-
corrected Hedges‘ d as our metric (Hedges & Olkin
1985). Hedges’ d is calculated as:

where
––––––
X C is the mean of the control group,

––––––
X E is the

mean of the experimental group, and S is the pooled
SD of the 2 groups. J corrects for the bias in the differ-
ence between group means caused by small sample
size, and is calculated as:

In our analysis, a positive value of d would indicate
greater survival or growth of juveniles in seagrass
habitats than in alternative habitats, while a negative

d would indicate lower survival or growth in sea-
grass.

We then calculated the cumulative effect size (d+)
across all studies in our database. The cumulative
effect size is a weighted average of individual effect
sizes, such that each d is weighted by the reciprocal of
its sampling variance (Hedges & Olkin 1985). This
effect was considered statistically significant if bias-
corrected 95% confidence intervals, calculated from
5000 bootstrap iterations, did not include 0.

In addition to the cumulative effect size, we were
interested in whether the effect size was homoge-
neous across those studies. The total heterogeneity of
a sample, Qt, is comparable to the total sums of
squares in an analysis of variance (Rosenberg et al.
2000); it is tested against a chi-square distribution to
determine whether the variance among effect sizes in
the data set is greater than would be expected by
sampling error alone. We used a mixed model in our
meta-analysis because its assumptions (i.e. a true
random component of variation in effect sizes across
studies in addition to sampling error) were more real-
istic than fixed-effects models, given the data sets and
biological questions we attempted to address (Rosen-
berg et al. 2000).

RESULTS

Density of juvenile organisms

Our literature search detected 56 papers with survey
data on the abundance of juvenile fish and inverte-
brates in seagrass meadows and other habitats (see
Table 1). There clearly is a geographical bias, as the
vast majority of these studies (80%) were conducted in
either North America (the USA and Canada) or Aus-
tralia, with those remaining occurring in 5 other coun-
tries. Of the total 193 comparisons, 89 (46%) showed
greater abundance in seagrass, 50 (26%) showed
greater abundance in other habitats, and 54 (28%)
showed no difference between seagrass and other
habitats. Thus, for slightly more than half of the species
studied, seagrass meadows did not support abun-
dances that were significantly greater than those in
surrounding habitats.

This surprising result is due in large part to at least
2 major factors. One is that when seagrass meadows
were either found not to differ significantly or to con-
tain lower abundances than adjacent habitats, the
adjacent habitats were often structurally complex
habitats, such as mangroves, salt marshes, boulders or
macroalgae. These structurally complex habitats are
also often thought to serve as nursery habitats them-
selves, and our results suggest that various types of
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structurally complex habitats may often not differ in
the density of animals they support.

A second factor is that there appears to be geograph-
ical patterns in the degree to which seagrass meadows
support greater densities of animals than alternative
habitats (Fig. 1). There is stronger evidence of the
importance of seagrass meadows in the northern hemi-
sphere, where 58 of 77 comparisons (75%) showed sig-
nificantly greater abundances in seagrass, than in the
southern hemisphere, where only 42 of 116 (36%) did
(Fig. 1). Whether this pattern will hold up as more
locations are investigated or whether other patterns
may emerge must await the publication of additional
studies from a broader variety of locations.

It is also important to note that 45 comparisons came
from a single paper reporting the results of visual fish
censuses (Nagelkerken et al. 2000), and that this single
data set produced a very large number of the compar-
isons that did not find abundances in seagrass
meadows to be either significantly greater (30 of 50
cases) or significantly different (15 of 54 cases) than in
alternative habitats. Because the other data on density
were gathered by researchers using standard sam-
pling methods, such as seining or trawling, we are
uncertain whether the results reported by Nagelk-
erken et al. (2000) reflect real biological differences
between their sampling locations and other places, or
whether they simply reflect differences due to dissimi-
lar sampling methods. Presently, there is no way to
separate these 2 possibilities. Another issue regarding
the data in Nagelkerken et al. (2000) is that in some of
the habitats they studied (e.g. coral reefs) adults were
also inextricably included in their data sets. Since the
evaluation of nursery function should not
include adults, this is problematic. We
were unable to assess the importance of
including some adults from the data pre-
sented in the paper, but we feel it is nec-
essary to point out this inconsistency lest
undue emphasis be placed on this single
data set. Finally, we point out that many
species are found in seagrass meadows
when they are very small, and for limited
amounts of time (e.g. blue crab mega-
lopae, as reported by Orth & von Mont-
frans 1987, Pile et al. 1996). This means
that the most commonly used sampling
methods will not detect such taxa.

Survival of juvenile organisms

We identified 17 papers that contained
information on the survival of juveniles, 8
pertaining to fish and 9 pertaining to

invertebrates (Table 1), and the vast majority of these
papers was from North America (Table 2). From these
17 papers, 71 comparisons were identified when we
allowed the following to be considered: (1) field exper-
iments that were repeated over the course of a season
(e.g. Ryer 1987, Wilson et al. 1990); (2) a series of lab
trials from Pile et al. (1996) testing survival of different
blue crab instars; and (3) replicate experiments in Olmi
& Lipcius (1991). When replicated experiments were
not considered to be independent, the data set was
reduced to 57 comparisons. Hedges’ d-values calcu-
lated from these comparisons varied considerably,
ranging from –9.4551 to 7.6859 (Fig. 2).

When all studies were considered together in the
unlumped data set, seagrasses had a significantly pos-
itive effect on juvenile survival when compared to
other habitats (d+ = 0.9098, CI: 0.1278 to 1.5803). By
convention, d > 0.8 is considered large, and implies
that the mean and control groups differ by greater than
0.8 SD (Cohen 1969). When all temporal replicates and
data from the Pile et al. (1996) laboratory studies were
pooled; however, the cumulative effect size dropped to
medium-large (d+ = 0.6579) and the confidence inter-
vals bracketed 0. In both cases, the Qt was large and
significant, implying the existence of underlying struc-
ture in the data set.

We categorized the ‘control‘ or other habitat from
each individual study into 3 broad classes: (1) no struc-
ture (e.g. sand, soft sediment, etc.); (2) non-vegetated
structure (e.g. cobble, oyster reef, etc.); and (3) vege-
tated structure (e.g. macroalgae, salt marsh). In both
the lumped and unlumped versions of the survival data
set, we found significant differences in the mean effect
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Fig. 1. Number of fish and invertebrate species showing significantly greater
abundance or no significant difference in abundance between seagrass

meadows and other habitats, as a function of latitude



sizes calculated for these groups (p < 0.0001 in both
cases; Table 3). Survival of juvenile organisms was sig-
nificantly higher in seagrasses than in unstructured
habitats (d+ = 2.0755 unlumped or 2.0459 lumped) and
significantly lower in seagrasses than in habitats that
had structure but were not vegetated (d+ = –3.0959
lumped or –3.1008 unlumped). When seagrass
meadows and vegetated habitats, such as macroalgal
beds, were compared, there was no detectable differ-
ence in juvenile survival (d+ = 0.0618 lumped or

–0.0136 unlumped; Fig. 3). Qt in the mixed-model
remained very large and significant in both versions of
the data set (Q t = 126.70). We decided not to pursue a
finer-scale analysis of other habitat types due to con-
cern about sample size (in our data set, specific habi-
tats were represented by very few comparisons (e.g.
intertidal marsh creek n = 2), as well as the fact that
these comparisons were likely to come from the same
paper.

When only comparisons between seagrass meadows
and unstructured habitats were considered, there was

Survival rate Growth rate
Lumped Unlumped Lumped Unlumped

Methodology Methodology
Field studies 33 41 Field studies 54 87
Laboratory studies 24 30 Laboratory studies 4 4

Regions represented Regions represented
Chesapeake Bay, USA 11 19 VA, USA 9 9
Bahamas 4 4 Bahamas 9 29
Nova Scotia 9 9 Nova Scotia 4 4
TX, USA 14 14 Galveston Bay, TX, USA 1 2
Australia 7 7 Sendari Bay, Japan 3 3
Belize 2 2 FL, USA 3 3
NJ, USA 6 12 NJ, USA 28 40
Mobile Bay, AL, USA 4 4 NC, USA 1 1

Species represented Species represented
Callinectes sapidus 25 39 Callinectes sapidus 4 4
Gadus morhua 9 9 Gadus morhua 9 9
Panulirus argus 2 2 Kareius bicoloratus 1 2
Penaeus aztecus 2 2 Lagodon rhomboides 2 2
Penaeus esculentus 7 7 Pseudopleuronectes americanus 16 22
Sciaenops ocellatus 8 8 Sciaenops ocellatus 2 2
Strombus gigas 4 4 Tautoga onitis 12 18

Total 57 71 Total 58 91

Table 2. Number of independent comparisons in the data sets on growth and survivorship of juvenile organisms in seagrass
meadows and other habitats. ‘Lumped’ and ‘Unlumped’ refer to whether debatably independent treatments in a given study (e.g. 

temporal replicates; see ‘Materials and methods’) were pooled
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Alternate habitat type d+ df CI

No structure 2.0755 46 1.5038 to 2.7491*
Unvegetated structure –3.0959 10 –5.6940 to –0.5925*
Vegetated structure 0.0618 12 –0.3199 to 0.5651

Table 3. Juvenile survival in seagrass meadows compared to 3
categories of other habitat types. Values reported are mean
effect size for each category (d+), degrees of freedom (df =
number of comparisons – 1) and bias-corrected 95% CI, 
calculated when temporally replicated experiments, etc.,
were entered separately into the data set (see ‘Materials and
methods’ for criteria); when these data were pooled, there
was no qualitative difference in the results of the meta-analy-
sis. *Mean effect size is significantly different from zero (p <
0.05). Qt is a heterogeneity statistic; a significant Qt indicates
significant differences in mean effect size between habitat 

categories. Qt = 46.5046, df = 2, p < 0.00001

Fig. 2. Juvenile survival in different habitats. Frequency his-
togram of Hedges’ d-values calculated from the data set on
juvenile survival in different habitats. A positive value of d
indicates greater survival of juveniles in seagrass meadows
than other habitats; a negative d-value indicates lower sur-

vival in seagrass meadows than alternative habitats
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no effect of methodology (laboratory vs field studies)
on the estimate of overall effect size (Table 4). Both
types of experiments showed a significant positive
effect of seagrass on juvenile survival, although confi-
dence intervals around the mean effect size in field
experiments were somewhat larger. In contrast,
methodology did have a significant effect on whether a
given study detected a difference in juvenile survival
between seagrass and structured-unvegetated habi-
tats (Table 4). Field-based experiments found a large,
significantly negative effect of seagrass on juvenile
survival in comparison to structured-unvegetated hab-
itats; laboratory-based experiments could detect no
difference between habitats. In comparisons between
seagrass meadows and other vegetated habitats, we
found no effect of methodology on effect size in the
unlumped data set, but in the more conservative,
lumped data set, field studies detected a significant
negative effect while laboratory studies found no dif-
ference between habitats (Table 4).

The effect of seagrass meadows on juvenile survival
clearly varied across species (Fig. 4) with no discern-
able patterns by taxonomy (fish vs decapod crus-
taceans) or geography (tropical vs temperate).

Growth rate of juvenile organisms

We identified 11 papers that contained information
on the growth rate of juveniles that satisfied our ini-
tial selection criteria (Table 1). Eight different species
(blue crab Callinectes sapidus, queen conch Strom-
bus gigas and 6 fish species), 75% of which were
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Fig. 3. Juvenile survival in seagrass meadows versus 3 broad
categories of other habitat types as a scatter plot of Hedges’
d-values. (1) Unstructured habitats, (2) habitats that are struc-
tured but non-vegetated, (3) vegetated habitats. Dashed line
at d = 0 indicates no difference between survival in seagrass
and alternate habitat; solid horizontal lines represent mean 

d for each group

Methodology d+ df CI

Seagrass vs unstructured habitats
Lab studies 1.9595 21 1.2533 to 2.7621*
Field studies 2.1792 24 1.3418 to 3.2753*
Qt = 0.1341, df = 1, p = 0.72
Seagrass vs structured, unvegetated habitats
Lab studies 1.1585 3 –0.3121 to 2.6782
Field studies –5.6888 6 –7.9490 to –3.3805*
Qt = 19.2428, df = 1, p < 0.00001
Unlumped: Seagrass vs vegetated habitats
Lab studies 0.4294 3 0.0492 to 0.9130*
Field studies –0.0802 8 –0.5576 to 0.6805
Qt = 1.2867, df = 1, p = 0.26
Lumped: Seagrass vs vegetated habitats
Lab studies 0.3818 3 –0.0685 to 0.7129
Field studies –0.4844 5 –0.7303 to –0.0320*
Qt = 8.0928, df = 1, p < 0.01

Table 4. Effect of methodology on comparisons of juvenile
survival in seagrass meadows and other habitat types. Each
alternate habitat type was tested separately. Values reported
are mean effect size for each category (d+), degrees of free-
dom (df) and bias-corrected 95% CI. *Mean effect size is sig-
nificantly different from 0. A significant Q t-value indicates a
significant difference between mean effect sizes measured by
lab and field studies. Only in the seagrass versus vegetated
habitat comparison did decisions regarding pooling of data
cause a qualitative difference in the meta-analysis results; 
results of both sets of analysis for that comparison are 

presented below

Fig. 4. Unweighted mean effect size (Hedges’ d) for each species
represented in the data set on juvenile survival, averaged over
all other habitats tested. Positive effect sizes indicate greater
survival of juveniles of that species in seagrass meadows than in
the other habitats tested; negative effect sizes indicate lower 

survival of juveniles in seagrass than in other habitats
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North American, contributed to the data set (Table 2).
From the 11 papers, 91 comparisons were identified
when we allowed: (1) experiments that were re-
peated at a given site at different times in a season
(e.g. Stoner & Sandt 1991, Phelan et al. 2000); and
(2) experiments that assessed growth of different size
classes of queen conch to be entered independently
(Ray & Stoner 1995). When these were not considered
independent, the data set contained 58 comparisons.
All but 4 comparisons came from field experiments.

The exceptions were Perkins-Visser et al.’s (1996)
study of blue crab growth rate in experimental micro-
cosms, and Stoner et al.’s (1996) study of queen conch
metamorphosis and growth rate in response to differ-
ent cues in the lab. The range of Hedges’ d-values
calculated from these individual lines of data was
also extremely large, ranging from –9.1944 to 35.1975
(Fig. 5).

When all studies were considered together, juvenile
organisms had much greater growth rates in seagrass
meadows than in other habitats, regardless of deci-
sions about the independence of temporal replicates
(unlumped d+ = 4.2871, CI: 3.0206 to 5.8611; lumped d+

= 4.1249, CI: 2.5482 to 6.0608). There were no qualita-
tive differences between results of any of the subse-
quent analyses on the lumped and unlumped growth
rate data sets, so for brevity, we present only the ana-
lyses of the larger data set.

The magnitude of the difference between growth
rates in seagrass meadows and other habitats de-
pended on the other habitat type being tested (p <
0.05; Fig. 6). In comparisons with unstructured and
structured-unvegetated habitats (categories defined as
above), the effect size was extremely large (d+ = 6.0676
and 5.2796, respectively) and statistically significant
(Table 5). However, as was the case with juvenile
survival, there was no significant difference in juve-
nile growth rate in seagrass meadows compared to
vegetated habitats such as macroalgal beds and salt
marshes.

Species specific comparisons of mean effects size
showed that 3 species of fishes and 2 invertebrates
grew more rapidly in seagrass than in other habitats,
while 2 fish species grew more rapidly in alternative
habitats (Fig. 7). The small sample size precluded the
identification of either taxonomic or geographical
patterns.
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Fig. 5. Juvenile growth rates in seagrass habitats. Frequency
histogram of Hedges’ d-values calculated from the data set on
juvenile growth rates in seagrass habitats. A positive value of
d indicates greater growth of juveniles in seagrass meadows
than other habitats; a negative d-values indicates lower 

growth rate

Fig. 6. Comparisons of juvenile growth rates in seagrass
meadows and in 3 categories of other habitat types as a
scatter plot of Hedges’ d-values. (1) Unstructured habitats, (2)
habitats that are structured but non-vegetated, (3) vegetated
habitats. Hatched horizontal line at d = 0 indicates no
difference between growth rates in seagrass and the al-
ternative habitat; solid vertical lines represent mean d for 

each group

Alternate habitat type d+ df CI

Unvegetated structure 6.0676 7 4.8774 to 6.9453*
No structure 5.2796 61 3.4915 to 7.5875*
Vegetated structure 0.6627 20 –0.0927 to 1.2563

Table 5. Juvenile growth rates in seagrass meadows versus
3 categories of other habitat types. Values reported are mean
effect size for each category (d+), degrees of freedom (df) and
bias-corrected 95% CI calculated when temporally replicated
experiments, etc., were entered separately into the data set
(see ‘Materials and methods’ for criteria); when these data
were pooled, there was no qualitative difference in the results
of the meta-analysis. *Mean effect size is significantly differ-
ent from zero (p < 0.05). Qt is a heterogeneity statistic; a
significant Qt indicates significant differences in mean effect
size between habitat categories. Qt = 6.0588, df = 2, p < 0.05
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DISCUSSION

Density of juveniles

The number of papers reporting the density of juve-
nile organisms in seagrass meadows and surrounding
habitats that we identified in our literature search may
seem low, considering the many surveys done in sea-
grass habitats in the last several decades. However,
many studies were not included in our vote-count
because only seagrass meadows were sampled or
because only aggregate measures of animal abun-
dance (e.g. total biomass or number of individuals per
square meter) were reported. Although the total bio-
mass of consumers in different habitats cannot be used
to demonstrate a nursery function as we have defined
it, biomass does imply something about how a habitat
may function as a nursery at the ecosystem level. If
there is greater production of consumers (residents
included) in seagrass habitats than in other nearshore
habitats (e.g. Edgar 1990, Fredette et al. 1990, Valen-
tine & Heck 1993), this may translate to greater
‘spillover’ or export of organisms and nutrients into
adjacent habitats (see Childers et al. unpubl., for a dis-

cussion on how the nursery concept can be better
understood by integrating both population and eco-
system level approaches).

Another issue that we did not consider is the possible
relationship between species diversity and the defini-
tion of a nursery. The high species diversity of animals
in seagrass meadows relative to surrounding habitats
has long been noted by researchers (see reviews by
Orth et al. 1984, Bell & Pollard 1989, Orth 1992),
although the magnitude of this difference is dependent
on both the species composition and biomass of the
seagrass species. While such elevated animal species
numbers are not accounted for in our nursery defini-
tion, the maintenance of high species numbers by
seagrass meadows is another feature relevant to the
perception of these habitats as extraordinarily rich.

Survival and growth

As expected, significantly greater survival in seagrass
meadows than on unvegetated substrate was indicated
by our meta-analysis. However, there was little differ-
ence between the amount of protection provided by sea-
grasses and other structurally complex habitats such as
salt marshes or oyster reefs. Thus, the enhanced survival
of organisms in seagrass compared to that observed on
unvegetated substrates seems to be due primarily to the
simple effect of structure and not some intrinsic property
of the seagrasses themselves.

Further, although there were relatively few studies
that met our strict criteria for assessing the role of sea-
grasses in providing protection from predation, pri-
marily because our comparisons were restricted to taxa
with spatially separated juvenile and adult habitats,
there are many other studies that have investigated the
protection provided by seagrasses for a variety of
resident invertebrate and some fish species (reviewed
by Orth et al. 1984, Heck & Crowder 1991, Heck et al.
1997). Over a period of more than 20 yr, virtually all
these studies have found significantly greater survival
in the presence than in the absence of seagrasses,
whether in the laboratory (Nelson 1979, Coen et al.
1981, Main 1987, Mattila 1995) or in the field (Leber
1985, Heck & Wilson 1987, Heck & Valentine 1995).
Although the taxa in these studies do not use seagrass
meadows as nursery habitats according to our criteria,
it is clear that they can and do contribute substantially
to the export of energy from seagrass meadows
through trophic transfer, and thereby provide energy
subsidies for both adjacent and distant ecosystems
(see Childers et al. unpubl., Halpern & Beck unpubl.).
Most investigators cited above concluded, incorrectly
according to our criteria, that their results provided
evidence of the nursery role of seagrass meadows.
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Fig. 7. Unweighted mean effect size (Hedges’ d) for each 
species represented in the data stet on juvenile growth rates,
averaged over all other habitats tested. Positive effect sizes
indicate that juveniles of that species exhibited greater
growth in seagrass meadows compared to the other habitats
tested; negative effect sizes indicate less growth in seagrass 

than in other habitats
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Nevertheless, these studies are clearly relevant to, if
not entirely consistent with, the nursery definition of
Beck et al. (2001).

Growth was also significantly greater in seagrass
than on unvegetated substrates, although there was
little difference between growth in seagrass and other
structured habitats. This also indicates that it is struc-
ture per se rather than some property of the seagrasses
that leads to enhanced growth. Indeed, it may well
be that greater growth in structured habitats occurs
because structure provides more protection from
predators and thereby allows more time for feeding,
and thus significantly greater growth rates, than is
possible in unstructured habitats. It is also true that
structure provides more substrate for food resources
to grow upon which can be an important factor
influencing growth rates.

Case histories for the nursery hypothesis

Dramatic, large-scale losses of seagrass could poten-
tially offer insights into the validity of the nursery role
hypothesis if harvests of commercially exploitable spe-
cies that are purported to be dependent on seagrass
beds for nurseries were examined. The expectation
would be that, all other things being equal, harvests
should decline. At least 3 such cases exist, one from the
1930s and 2 from more recent times.

One of the most dramatic changes in seagrass abun-
dance was the precipitous decline of eelgrass Zostera
marina in the 1930s. Eelgrass populations along both
the European and North American coasts virtually
disappeared over several years, which was attributed
to, but never fully verified, a slime mold parasite in the
genus Labyrinthula (Rasmussen 1977). Prior to the
decline, eelgrass was considered the most important
nursery for most of the commercial fisheries in the
European North Atlantic (Peterson & Boysen-Jensen
1911). These fisheries did not, however, collapse fol-
lowing the eelgrass decline and the emphasis on eel-
grass as an important nursery habitat waned in the
ensuing years. However, the situation was complicated
by the fact that the substrate in former eelgrass habi-
tat apparently underwent changes as sediment was
eroded after seagrass disappearance, thereby expos-
ing rocky substrate. The rocks were subsequently col-
onized by macroalgae that offered an alternative
‘nursery’ habitat (Rasmussen 1977). Therefore, it was
argued that the loss of the eelgrass nursery was
simply replaced by a macroalgae nursery and this
explained why no dramatic reduction in fisheries
yields occurred.

One of the more recent changes involved seagrass
meadows dominated by turtlegrass Thalassia testudi-

num in Florida Bay. These seagrass beds are believed,
based on a great deal of long-term data, to serve as
the primary nursery habitat for pink shrimp Far-
fantepenaeus duorarum harvested from the Tortugas,
FL shrimping grounds (Browder et al. 1999, Fry et al.
1999). If this was true, the dramatic loss of turtlegrass
from Florida Bay in the late 1980s (Robblee et al. 1991,
Hall et al. 1999) should have led to reduced yields of
pink shrimp in the years following turtlegrass loss.

Pink shrimp yields (CPUE) did decrease in the years
following turtlegrass decline, as predicted (Sheridan
1997), and they stayed low for approximately 5 yr
before increasing in the mid-1990s (Browder et al.
1999, Ehrhardt & Legault 1999). This is in general
agreement with expectations, although the increase in
landings in the mid-1990s was not coincident with sea-
grass recovery (Browder et al. 1999). However, other
factors are known to be positively correlated with pink
shrimp population fluctuations. In particular, there is
a positive relationship between freshwater input to
Florida Bay and the harvest of pink shrimp (Browder
1985, Sheridan 1997). Coincident with decreasing
yields in the late 1980s, there had been a drought in
South Florida (Swart et al. 1999). To those most knowl-
edgeable, it appears likely that low freshwater inputs
played a major role in the decreased shrimp harvests in
the early 1990s (Browder et al. 1999). Thus, what at
first appeared to be a clear verification of the nursery
role of turtlegrass for pink shrimp appears to be sub-
stantially more complicated.

A second seemingly clear recent test of the nursery
role of seagrass meadows concerns eelgrass Zostera
marina abundance and the harvest of blue crabs Calli-
nectes sapidus in the Chesapeake Bay, during the
1970s. During this time the Chesapeake Bay lost large
amounts of submerged aquatic vegetation (SAV),
which included both oligohaline species such as Pota-
mogeton pectinatus and P. perfoliatus, as well as poly-
haline species such as eelgrass (Orth & Moore 1983).
The prediction was that species relying heavily on SAV
as nursery habitat, such as the blue crab, would show
large decreases in abundance after the decline of SAV.
However, there is little evidence that blue crab land-
ings declined substantially after SAV loss (Lipcius &
Van Engel 1990) This may have been because most
SAV losses occurred in the upper part of the Chesa-
peake Bay, while the major habitat for settlement of
postlarvae reentering the Bay from offshore oceanic
waters, as well as early instar juveniles, are the eel-
grass meadows of the lower polyhaline Chesapeake
Bay (Orth et al. 1996), which declined much less than
the oligohaline meadows of the upper Bay (Orth &
Moore 1983). As described above for pink shrimp in
Florida Bay, there is neither a clear test nor a verifica-
tion of the nursery hypothesis for the blue crab in the
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Chesapeake Bay, other than densities of juveniles
being significantly higher and survival greater in
eelgrass meadows than in unvegetated areas.

Summary and recommendations for future research

Although the concept of seagrass meadows as nurs-
ery habitats is a common theme in the literature, sur-
prisingly few studies have actually established criteria
for evaluating the nursery role hypothesis and even
fewer have tested it. Most studies concerning the nurs-
ery role of seagrasses only consider the density of ani-
mals and, based on the greater densities often found in
seagrass versus unstructured habitats, have inferred
the importance of seagrass meadows as nurseries.
Among those few studies of growth and survival that
do exist, most indicate that structure per se, and not
anything inherent to seagrasses themselves, is the
main cause of elevated growth and survival in sea-
grasses compared to unvegetated substrates. In aggre-
gate, we believe that the evidence indicates that the
factor most often limiting animal populations in shal-
low coastal water is the shelter from predators that
structured habitats provide. While larval supply and
food resources are well known to limit some popula-
tions, our data provide no evidence of the importance
of differential larval supply rates or of food availability
among different types of structured habitats. But is
important to note that almost no studies have yet mea-
sured the amount of successful movement from the
purported seagrass nursery habitat to that of adults.

Any general conclusions to be drawn from the litera-
ture that we have reviewed must be tempered by the
fact that a very large percentage of existing work has
been done in only 2 continents: North America and
Australia. This geographically limited data set sug-
gests that the nursery role of seagrasses in the North-
ern Hemisphere (North America) may be larger than in
the Southern Hemisphere (Australia). This conclusion
was reached previously by Butler & Jernakoff (2000)
for commercially important species in Australia, but
seems paradoxical given the enormous stands of sea-
grasses that occur along the entire lengths of Aus-
tralia’s temperate and subtropical coastlines.

It is clear that many more experimental studies on
growth and survival in seagrass and other habitats are
needed in all parts of the world but especially in areas
other than North America and Australia. However,
there is still much to be learned from these 2 continents
as well, as the small number of studies in our meta-
analyses indicates. Of critical importance is to test the
nursery hypothesis not only by reporting animal densi-
ties, but also by estimating growth and survival rates,
and the amount of successful movement of juveniles

from putative nurseries to adult habitats. The latter
issue is difficult to address but should be advanced by
future studies that use otolith microchemistry to iden-
tify the juvenile habitats of individuals in the adult
habitat (e.g. Gillanders & Kingsford 1996), as well as
new tagging technologies. We must also compare mul-
tiple habitats with respect to their nursery role, but in
so doing we should be aware that some taxa may only
utilize seagrass meadows for short periods of time and
at very small sizes (e.g. early crab instars), which
necessitates carefully focused and timed studies. Most
species can be found in more than 1 habitat; however,
there are surprisingly few studies that make compar-
isons among more than 2 potential nursery habitats.

Finally, seagrasses (and wetlands) have been the focus
of most work on nurseries and, in most cases, this has
been justified. Substantial evidence does support the
contention that some seagrasses meadows serve as nurs-
ery habitats (e.g. Heck et al. 1997, Butler & Jernakoff
2000) even though definitive tests of the nursery hy-
pothesis are rare. Nevertheless, not all seagrass mead-
ows are likely to be equal in their nursery function. If it
were known, for example, that for many fish and inver-
tebrate species the best seagrass nurseries were near
sources of larval influx (e.g. coastal inlets) or in close
proximity to adult habitats, then efforts to preserve or re-
store nurseries could be concentrated on such sites. It is
also important to note that seagrasses also provide many
ecosystem services and serve many important functions
in addition to their potential as nurseries (e.g. Costanza
et al. 1997). They stabilize shorelines, reduce wave
impacts, remove suspended solids, recycle nutrients
and oxygenate surrounding waters (Short & Wyllie-
Echeverria 1996, Costanza et al. 1997). Seagrasses are, of
course, highly productive and much seagrass carbon en-
ters coastal food webs through many different pathways.

As Beck et al. (2001) have emphasized, better testing
of the nursery hypothesis for seagrass meadows and
other habitats will allow the identification of habitats
most worthy of protection and conservation, and more
rigorous testing may show that previously overlooked
habitats also serve as important nurseries and should
be better conserved and managed. However, it is not
necessary or prudent to wait for irrefutable evidence of
any given habitat‘s nursery role before action is taken
to conserve, manage or restore such habitats. Rather,
we too believe that it is appropriate to err on the side of
caution and to act on current knowledge of the
suspected nursery value of different habitats (Beck et
al. 2001).
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