NOTE

Feeding of the bivalve *Theora lubrica* on benthic microalgae: isotopic evidence

H. Yokoyama*, Y. Ishihi

National Research Institute of Aquaculture, Fisheries Research Agency, Nansei, Mie 516-0193, Japan

ABSTRACT: A stable isotope study was conducted to identify the sources of nutrition for the semelid bivalve *Theora lubrica* living in estuarine subtidal sediments. Along an estuarine gradient in Gokasho Bay, central Japan, δ¹³C and δ¹⁵N were determined both in tissues of *T. lubrica* and its potential food sources, i.e. particulate organic matter (POM) from riverine and marine sites, sedimentary organic matter (SOM) and microalgae on an intertidal mudflat. Differences existed among δ¹³C and δ¹⁵N in riverine POM (yearly mean value: −26.5‰ and 0.5‰, respectively), marine POM (−20.4‰, 6.3‰) and benthic microalgae (−14.7‰, 4.9‰). SOM exhibited a gradual isotopic enrichment both in δ¹³C and δ¹⁵N from the estuarine station adjacent to the mudflats to the more seaward stations, indicating a progressive mixing of terrestrial and marine sources. However, the isotopic composition of *T. lubrica* did not follow this trend: as the sampling station was shifted seaward, δ¹⁵N increased from 7.5 to 9.4‰, whereas δ¹³C decreased from −16.0 to −17.8‰. These values cannot be due to the utilization of terrestrial organic matter carried by the river inflow. The observed spatial variation in the δ¹³C values suggest that *T. lubrica* has 2 dominant food sources, i.e. benthic microalgae (mainly diatoms) and marine POM (mainly coastal phytoplankton), and that in subtidal areas near the mudflats benthic microalgae were an important dietary component.

KEY WORDS: Stable isotope · Benthic microalgae · Macrobenthos · Estuary · *Theora lubrica*

Estuaries are among the most productive ecosystems in the world, and are characterized by inputs of terrestrial and marine organic matter in addition to autochthonous production by macroalgae, microalgae and seagrasses. Recent research has focused on the fate and pathways of this organic matter in the estuarine ecosystem. Stable carbon isotope ratios have been extensively used to evaluate the mixing processes between terrestrial and marine organic matter in estuaries (e.g. Peters et al. 1978, Fontugne & Jouanneau 1987), and to elucidate the sources of nutrition for consumers inhabiting such areas (reviewed by Fry & Sherr 1984) based on the small isotope fractionation between different trophic levels (DeNiro & Epstein 1978). In addition, stable nitrogen ratios also can be used to deduce the mixing ratio of terrestrial and marine sources in cases of a clear difference of values between these 2 sources (reviewed by Owens 1987), and can be used to estimate the dietary proportion of different food sources by examining the spatial variation of values within a single species (e.g. France 1994). Thus, the coupling of δ¹³C and δ¹⁵N values may provide more precise information.

The semelid bivalve *Theora lubrica* Gould lives in estuarine soft bottom habitats in Japan, and especially occurs as a dominant species in eutrophic shallow lagoons and bays (Horikoshi 1990, Kikuchi 1991). This species was originally distributed in East Asia, but in recent years, its distributional area has expanded to Australia (Poore & Rainer 1979) and New Zealand (Hayward et al. 1997), probably due to artificial introductions through the release of ballast water from ships. *T. lubrica* in Japan is characterized by a small adult size (up to 15 mm in shell length), short life span (several months), and rapid growth and maturation (age of 1 to 3 mo at first reproduction) (Kikuchi & Tanaka 1976, Imabayashi & Tsukuda 1984). Populations of this species often diminish due to hypoxic waters; thereafter, reconstruction of a population is quickly attained by settlement of planktonic larvae after the recovery of the dissolved oxygen due to its ability to reproduce throughout the year (Kikuchi & Tanaka 1976, Imabayashi & Tsukuda 1984, Imabayashi 1986). *T. lubrica* lies buried in the sediment and feeds on particles on the sediment surface by extending the inhalant siphon (Kikuchi 1981). Despite extensive information on the ecology of this species, however, its
food sources have not yet been identified. The present study focused on the spatial variation of the isotopic composition of *T. lubrica* sampled along a transect of an estuarine soft bottom area in Gokasho Bay to identify its nutrition by comparing its δ^{13}C and δ^{15}N with that of the potential food sources.

Materials and methods. **Study area:** Gokasho Bay, located along the coast of the Kii Peninsula, central Japan, is a small embayment with an area of 22.2 km2 and a mean depth of 12.7 m (Fig. 1). The shoreline of the bay is constituted mainly of rocky reefs, and partly of sandy beaches. Freshwater flows into the bay mainly from the Iseji River, which drains 39 km2 of forested land covered by evergreen broad-leaved trees (C$_3$ plants) that are almost free of anthropogenic influence. The average flow rate of this river is 1.5×10^5 m3s$^{-1}$. The difference in tidal range between spring and neap tides attains 2.0 m. Mudflats appear at the mouth of the Iseji River, extending over an area of 25 ha at the lowest ebb tide. During our sampling at Stn B, the mudflats were entirely bare, excluding a small amount of macroalgae which were found attached to small stones and free of vascular C$_4$ saltmarsh plants. Marine macroalgae including *Hizikia fusiformis*, *Sargassum hemiphyllum*, *S. horneri*, *S. patens*, and *S. piluliferum*, grow rapidly during the winter and spring months and occur as dominant species in Gokasho Bay (Yokoyama et al. 1999), forming *Sargassum* beds at the central and inner part of the bay (Fig. 1). *Theora lubrica* occurs as a dominant species at the inner part of Gokasho Bay, attaining a maximum density of 1500 ind. m$^{-2}$ (Yokoyama et al. 1996).

Sampling, isotopic analysis and data analysis: *Theora lubrica*, sedimentary organic matter (SOM), particulate organic matter (POM) in suspended solids, and benthic microalgae on the mudflat were analyzed for their stable carbon and nitrogen isotope ratios. *T. lubrica* were collected from 6 stations (Fig. 1: Stns C to H) in Gokasho Bay on April 26, 2001 with an Ekman grab and a 2 mm mesh sieve. The whole soft tissues of adult individuals (>10 mm in shell length) were picked from the shell, and their intestine was removed if contents were observed in it. The dissected soft tissues were washed in 1.2 N HCl to remove traces of carbonate, dried to constant weight at 60°C, and ground to a fine powder. At the same time of the animal collection, sediment samples were collected from the same stations with a plastic coring tube set within the Ekman grab. The surface layer of sediment (to 1 cm depth) was sampled, acidified with 1.2 N HCl to remove carbonates, dried at 60°C, and homogenized to measure the isotopic compositions of SOM.

It is necessary to determine the variability of δ^{13}C and δ^{15}N of the potential food sources and how these values change seasonally, because isotopic compositions of primary producers can exhibit seasonal variability (e.g. Goering et al. 1990, Cloern et al. 2002). Therefore, POM and benthic microalgae were collected monthly during the period from April 2001 to May 2002. To determine the isotopic composition of the terrestrial and marine end-members, freshwater and seawater were obtained from Stn A (9.1 km from the river mouth, 60 m above sea level), which is located near a headstream of the Iseji River, and from 1.0 m depth at Stn I near the mouth of Gokasho Bay, respectively. POM was obtained by filtration of the water on precombusted Whatman GF/F glass fiber filters, acidified (1.2 N HCl) to...
remove carbonates, and dried at 60°C. Subsamples of the water for POM samples were observed under microscopic examination to ascertain the content of POM and to determine the density of phytoplankton cells. Benthic microalgae were extracted from the surface sediments of the intertidal mudflat (Stn B) through a procedure from Couch (1989) as modified by Riera & Richard (1996). Within 30 min the sediment was brought back to the laboratory and spread on a flat tray to a depth of ca. 1 cm. A nylon screen (63 µm mesh) was laid upon the sediment surface, and a 4 to 5 mm layer of combusted sand with a diameter of 125 to 500 µm was spread over it. The tray was held under fluorescent light and the sand was kept wet by spraying with filtered seawater. After 12 to 15 h, the top 2 mm of the sand was removed by scraping, and sieved by rinsing with filtered seawater through a 63 µm screen in order to separate the microalgae from the sand. Water containing the microalgae was then filtered on precombusted GF/F filters, rinsed with distilled water, and dried at 60°C. A small portion of each microalgal sample was preserved in 10% neutral formalin and observed under microscopic examination to identify the species composition.

The 15N and 13C composition of the samples was determined using a mass spectrometer (MAT 252, Finnigan MAT) coupled on-line, via a Finnigan ConFlo II interface, with an elemental analyzer (EA 1110, ThermoQuest Italia). Results are expressed in the standard δ unit notation where δX = [(Rsample/Rreference) – 1] × 10^3, with R = 13C/12C for carbon and 15N/14N for nitrogen, and reported relative to the Pee Dee Belemnite standard (PDB) for carbon and to atmospheric N₂ for nitrogen.

In a system where 2 end-members of different isotopic values are available to a consumer, the fraction that each end-member contributes to the diet can be calculated from the resulting δ13C and δ15N of the consumer's tissues. The contribution ratio of the end-member to the diet of the consumer is determined by the dual isotope model (Yokoyama et al. 2002).

Results and discussion. Species composition of phytoplankton and benthic microalgae: Phytoplankton was scarcely found in the riverine POM collected at Stn A, and the majority of the suspended matter seemed to originate from decomposed plant debris. The bulk of POM collected from Stn I was phytoplankton. The density of cells was high from June through September, ranging from 370 to 830 cells ml⁻¹; after September the density decreased rapidly in the succeeding fall and winter months, resulting in <100 cells ml⁻¹ (Fig. 2). Diatoms constituted the largest component of the flora of phytoplankton throughout the year, accounting for more than 90% of the total cells, except for January 2002, when unidentified dinoflagellates accounted for 24% of the total cells (Fig. 2). Skelettonema costatum, Chaetoceros spp., Nitzschia sp., Thalassiosira spp., Eucampia sp., Rhizosolenia spp., and Thalassionema sp., which are common phytoplankton in Japanese coastal waters, occurred as dominant or subdominant species. Microalgae on the mudflat (Stn B), which were extracted by using their motile ability, were dominated by pennate diatoms throughout the year (Table 1). There was no obvious seasonal variation in the species composition. Navicula sp. A appeared as the dominant species (>43% of the total cells) all the year round, except in October and December 2001, when Amphora sp. dominated. Subdominant species were A. ventricosa, Diploneis sp., Gyrosigma sp., Navicula sp. B, and Navicula sp. C, which belongs to Naviculaceae, and Bacillaria para doxa, Cylindrotheca closterium, and Nitzschia sp., which belongs to Nitzschiaeae.

δ13C and δ15N of potential food sources: Riverine POM had the lowest δ13C and δ15N values among the 3 food sources, ranging from −27.3 (November) to −24.3‰ (April), with a mean (±SD) of −26.5 ± 0.8‰ (n = 12), and −1.3 (May) to 2.4‰ (January) with a mean of 0.5 ± 1.3‰ (n = 12), respectively (Fig. 3). These values are within the range of isotopic compositions of terrestrial organic matter (C₃ plants), i.e. δ13C ranging from −30 to −23‰ with a modal value of ca. −27‰ (e.g. Fry & Sherr 1984, Boutton 1991) and δ15N ranging from ca. −5 to 2‰ (e.g. Fry 1991). Marine POM had less negative δ13C values, ranging from −21.9 (December) to −18.5‰ (September) with a mean of −20.4 ± 0.9‰ (n = 12), and had also higher δ15N values ranging from 3.9 (February) to 7.4‰ (June) with a mean of 6.3 ± 1.0‰ (n = 12). These values are within the range of values (δ13C: −18 to −24‰, δ15N: 3.0 to 12‰) which have been previously reported for marine organic matter in
temperate regions (Fry & Sherr 1984, Gearing et al. 1984, Owens 1987, Boutton 1991, Wada & Hattori 1991, France 1995). Benthic microalgae had the highest $\delta^{13}C$ values among the 3 sources, showing a wide range of –19.5 (October) to –10.3‰ (March) and a mean of –14.7 ± 2.5‰.

$\delta^{15}N$ values for benthic microalgae had a range from 2.5 (October) to 6.5‰ (December) and a mean of 4.9 ± 1.0‰ (n = 13). The $\delta^{13}C$ and $\delta^{15}N$ for benthic microalgae are similar to previously reported $\delta^{13}C$ and $\delta^{15}N$ values, i.e. –20 to –13‰ and 3 to 10‰, respectively (Couch 1989, Riera et al. 1996, 1999, 2000, Créach et al. 1997, Stribling & Cornwell 1997, Wainright et al. 2000). Dominant macroalgae in Gokasho Bay, including *Hizikia fusiformis*, *Sargassum hemiphyllum*, *S. horneri*, *S. patens*, and *S. piluliferum*, have been found to have a mean $\delta^{13}C$ of –15.0 ± 2.5‰ (n = 127), and a mean $\delta^{15}N$ of 8.1 ± 1.0‰ (n = 127) (Y.I. et al. unpubl.). There was a clear difference both in $\delta^{13}C$ and $\delta^{15}N$ between riverine and marine POM, with their distributions showing no overlap throughout the year (Fig. 3). There were significant differences both in $\delta^{13}C$ (2-way ANOVA, p < 0.001) and $\delta^{15}N$ (p < 0.05) between benthic microalgae and marine POM. $\delta^{13}C$ values for macroalgae were close to values for benthic microalgae, whereas macroalgae were enriched with ^{15}N in comparison with other sources, showing significant differences between them (Mann-Whitney test, p < 0.001).

$\delta^{13}C$ and $\delta^{15}N$ of SOM: Isotopic compositions of SOM (Table 2) were intermediate between those of riverine and marine POM (Fig. 4). SOM at Stn C, the closest station to the mudflats, had $\delta^{13}C$ values of –24.9‰ and $\delta^{15}N$ of 3.0‰. At the neighboring station (Stn D) both the $\delta^{13}C$ and $\delta^{15}N$ values decreased slightly (–25.4 and 2.5‰, respectively), and then they progressively increased toward the seaward station (Stn H), where the most enriched $\delta^{13}C$ and $\delta^{15}N$ values (–21.0 and 5.4‰, respectively) were found. This distribution suggests that organic matter in the sediment consisted of terrestrial and marine end-members and that the compositions reflected a physical and progressive mixing of these 2 components, as shown in other studies (e.g. Peters et al. 1978, Wada et al. 1987).

Food sources of Theora lubrica: *T. lubrica* exhibited spatial $\delta^{13}C$ and $\delta^{15}N$ variations; the mean $\delta^{13}C$ ranged from –17.8 to –16.0‰, and the mean $\delta^{15}N$ ranged from 7.5 to 9.4‰ (Table 2). Given a presumptive 1.0‰ trophic shift in the $\delta^{13}C$ (DeNiro & Epstein 1978, Fry et al. 1984, Mariotti et al. 1984, Owens 1987, Boutron 1991, Wada & Hattori 1991, France 1995). Benthic microalgae had the highest $\delta^{13}C$ values among the 3 sources, showing a wide range of –19.5 (October) to –10.3‰ (March) and a mean of –14.7 ± 2.5‰. $\delta^{15}N$ values for benthic microalgae had a range from 2.5 (October) to 6.5‰ (December) and a mean of 4.9 ± 1.0‰ (n = 13). The $\delta^{13}C$ and $\delta^{15}N$ for benthic microalgae are similar to previously reported $\delta^{13}C$ and $\delta^{15}N$ values, i.e. –20 to –13‰ and 3 to 10‰, respectively (Couch 1989, Riera et al. 1996, 1999, 2000, Créach et al. 1997, Stribling & Cornwell 1997, Wainright et al. 2000). Dominant macroalgae in Gokasho Bay, including *Hizikia fusiformis*, *Sargassum hemiphyllum*, *S. horneri*, *S. patens*, and *S. piluliferum*, have been found to have a mean $\delta^{13}C$ of –15.0 ± 2.5‰ (n = 127), and a mean $\delta^{15}N$ of 8.1 ± 1.0‰ (n = 127) (Y.I. et al. unpubl.). There was a clear difference both in $\delta^{13}C$ and $\delta^{15}N$ between riverine and marine POM, with their distributions showing no overlap throughout the year (Fig. 3). There were significant differences both in $\delta^{13}C$ (2-way ANOVA, p < 0.001) and $\delta^{15}N$ (p < 0.05) between benthic microalgae and marine POM. $\delta^{13}C$ values for macroalgae were close to values for benthic microalgae, whereas macroalgae were enriched with ^{15}N in comparison with other sources, showing significant differences between them (Mann-Whitney test, p < 0.001). $\delta^{13}C$ and $\delta^{15}N$ of SOM: Isotopic compositions of SOM (Table 2) were intermediate between those of riverine and marine POM (Fig. 4). SOM at Stn C, the closest station to the mudflats, had $\delta^{13}C$ values of –24.9‰ and $\delta^{15}N$ of 3.0‰. At the neighboring station (Stn D) both the $\delta^{13}C$ and $\delta^{15}N$ values decreased slightly (–25.4 and 2.5‰), and then they progressively increased toward the seaward station (Stn H), where the most enriched $\delta^{13}C$ and $\delta^{15}N$ values (–21.0 and 5.4‰, respectively) were found. This distribution suggests that organic matter in the sediment consisted of terrestrial and marine end-members and that the compositions reflected a physical and progressive mixing of these 2 components, as shown in other studies (e.g. Peters et al. 1978, Wada et al. 1987).

Food sources of Theora lubrica: *T. lubrica* exhibited spatial $\delta^{13}C$ and $\delta^{15}N$ variations; the mean $\delta^{13}C$ ranged from –17.8 to –16.0‰, and the mean $\delta^{15}N$ ranged from 7.5 to 9.4‰ (Table 2). Given a presumptive 1.0‰ trophic shift in the $\delta^{13}C$ (DeNiro & Epstein 1978, Fry &

<table>
<thead>
<tr>
<th>Date (mm/dd/yy)</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun 7, 2001</td>
<td>Navicula sp. A (69) Bacillaria paradoxa (9) Cylindrotheca closterium (7)</td>
</tr>
<tr>
<td>Jun 25, 2001</td>
<td>Navicula sp. A (85) Amphora ventricosa (7) Bacillaria paradoxa (5)</td>
</tr>
<tr>
<td>Jul 24, 2001</td>
<td>Navicula sp. A (94) Bacillaria paradoxa (3) Nitzschia sp. (2)</td>
</tr>
<tr>
<td>Aug 23, 2001</td>
<td>Navicula sp. A (52) Navicula sp. B (17) Amphora sp. (13)</td>
</tr>
<tr>
<td>Sep 17, 2001</td>
<td>Navicula sp. A (63) Diplosea sp. (10) Navicula sp. B (8)</td>
</tr>
<tr>
<td>Oct 16, 2001</td>
<td>Amphora sp. (33) Navicula sp. A (24) Diplosea sp. (7)</td>
</tr>
<tr>
<td>Nov 14, 2001</td>
<td>Navicula sp. A (47) Amphora sp. (19) Bacillaria paradoxa (7)</td>
</tr>
<tr>
<td>Dec 17, 2001</td>
<td>Amphora sp. (36) Navicula sp. A (31) Cylindrotheca closterium (12)</td>
</tr>
<tr>
<td>Jan 22, 2002</td>
<td>Navicula sp. A (61) Amphora sp. (12) Navicula sp. B (9)</td>
</tr>
<tr>
<td>Feb 22, 2002</td>
<td>Navicula sp. A (45) Gyrosigma sp. (9) Navicula sp. B (9)</td>
</tr>
<tr>
<td>Mar 19, 2002</td>
<td>Navicula sp. A (53) Navicula sp. C (11) Unidentified Naviculaceae (8)</td>
</tr>
<tr>
<td>Apr 18, 2002</td>
<td>Navicula sp. A (43) Gyrosigma sp. (18) Navicula sp. B (6)</td>
</tr>
<tr>
<td>May 27, 2002</td>
<td>Navicula sp. A (48) Amphora sp. (12) Navicula sp. C (5)</td>
</tr>
</tbody>
</table>

Fig. 3. Monthly $\delta^{13}C$ (A) and $\delta^{15}N$ (B) values (n = 1) for riverine particulate organic matter (POM), marine POM and benthic microalgae from April 2001 to May 2002.
Growth, the mean 3 mo prior to the collection due to their rapid reflect only the isotopic compositions of the diets for δ₁⁵N values of the T. lubrica diet would have δ¹³C and δ¹⁵N values ranging from --18.8 to --17.0‰, and from 4.5 to 6.4‰, respectively (Fig. 4).

The large differences in δ¹³C between the hypothetical diet of Theora lubrica and riverine POM (7.7 to 9.5‰) suggest that riverborne terrestrial organic matter is not directly utilized by this species. The δ¹³C values for the hypothetical diet of T. lubrica were intermediate between those of marine POM and benthic microalgae (Fig. 4). The hypothetical diet exhibited significantly different δ¹³C variations between stations along the estuarine gradient (1-way ANOVA, p < 0.001). The diet at Stn C had the most positive δ¹³C signature; the δ¹³C decreased as the collection station was shifted seaward (Stn F). These results suggest that T. lubrica incorporates a mixture of benthic diatoms and marine phytoplankton, and that the relative importance of these 2 sources changed along the estuarine gradient.

Kikuchi & Tanaka (1976) clarified that it takes ca. 8 to 12 wk in winter to attain the minimum reproductive size (5 to 6 mm in shell length) after settlement of Theora lubrica. Assuming that the δ¹³C and δ¹⁵N values of adult individuals of T. lubrica collected in April reflect only the isotopic compositions of the diets for the 3 mo prior to the collection due to their rapid growth, the mean δ¹³C and δ¹⁵N values of marine POM and benthic microalgae during the February to April period, i.e. --20.7 and 5.6‰ for marine POM (x), and --11.4 and 5.2‰ for benthic microalgae (z), respectively (Fig. 4), should be used for a quantitative assessment of the proportions of these 2 sources in the diet. The contribution ratio (CR, %) of benthic microalgae to the diet of T. lubrica at Stn C can be calculated as (a/b) × 100 = 42% (a = distance between x and z; b = distance between x and y) based on the dual isotope model (Yokoyama et al. 2002). This result indicates that benthic microalgae can serve as an important food source for T. lubrica near the mudflats. As the habitat is shifted seaward, however, marine POM increasingly makes a predominant contribution, accounting for 78 to 79% of the CR of the diet at Stns F to H.

Benthic microalgae contribute a significant proportion of the total primary production in the subtidal part of estuaries via their resuspension and diffusion from the tidal flats (Shaffer & Sullivan 1988, Lucas et al. 2001) and/or in situ production on the subtidal bottom (Cahoon 1999, Blackford 2002). The isotope composition of SOM in Gokasho Bay estuary, however, showed that a large part of SOM near the mudflats corresponded to terrestrial materials transported by the river, and the part originating from benthic microalgae was low. The discrepancy of the isotope composition between SOM and Theora lubrica diets suggests that this bivalve preferentially feeds on microalgae with its siphon stretched out over the bottom surface (Kikuchi 1981). Rosenberg (1993) found the co-existence of suspension and deposit-feeding in the semelid bivalve Abra alba. Observations of feeding behavior of T. lubrica in the laboratory, however, could not reveal suspension feeding. It seems likely that T. lubrica feeds on benthic microalgae which are carried from the mudflats into the subtidal habitat of the bivalve, and/or benthic microalgae which are produced on the subtidal bottoms where the bivalve can feed on them directly.

There was a significant difference between stations among δ¹⁵N values for Theora lubrica (1-way ANOVA, p < 0.001). At 3 stations near the mudflats (Stns C to E) T. lubrica had a similar δ¹⁵N value (7.5 to 7.7‰); however, it increased to 9.4‰ at Stn H (Table 2, Fig. 4).

Table 2. δ¹³C (%) and δ¹⁵N (%) for sedimentary organic matter (SOM) and Theora lubrica. Isotopic values for T. lubrica indicate the mean ± SD. Number of samples is given in parentheses.

<table>
<thead>
<tr>
<th>Stn</th>
<th>SOM δ¹³C</th>
<th>δ¹⁵N</th>
<th>Theora lubrica δ¹³C</th>
<th>δ¹⁵N</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-24.9</td>
<td>3.0</td>
<td>-16.0 ± 0.3 (7)</td>
<td>7.7 ± 0.2 (7)</td>
</tr>
<tr>
<td>D</td>
<td>-25.4</td>
<td>2.5</td>
<td>-16.7 ± 0.4 (7)</td>
<td>7.5 ± 0.2 (7)</td>
</tr>
<tr>
<td>E</td>
<td>-24.2</td>
<td>3.6</td>
<td>-17.2 ± 0.2 (7)</td>
<td>7.7 ± 0.2 (7)</td>
</tr>
<tr>
<td>F</td>
<td>-22.8</td>
<td>4.7</td>
<td>-17.8 ± 0.1 (8)</td>
<td>8.2 ± 0.2 (8)</td>
</tr>
<tr>
<td>G</td>
<td>-21.9</td>
<td>4.7</td>
<td>-17.7 ± 0.2 (11)</td>
<td>8.4 ± 0.2 (11)</td>
</tr>
<tr>
<td>H</td>
<td>-21.0</td>
<td>5.4</td>
<td>-17.2 ± 0.2 (10)</td>
<td>9.4 ± 0.2 (10)</td>
</tr>
</tbody>
</table>
Sargassum beds are well developed on the rocky and stony bottoms around Stn H (Fig. 1). The enrichment of 15N in T. lubrica tissue toward Stn H may be due to the incorporation of macroalgal detritus, although the dietary proportion of macroalgae could not be determined.

Recent stable isotope studies have suggested that riverborne terrestrial organic matter is relatively inconsequential in estuarine food webs, and that autochthonous production by saltmarsh plants and/or micro- and macro-algae is important in supporting estuarine secondary productivity (e.g. Simenstad & Wissmar 1985, Peterson & Howarth 1987, Sullivan & Moncreiff 1990, Deegan & Garratt 1997, Page 1997, Kurata et al. 2001, Takai et al. 2002). Increasing attention has particularly focused on benthic microalgae as a food source for the meioiubenthos (Couch 1989), macrobenthos (Haines & Montague 1979, Curran et al. 1995, Riera & Richard 1996, Créach et al. 1997, Kang et al. 1999, Riera et al. 1999), megabenthos (Riera et al. 2000) and fish (Kneib et al. 1980, Wainright et al. 2000). Most of these animals, except the brown shrimp Penaeus azteces (Riera et al. 2000), are inhabitants of the intertidal zone. The present study provides evidence of the importance of benthic microalgae as well as coastal phytoplankton as a food source for this subtidal deposit-feeding bivalve.

Theora lubrica is widely distributed in eutrophic basins, which are frequently associated with phytoplankton blooms, and in the innermost part of bays and lagoons near shorelines (Horikoshi 1990, Kikuchi 1991). Saito et al. (1998) suggested that active phytoplankton production supports the T. lubrica population via benthic-pelagic coupling; however, not only phytoplankton but also benthic microalgae can support the population of this bivalve.

Acknowledgements. We wish to thank Y. Yamada for his valuable suggestions. This research was conducted under the project study entitled 'Integrative study on the development of natural cyclical functions through forest, agricultural and aquatic ecosystems', which is funded by the Agriculture, Forestry and Fisheries Research Council, Japan.

LITERATURE CITED

Stribling JM, Cornwell JC (1997) Identification of important primary producers in a Chesapeake Bay tidal creek system using stable isotopes of carbon and sulfur. Estuaries 20:77–85

Editorial responsibility: Otto Kinne (Editor), Oldendorf/Luhe, Germany

Submitted: November 12, 2002; Accepted: April 3, 2003

Proofs received from author(s): June 10, 2003