Sediment DIN fluxes and preferential recycling of benthic microalgal nitrogen in a shallow macrotidal estuary

Craig Tobias¹, ²*, Anne Giblin¹, James McClelland¹, Jane Tucker¹, Bruce Peterson¹

¹The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
²Present address: US Geological Survey, 431 National Center, 12201 Sunrise Valley Drive, Reston, Virginia 20192, USA

ABSTRACT: Sediment-water fluxes of NH₄⁺, NO₃⁻, dissolved inorganic carbon, and O₂ were measured in cores collected from the upper Rowley River estuary, Massachusetts, and used to calculate rates of organic nitrogen (N) mineralization, nitrification, and coupled and direct denitrification (DNF). The cores contained ¹⁵N label in benthic microalgae (BMA) and in NO₃⁻ in the overlying water as a result of an ongoing whole-estuary ¹⁵NO₃⁻ enrichment study (NISOTREX II). The tracer allowed for estimation of gross NO₃⁻ regeneration in sediments and the contribution of BMA derived N to total mineralization. The mean mineralization rate between sites was 16.0 ± 2.0 mmol N m⁻² d⁻¹. Approximately 13 to 56% of the mineralized N was nitrified at rates ranging from 1.8 to 10.1 mmol N m⁻² d⁻¹. Total denitrification was dominated by direct DNF (3.6 mmol N m⁻² d⁻¹) furthest upstream, where NO₃⁻ concentrations were highest. Coupled DNF was most important (8.0 mmol N m⁻² d⁻¹) in the sediments with high nitrification and low water column NO₃⁻. A gross NO₃⁻ flux from sediments to water of 0.9 to 2.1 mmol N m⁻² d⁻¹ was estimated from the isotope dilution of δ¹⁵NO₃⁻ in the overlying water of the cores. The isotope dilution seen in the cores was also detected as a deviation from conservative δ¹⁵NO₃⁻ mixing along estuarine transects. Incorporation of this NO₃⁻ regeneration into the DNF calculations effectively increased the estimate of direct DNF by up to 50% and decreased the coupled DNF estimate by up to 220%. Increasing δ¹⁵NH₄⁺ in the water of the cores indicated that the ¹⁵N-labelled BMA were preferentially mineralized over bulk sediment organic N. Additional ¹⁵N enrichments in the sediment bacterial biomarker diaminopimelic acid showed a link among ¹⁵N-labeled BMA, active bacteria, and ¹⁵NH₄⁺ released to the overlying water. Based on δ¹⁵NH₄⁺ enrichments in the cores, BMA accounted for approximately 50 to 100% of the N mineralized. An isotopic enrichment of δ¹⁵NH₄⁺ above background in the estuary was observed at a magnitude consistent with the core-based rates of BMA mineralization. These results provide further evidence that BMA are not unidirectional sinks for water column-dissolved organic nitrogen, but instead act to turn over N between sediments and estuarine water on the scale of days.

KEY WORDS: Nitrogen · Benthic microalgae · Microphytobenthos · Stable isotopes · Biomarkers · Nutrient flux · Denitrification

INTRODUCTION

Sediments are the dominant sites of nitrogen (N) cycling within estuaries, and act as a source and/or sink for N in the overlying water column (Hopkinson et al. 1999, Twilley et al. 1999). Sediment denitrification (direct and coupled to organic matter mineralization) is the dominant mechanism of N attenuation in estuaries (Seitzinger 1988, Nixon et al. 1996, Cornwell et al. 1999), and benthic regeneration is an important source of dissolved inorganic N (DIN) supporting primary production in overlying waters (Kemp & Boynton 1984, Holmes et al. 2000). Ultimately, no understanding of estuarine N dynamics can be complete without quantification of N fluxes between the water column and sediments, and/or a contemporaneous accounting of the major N cycling processes generating those fluxes.

The principal N cycling reaction in estuarine sediments rich in organic matter is the mineralization of organic matter into ammonium. While organic-rich sediments are the dominant sites of nitrogen (N) cycling within estuaries, and act as a source and/or sink for N in the overlying water column (Hopkinson et al. 1999, Twilley et al. 1999). Sediment denitrification (direct and coupled to organic matter mineralization) is the dominant mechanism of N attenuation in estuaries (Seitzinger 1988, Nixon et al. 1996, Cornwell et al. 1999), and benthic regeneration is an important source of dissolved inorganic N (DIN) supporting primary production in overlying waters (Kemp & Boynton 1984, Holmes et al. 2000). Ultimately, no understanding of estuarine N dynamics can be complete without quantification of N fluxes between the water column and sediments, and/or a contemporaneous accounting of the major N cycling processes generating those fluxes.

The principal N cycling reaction in estuarine sediments rich in organic matter is the mineralization of organic matter into ammonium. While organic-rich sediments are the dominant sites of nitrogen (N) cycling within estuaries, and act as a source and/or sink for N in the overlying water column (Hopkinson et al. 1999, Twilley et al. 1999). Sediment denitrification (direct and coupled to organic matter mineralization) is the dominant mechanism of N attenuation in estuaries (Seitzinger 1988, Nixon et al. 1996, Cornwell et al. 1999), and benthic regeneration is an important source of dissolved inorganic N (DIN) supporting primary production in overlying waters (Kemp & Boynton 1984, Holmes et al. 2000). Ultimately, no understanding of estuarine N dynamics can be complete without quantification of N fluxes between the water column and sediments, and/or a contemporaneous accounting of the major N cycling processes generating those fluxes.
ments tend to be a net source of NH$_4^+$, this flux may not represent all of the organic nitrogen oxidized during mineralization. Nitrification of NH$_4^+$ results in the production of NO$_3^-$ that in turn becomes available for flux to the water column or (coupled) denitrification (Blackburn & Henriksen 1983, Seitzinger & Giblin 1996). Sediment may also be a net sink for NO$_3^-$ in the overlying water through direct denitrification when water column NO$_3^-$ concentrations are high. Although the interaction between N cycling reactions can be complex, the overall balance between reactions that attenuate N flux from sediments and the water column (e.g. denitrification) and reactions that generate sediment DIN (e.g. mineralization and nitrification) regulates the impact of the benthos on the N status of the overlying water.

Benthic microalgae (BMA) in some estuaries play an instrumental role in attenuating the extent of sediment N flux to the overlying water (Sundbäck & Miles 2000). Benthic microalgal photosynthesis accelerates the rate of coupled nitrification/denitrification (Risgaard-Petersen et al. 1994, An & Joyce 2001). BMA assimilation of pore-water DIN and direct uptake of water column DIN lowers the total amount of N export from the estuary (Cerco & Seitzinger 1997, Cabrita & Brotas 2000, Sundbäck & Miles 2000, Sundbäck et al. 2000, Tobias et al. 2003). However, despite the assumed role of BMA as a DIN sink, BMA stock size, turnover rate, and lability suggest that these organisms may also be important sources of organic matter fueling mineralization and subsequent DIN release. Some studies have examined the decomposition and fate of phytodetritus (Sun et al. 1993, Poremba 1994, Trimmer et al. 1999) and sediment diatoms (Middelburg et al. 2000), but have been limited solely to carbon. Despite the extensive distributions of benthic microalgal communities in many coastal environments, and their potential impact on estuarine N loads, the degree to which benthic microalgal N is preferentially mineralized and released is largely unexplored.

The extensive use of sediment/water flux incubations has proven useful for measuring the net uptake and release of various N fractions in multiple marine and estuarine environments (Boynton & Kemp 1985, Hopkinson et al. 1999). However, an understanding of N dynamics based solely on N concentration changes in core incubations provides limited insight into underlying reactions, gross N transformation rates, or the identification of the N sources being processed and released. The incorporation of 15N labeling into specific N pools within flux incubations removes some of these limitations. 15N tracer studies have been widely used to examine water column and sediment N cycling (Blackburn & Henriksen 1983, Nielsen 1992, Gibert & Capone 1993, Bronk et al. 1994), but the technique has been underutilized as a means of estimating gross N regeneration or identifying the source of organic N fueling mineralization.

Here, we present an investigation of sediment DIN recycling in the Rowley River estuary. This work was conducted as part of the Nitrogen ISOTope Tracer EXperiment II (NISOTREX II project), which used a whole-estuary 15NO$_3^-$ tracer addition to quantify the fate and transport of watershed derived N through the Rowley River estuary, Massachusetts (Tobias et al. 2003). To assess sediment DIN recycling we used a combination of sediment core flux incubations, estuarine dissolved inorganic 15N transects, and benthic microalgal and sediment bacterial biomarker 15N measurements. This approach took advantage of the existing 15N enrichments in the NO$_3^-$ and the benthic microalgal pools that resulted from the whole-estuary 15N addition. The 15N enrichments provided the unique opportunity to quantify gross NO$_3^-$ recycling by sediments and to estimate the relative importance of benthic microalgae to the total organic N mineralization.

MATERIALS AND METHODS

Site description. The Rowley River is a marsh-dominated estuary located in NE Massachusetts (42° 44’ N, 70° 52’ W) within the Plum Island Ecosystem Long Term Ecological Research site (PIE-LTER). The 9 km long estuary drains an approximately 17.2 km2 mixed residential and forested watershed. Mean tidal amplitude and tidal excursion are 3 m and 3 to 6 km, respectively. The estuary discharges to the Plum Island Sound, which in turn exchanges almost completely with the Gulf of Maine twice per day (Vallino & Hopkinson 1998).

The study area consisted of 2 regions of mudflat located in the upper 1 km of the estuary approximately 13.5 and 14 km (hereafter referred to as 13.5k and 14k) upstream from the Gulf of Maine (Fig. 1). Sampling was conducted during a period of relatively high river discharge, and the high tide salinities for 13.5k and 14k during the experiment were 9 and 3 ppt, respectively. Mudflat sediments were exposed at low tide and were heavily populated with benthic microalgae (penate diatoms: *Navicula* spp., *Nitzschia* spp.).

The mudflats and overlying estuarine water were exposed to the high 15NO$_3^-$ enrichments during, and for 3 wk prior to, this investigation as part of NISOTREX II. The estuarine isotope addition consisted of enriching the upper 4 km of the Rowley River with 15NO$_3^-$ added to the system from 11 July 2000 to 2 August 2000. The NISOTREX II 15NO$_3^-$ isotope addition site was located at Stn 12.5k, approximately 2.5 km downstream from the site of non-tidal freshwater input (15k). The enrichment solution added to the estuary was composed of
rhodamine wt (conservative tracer) and K15NO3 (0.9 M, 10 at% enriched). The solution was dripped continuously into the water column using a metering pump at a rate of 20 g 15N per day. This rate of 15N addition enriched the water column δ^{15}NO3 by up to 1000‰ and the BMA by up to 100‰ over the course of the NISOTREX II project (Tobias et al. 2003).

Flux studies. The flux studies were conducted in order to quantify the net and gross exchange of DIN between sediments and the water column by estimating the exchange of total DIN and 15N-DIN, respectively. The protocol for the flux incubations was adapted from Giblin et al. (1997) and Hopkinson et al. (1999). Six 15 cm diameter × 30 cm deep sediment cores and 40 l of overlying estuarine water were collected on 1 August 2000 from each of 2 stations (13.5k and 14k) in the Rowley River. Water temperature and salinity were determined in the field, and the water was filtered (<1.0 µm cartridge filter) into carboys for transport (accompanied by the sediment cores) back to the laboratory. Upon arrival at the Woods Hole MBL facilities, the cores from each station were uncapped and held in the dark for at least 24 h within ±2°C of the in situ station temperature from which they were collected. This holding period allowed for depletion of benthic microalgal energy reserves so that the observed fluxes during the incubations represented sediment processes independent of ‘luxury’ benthic microalgal NO3 uptake. During 2 previous experiments using BMA from the Rowley River, we found no NO3 uptake by dense BMA resuspensions (10⁶ cells ml⁻¹) in the dark following a 24 h dark holding period (C. Tobias unpubl. data). Just prior to initiating the flux measurements, ~5 l of filtered water (<1.0 µm) collected from each station was added to its respective sediment core. All cores (n = 3 cores site⁻¹) were capped and mixed with a magnetic stirrer during the incubations, and the flux incubations were performed in the dark at in situ temperatures (16 ± 2°C). The overlying water from all cores was sampled during the incubations and analyzed for the following parameters: dissolved oxygen (DO), NH4⁺, NO3⁻ + NO2⁻, and dissolved inorganic carbon (DIC). Isotopic enrichments of DIN (δ^{15}NH4⁺ and δ^{15}NO3⁻) were determined in the overlying water at the start and end of the incubation period. The duration of the incubation was determined by the time required for the O2 concentration to drop by at least 2 ppm, but not by more than 3 ppm, to avoid having low DO concentrations as a factor affecting nitrification. The analytical methods used to determine the measured parameters are detailed in Table 1. In addition to the core fluxes, two 300 ml BOD bottles of filtered water from each station were incubated in parallel with the cores to correct for water column respiration and N regeneration.

Net fluxes of NH4⁺, NO3⁻, DIC, and O2 were estimated from the slope of linear regression of the change in the mass (N, C, or O2) of the measured parameter versus incubation time in each core. These rates were normalized to core area to yield the flux estimate and reported as the mean and standard error of all cores.

Calculation of N cycling rates. Net fluxes of NO3⁻ and NH4⁺, mineralization, nitrification, coupled and direct denitrification (DNF), and gross NO3 efflux from sediments were estimated from the DIN concentration and/or δ^{15}N-DIN isotope data according to Table 2. The calculation of all N cycling rates assumed that the sediment DIN pool (NH4⁺ and NO3⁻) was in steady state.

Estuarine DIN and δ^{15}N-DIN transects. Water column sampling along the estuarine salinity gradient for NH4⁺, NO3⁻, δ^{15}NH4⁺ and δ^{15}NO3⁻ was conducted in the Rowley River estuary concurrent with the NISOTREX II 15N isotope addition experiment. Conservative mixing curves for NO3⁻ and δ^{15}NO3⁻ were constructed for the estuary. Two-end member conservative mixing of fresh and salt water sources was used to predict NO3⁻ concentrations at any location (i) in the estuary according to:

$$\text{NO}_3^{-}\text{pred}_{i} = f_{\text{salt}} \cdot \text{NO}_3^{-}\text{salt}_{i} + (1 - f_{\text{salt}}) \cdot \text{NO}_3^{-}\text{fresh}$$

where NO3⁻salt and NO3⁻fresh are the NO3⁻ concentrations in Plum Island Sound and the fresh river input, respectively, and f_{salt} is the relative contribution of the saltwater-end member to the measured specific conductivity at Stn i (i.e. the ratio of station conductivity to Plum Island Sound conductivity).
Similarly, a 2-compartment isotope-mixing model predicted the δ^{15}NO$_3$ based upon the dilution of 15NO$_3$ released during NISOTREX II with ambient unlabelled NO$_3$ in the estuary. The predicted conservatively mixed δ^{15}NO$_3$ was calculated from:

$$\delta^{15}\text{NO}_3^{\text{pred},i} = 1000 \left[\frac{273 \left(\frac{15\text{NO}_3^{\text{released}} + 15\text{NO}_3^{\text{estuary}}}{14\text{NO}_3^{\text{released}} + 14\text{NO}_3^{\text{estuary}}} \right) - 1}{1} \right]$$

where 15NO$_3^{\text{released}}$ and 14NO$_3^{\text{released}}$ were the 15N and 14N content of the 15NO$_3$ added during NISOTREX II, 15NO$_3^{\text{estuary}}$ and 14NO$_3^{\text{estuary}}$ were the 15N and 14N content of the ambient estuarine NO$_3$ prior to the isotope addition. The 15N and 14N content of either NO$_3$ source was calculated from the isotopic enrichment of the NO$_3$ sources (15NO$_3^{\text{released}} = 10$ at% excess 15N; δ^{15}NO$_3^{\text{estuary}} = 5$‰ or -0.001 at% excess) and the total N mass of each source. The mass of N-NO$_3$ released into the Rowley assumed 1 l of 15N addition solution (992 mM), and NO$_3^{\text{estuary}}$ was the mass of ambient NO$_3$ diluting each liter of the addition solution. The diluting mass of ambient estuary NO$_3$ was calculated from the observed dilution of rhodamine wt (released with the 15N solution) and NO$_3$ concentration at each station.

BMA and bacterial biomarker analysis—diaminopimelic acid. Mudflat sediments were collected for the isolation and isotopic analysis of the bacterial specific N-biomarker diaminopimelic acid (DAP). The δ^{15}N enrichment in DAP extracted from sediments was measured in order to examine the bacterial link between the highly enriched benthic microalgae (60 to 100‰) and any 15N tracer released from the sediments as DIN during the flux incubations.

The δ^{15}N of BMA was determined using EA-IRMS on cells collected directly from the mudflats at Stns 13.5k and 14k during NISOTREX II. On a falling tide, 210 µ Nitex screen was placed on the exposed mudflat. The vertically migrating BMA encrusted the screen within 10 to 15 min, and the screens were collected and rinsed with filtered seawater. The rinse was filtered on a 50 µm mesh sieve, underwent several water rinses, and was filtered onto ashed GFF filters, and was dried at 40°C for IRMS analysis. Splits of the post 50 µm-sieved BMA were periodically examined under a microscope and checked for the presence of non-diatom detritus. Typically, the BMA ‘isolates’ samples were 85 to 95% BMA cells (i.e. 5 to 15% detrital contamination). Samples that were not at this purity level were rejected.

For DAP analysis, sediments (0 to 1 cm deep) were collected at 3 stations in the upper estuary (12, 13 and 14 km upstream from the Gulf of Maine) for the measurement of δ^{15}N. Collections occurred prior to the NISOTREX II 15N addition in order to estimate background natural abundance isotope enrichment, and again in the middle of the isotope addition period (10 July 2000). Sediments were stored at −80°C prior to DAP extraction.

For each preparation, 5 g of dried sediment was ground in a mortar and placed in a 250 ml Pyrex bottle with a Teflon-lined cap. In these bottles, samples were sonicated with 100 ml benzene/methanol (3:2) and washed with 50 ml methanol followed by deionized water to remove soluble organic matter (Pelz et al. 1998). Residues were collected by filtration on 0.2 µm filters between each step and after the last rinse. Final residues were dried at 60°C overnight and then tightly capped and hydrolyzed with ultra-pure 6 M HCl for 24 h at 110°C. The hydrolysate was evaporated to dryness at 55°C under a stream of N$_2$, and the residues were redissolved in 0.01 N HCl along with 0.5 µmol of internal standard (α-amino adipic acid). This solution was purified by filtration (0.65 µm Durapore filter) fol-

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Method</th>
<th>Units</th>
<th>Source</th>
<th>Sample frequency</th>
<th>Sample handling</th>
<th>Holding time</th>
<th>Sample preservation</th>
</tr>
</thead>
<tbody>
<tr>
<td>O$_2$</td>
<td>Probea</td>
<td>µM</td>
<td>Hale (1980)</td>
<td>≥5 per flux</td>
<td>Immediate reading</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>DIC</td>
<td>Coulometric CO$_2$ analyzer</td>
<td>µM</td>
<td>Dickson & Goyet (1994)</td>
<td>2 (initial + final)</td>
<td>Glass BOD bottles</td>
<td><4 mo</td>
<td>HgCl$_2$, 4°C</td>
</tr>
<tr>
<td>NH$_4^+$</td>
<td>Spectrophotometric analyzer</td>
<td>µM</td>
<td>Solorzano (1969)</td>
<td>–5 per flux</td>
<td>Fixed within 1 h</td>
<td>24 h</td>
<td>Phenol</td>
</tr>
<tr>
<td>NO$_2^+$ + NO$_3^-$</td>
<td>Flow injection analyzer</td>
<td>µM</td>
<td>Diamond (1994)</td>
<td>–5 per flux</td>
<td>Polyethylene bottles</td>
<td><4 mo</td>
<td>Frozen</td>
</tr>
<tr>
<td>δ^{15}NH$_4^+$</td>
<td>Volatization/acid trap</td>
<td>%</td>
<td>Holmes et al. (1997)</td>
<td>Initial and final</td>
<td>GFF-filtered</td>
<td><6 mo</td>
<td>Frozen</td>
</tr>
<tr>
<td>δ^{15}NO$_3^-$</td>
<td>Devarda’s reduction, acid trap</td>
<td>%</td>
<td>Sigman et al. (1997)</td>
<td>Initial and final</td>
<td>GFF-filtered</td>
<td><6 mo</td>
<td>Frozen</td>
</tr>
</tbody>
</table>

aOrbisphere Inc.
bUIC Coulometrics CM5011 CO$_2$ analyzer coupled to a U.R.I SOMMA (Single-Operator Multiparameter Metabolic Analyzer
cLatchat Instruments, Inc.

Table 1. Summary of analytical methods (DIC: dissolved inorganic carbon; NA: not applicable)
followed by cation exchange chromatography (Dowex 50WX8-400 ion exchange resin). Amino acids were eluted with 2 M NH₄OH and evaporated to dryness under a stream of N₂ at 80°C. Finally, the purified amino acids were derivatized to NPP-amino acid esters (Metges et al. 1996) and dried under a gentle stream of N₂ at room temperature. Dried residues were dissolved in 75 µl of ethyl acetate and stored in septum cap vials until analysis.

The stable isotopic compositions of nitrogen in NPP derivatives, α-aminoadipic acid (internal standard), and DAP were analyzed by gas chromatography/combustion/isotope ratio mass spectrometer (GC/C/IRMS) using a Micromass Isoprime mass spectrometer interfaced to a Hewlett Packard 6890 gas chromatograph.

Mixes of amino acid derivatives from sediment samples were injected into the GC and separated on an HP-Ultra 2 column (50 m × 0.32 mm i.d., 0.5 µm film thickness). GC conditions were such that individual amino acids eluted separately over the course of approximately 1.3 h (McClelland & Montoya 2002). Amino acid derivatives that eluted prior to the internal standard were routed to the flame ionization detector of the gas chromatograph. From the internal standard onward, amino acid derivatives were routed to the mass spectrometer. Enroute to the mass spectrometer, the derivatives passed through an oxidation (850°C) and a reduction furnace (500°C), and a liquid nitrogen cold trap to remove water and CO₂. Each sample run was preceded by 2 pulses of reference N₃ and followed by 3 pulses of reference N₂, the isotopic composition of which was calibrated against a variety of organic standards (peptone, histidine, and acetonilide) by continuous-flow isotope ratio mass spectrometry (CFIRMS) using a Carlo Erba NA 2100 elemental analyzer interfaced to a Micromass Optima mass spectrometer.

Standard mixtures of amino acids including DAP and internal standard were run through the entire analytical procedure to confirm the reproducibility of isotope measurements. Analytical error for the measurements was ±0.5‰ (standard error) for 3 injections.

RESULTS

Fluxes and ¹⁵N dynamics

At the start of the incubations, water from Stns 13.5k and 14k possessed similar NH₄⁺ concentrations (6 to 8 µM), but differed in NO₃⁻ concentrations by a factor of 3 (14k = 24 µM; 13.5k = 7 µM). All sediment cores demonstrated net NH₄⁺ production and net nitrate uptake (Fig. 2). The NH₄⁺ flux from the sediment was greatest in cores collected furthest upstream (14k). Sediments from Stn 14k had a mean net NH₄⁺ flux of 12.2 mmolN m⁻² d⁻¹, while NH₄⁺ flux in the 13.5k cores averaged 7.9 mmolN m⁻² d⁻¹ (Fig. 2). The mean NH₄⁺ flux from sediments to the water column for the upper 0.5 km reach of the Rowley estuary (i.e. the mean of Stns 13.5k and 14k) was 10.1 ± 2 mmolN m⁻² d⁻¹.

All cores lost approximately 20% of the initial NO₃⁻ concentration during the incubations. Total NO₃⁻ loss was greater by a factor of 2 in cores from furthest upstream (14k), where the highest initial NO₃⁻ concentration (23 to 24 µM) was encountered. The largest net NO₃⁻ flux into the sediments (14k) was 2.6 mmolN m⁻² d⁻¹, and the average net NO₃⁻ flux in the 13.5k cores was 1.4 mmolN m⁻² d⁻¹ (Fig. 2). The mean net NO₃⁻
flux for the upper 0.5 km reach of the Rowley estuary was $2.0 \pm 0.2 \text{ mmolN m}^{-2} \text{ d}^{-1}$.

Sediments from both stations were a net source of DIC and a net sink for O$_2$. DIC production was highest in downstream cores (13.5k; 126 mmolC m$^{-2}$ d$^{-1}$), and was approximately 30% higher than DIC production in sediments from 14k (Fig. 2). The DIC flux out of the sediments exceeded the O$_2$ flux into the sediments at both stations and yielded mean respiratory quotients (RQs) of 1.8 for 13.5k and 1.2 for 14k sediments. DIC production in all cores exceeded the net flux of NH$_4^+$ at rates in excess of the ‘Redfield’ C:N ratio for phytoplankton (~7), for benthic microalgae at both stations, and in excess of the C:N ratio of the bulk sediment measured at 13.5k (Table 3). The DIC: NH$_4^+$ flux ratios were 15.9 and 8.1 for 13.5k and 14k sediments, respectively.

The isotopic composition of the water column DIN pool with respect to both NO$_3^-$ and NH$_4^+$ changed during the flux incubations (Fig. 3). The δ^{15}NH$_4^+$ increased from background natural abundance levels of (2.0 to 3.3‰) up to 22‰ in the 13.5k cores and 110‰ in the 14k cores. The largest δ^{15}NH$_4^+$ enrichment occurred at 14k, where benthic microalgae and water column NO$_3^-$ were more isotopically enriched than at 13.5k (Table 3; Fig. 3). As observed in the overlying water of the cores, the 15NH$_4^+$ release from sediments may have generated a transient isotopic enrichment in estuarine water column NH$_4^+$ during the 2nd week of the NISOTREX II tracer addition period (Fig. 4). Despite some uncertainty associated with δ^{15}NH$_4^+$ analysis, background enrichment ranged from 5‰ at 11.5k to 12‰ at 14k and the NH$_4^+$ pool was clearly, but temporarily, enriched (above background) by up to 15‰ on the 10th day of the isotope addition period. The spatial pattern of δ^{15}NH$_4^+$ enrichment above background measured on 20 July 2000 was coincident with a strong mid-estuary NH$_4^+$ maximum (Tobias et al. 2003), and the magnitude of the estuarine δ^{15}NH$_4^+$ was consistent with fluxes of 15N-enriched NH$_4^+$ observed in sediment core incubations. When the 15NH$_4^+$ flux observed in the cores was scaled to the estuarine residence time (1.25 d), areal extent of sediments, and water column NH$_4^+$ stock in the upper 2 km of the estuary, the predicted 11‰ enrichment in the estuarine 15NH$_4^+$ pool is within the enrichment range observed in the estuary. The δ^{15}NH$_4^+$ enrichment was not consistently observed during later sampling (e.g. 8 February 2000), when tidal volumes were larger and a mid-estuary NH$_4^+$ maximum was not detected (Tobias et al. 2003).

The δ^{15}NO$_3^-$ in the overlying core water decreased during the incubation by 28‰ at 13.5k and 35‰ at 14k (Fig. 3). This observed isotopic dilution of the water column NO$_3^-$ equated with a gross NO$_3^-$ release from the sediments to the overlying water of 2.1 and 0.9 mmolN m$^{-2}$ d$^{-1}$ at Stns 13.5k and 14k, respectively. The distribution of

Table 3. Bulk sediment percent organic matter, C:N, chlorophyll a (0 to 2 cm), and benthic microalgal C:N. Percent organic matter determined by dry weight loss on ignition (LOI) (500°C). Data are means (±SE).

<table>
<thead>
<tr>
<th>Station (km upstream)</th>
<th>Bulk sediment</th>
<th>Benthic microalgal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percent organic matter (LOI)</td>
<td>C:N</td>
</tr>
<tr>
<td>13.5k</td>
<td>7.2 ± 4.1</td>
<td>13.6 ± 0.4</td>
</tr>
<tr>
<td>14k</td>
<td>4.0 ± 2.4</td>
<td>13.5 ± 0.2</td>
</tr>
</tbody>
</table>
δ¹⁵NO₃⁻ and NO₃⁻ along the axis of the estuary mimicked the pattern of gross nitrate release and net nitrate uptake observed in the cores (Fig. 5). Throughout the estuary, NO₃⁻ concentrations were ~3 µM less than that predicted by the conservative mixing of the freshwater and marine water end members, indicating net NO₃⁻ uptake (Fig. 5). The δ¹⁵NO₃⁻ values fell below the conservative isotope enrichment mixing line for the estuary by an average of 245‰ (or roughly 20 to 30% lower than expected), indicating an input of unlabeled NO₃⁻ (i.e. gross NO₃⁻ regeneration from the sediments). Given the estimated gross NO₃⁻ flux rate, the areal coverage of mudflat and channel sediments, estuarine residence time, NO₃⁻ stock, and isotopic enrichment in the upper estuary, NO₃⁻ regeneration would expect-edly dilute the δ¹⁵NO₃⁻ in the estuarine water column by ~20%. This dilution factor compares reasonably well to the observed deviation of δ¹⁵NO₃⁻ from conservative mixing in the estuary.

Calculation of multiple N processing rates

Rates of gross mineralization, nitrification, and direct and coupled DNF in the sediments were calculated from the net NH₄⁺, DIC, and NO₂⁻ fluxes, and the δ¹⁵NO₃⁻ data according to the equations in Table 2 (Fig. 6). The higher gross mineralization rate at 13.5k (18 mmolN m⁻² d⁻¹) was not accompanied by a higher bulk sediment percent organic matter or lower C:N ratio relative to 14k (Table 3). Approximately 80% of the NH₄⁺ produced from gross mineralization at 14k (14 mmolN m⁻² d⁻¹) was fluxed to the overlying water, while the majority (60%) of the NH₄⁺ produced from mineralization at 13.5k was consumed by nitrification. Nitrification rates were 4-fold higher at 13.5k and supported primarily the coupled denitrification rates, while the fate of NO₃⁻ produced from nitrification in upstream (14k) sediments was evenly split between coupled DNF and gross NO₃⁻ flux back to the water column (Fig. 6).

Total denitrification (direct DNF + coupled DNF) was greatest in 13.5k sediments, and was dominated nearly 3:1 by coupled DNF at a mean rate of 8.0 mmolN m⁻² d⁻¹. In contrast, the lower rates of total denitrification at 14k were accompanied by a 4:1 dominance of direct DNF over coupled DNF. Despite the difference in the relative importance of direct and coupled DNF pathways, the direct DNF rates between stations were nearly identical (3.5 to 3.6 mmolN m⁻² d⁻¹; Fig. 6). The net NO₃⁻ flux component of direct DNF (Table 2) was 2-fold greater under the higher NO₃⁻ concentrations at 14k (Fig. 2). In contrast, the bulk of direct DNF at 13.5k was comprised of NO₃⁻ that had been regenerated and released to the water column prior to being denitrified.
Bulk sediments, BMA, and sediment bacteria all contained elevated amounts of 15N as a result of the 3-wk 15N isotope addition during the NISOTREX II project. Isotopic enrichments of these benthic pools increased with distance upstream and paralleled the spatial δ^{15}NO$_3^-$ distribution in the estuary (Tobias et al. 2003; Fig. 7). One week prior to when the flux cores were collected at 13.5k and 14k, BMA was the most highly 15N-enriched pool (83 to 97‰), followed by the sediment bacterial biomarker (DAP; 21 to 26‰), and bulk sediments (7 to 8‰). Along with the water column NO$_3^-$, these benthic pools represented potential sources of 15NH$_4^+$ that were fluxed into the overlying water in the estuary (Fig. 7) and in the core incubations.

DISCUSSION

Studies that quantify net sediment-water nutrient exchanges have better defined the role of the estuarine benthos (Boynton & Kemp 1985, Hopkinson et al. 1999). The incorporation of 15N tracer into these flux experiments provided 2 additional elements of information that would not have been available had these incubations lacked the tracer. First, the appearance of 15N in the NH$_4^+$ pool during the incubation provided the ability to identify that benthic microalgae were preferentially mineralized. Second, the isotopic dilution of water column NO$_3^-$ allowed for calculation of gross NO$_3^-$ release from the sediments. Incorporating this gross NO$_3^-$ release into stoichiometry-based denitrification calculations led to an improved estimate of direct and coupled denitrification.

Preferential mineralization of benthic microalgal N

Mineralization was the dominant process in the sediments. The daily NH$_4^+$ flux rates were near the upper end of the range reported for other estuaries (Caffrey 1995, Hopkinson et al. 1999, Warnken et al. 2000), and may represent generous daily estimates because the potential interaction between emersion period and illumination was not directly considered (Thornton et al. 1999). Regardless, the source of the NH$_4^+$ flux was isotopically enriched in 15N. If the NH$_4^+$ flux was produced from the mineralization of bulk sediment organic matter (δ^{15}N ~ 7‰), the δ^{15}NH$_4^+$ in the overlying water column would have increased <4‰ during the experiment. Instead, the substantial 15N enrichment (Fig. 3) of the NH$_4^+$ in the overlying water during all flux incubations indicated that a fraction of the bulk sediment (enriched in 15N) was being preferentially mineralized. There were 2 sources of 15N within the estuary that possessed a sufficiently high enrichment to have potentially supported the observed 15NH$_4^+$ fluxes: NO$_3^-$ and BMA (Fig. 7).

The highly enriched 15NO$_3^-$ pool could have been ammonified into 15NH$_4^+$. Dissimilatory nitrate reduction to ammonium (DNRA) can occur in anoxic sediments and porewaters (Koike & Sørenson 1988, Tobias et al. 2001a,b). While there is a possibility that DNRA
could have contributed to some of the \(^{15}\text{NH}_4^+\) flux at 14k, in general the DNRA rates could not have produced enough \(^{15}\text{NH}_4^+\) to account for the increase of water column \(\delta^{15}\text{NH}_4^+\) when we considered the total amount of \(\text{NH}_4^+\) diffused from the sediment to the overlying water. If DNRA was assumed to be the only source of \(^{15}\text{NH}_4^+\) at a generous production rate equal to 50% of the water column \(\text{NO}_3^-\) loss rate (Herbert 1999, and others cited therein), the additional mass of unlabeled \(\text{NH}_4^+\) produced from organic matter mineralization would have isotopically diluted the DNRA-produced \(^{15}\text{NH}_4^+\) to a \(\delta^{15}\text{N}\) value far too low (by at least a factor of 5 at 13.5k and a factor 2 at 14k) to have generated the observed enrichment in the water column \(\delta^{15}\text{NH}_4^+\). If DNRA contributed at all to the \(^{15}\text{NH}_4^+\) flux (unusual considering the low salinity of the stations), it could not have caused the changes in water column \(\delta^{15}\text{NH}_4^+\) without another \(^{15}\text{N}\) source in the \(\text{NH}_4^+\) produced by mineralization. Likewise, assimilatory nitrate ammonification (i.e. bacterial \(\text{NO}_3^-\) assimilation followed by \(\text{NH}_4^+\) excretion) was not likely to be a significant mechanism of generating the \(^{15}\text{NH}_4^+\). Although this process has been reported in marine and estuarine environments, it was observed only when \(\text{NO}_3^-\) concentrations exceeded all other \(\text{N}\) sources by at least an order of magnitude (Kirchman & Wheeler 1998, Middelburg & Nieuwenhuize 2000). The final piece of evidence suggesting a minimal role for nitrate ammonification was that previous sediment incubations from an adjacent estuary in the Plum Island LTER (Parker River) containing high \(^{15}\text{NO}_3^-\) enrichments (~100 000‰) but lacking BMA enrichment yielded negligible increases in \(\delta^{15}\text{NH}_4^+\).

Although we cannot rule out \(\text{NO}_3^-\) ammonification entirely, we suggest an explanation for the observed \(^{15}\text{NH}_4^+\) fluxes that is more consistent with the mineralization rates and fluxes of \(\text{NH}_4^+\) and \(^{15}\text{NH}_4^+\). The \(^{15}\text{NH}_4^+\) was produced from the preferential mineralization of the \(^{15}\text{N}\)-enriched benthic microalgal biomass. Very high sediment chlorophyll in the upper 2 cm of sediment (~13 g chl a m\(^{-3}\)) was measured at both stations. The BMA provided a low C:N source of isotopically enriched \(\text{N}\) that was likely more labile than bulk particulate organic matter, which included contributions from higher C:N terrestrial and/or macrophyte-derived sources (Hopkinson et al. 1999). Chlorophyll-derived N (assuming molar ratios of chl a:C = 50 and BMA C:N of 7.1 at 13.5k and 7.7 at 14k) composed 3 to 4% of total sediment N in the top 2 cm but accounted for 50 to 75% of the \(^{15}\text{N}\) excess in the sediments (Tobias et al. 2003). This dichotomy indicated that BMA was a disproportionately active component of the bulk sediment.

Additional evidence supporting BMA as a source for mineralization was seen in the \(^{15}\text{N}\) of the sediment bacteria (as measured by DAP; Fig. 7). The \(^{15}\text{N}\) of bacterial DAP in the upper 1 cm of sediment showed a marked enrichment over that of bulk sediment particulate organic nitrogen as well as enrichment above natural abundance background levels determined prior to whole-estuary isotope addition. The \(^{15}\text{N}\)-DAP enrichment indicated bacterial utilization of recently degraded organic matter derived from a source that was enriched in \(^{15}\text{N}\). As such the elevated \(^{15}\text{N}\) DAP established a link among the \(^{15}\text{N}\)-enriched BMA, actively mineralizing bacteria, and the \(^{15}\text{NH}_4^+\) flux from the sediments. While the possibility exists that DAP enrichment reflected some direct \(\text{NO}_3^-\) assimilation, we believe that to be unlikely, given the strong preference of bacteria for reduced \(\text{N}\) sources which are abundantly available in these porewaters. Similarly high isotopic enrichments in sediment bacterial lipids have been observed following \(^{13}\text{C}\) additions to BMA-dominated sediments (Middelburg et al. 2000). While the connection between BMA and sediment bacteria can represent a link for carbon to higher trophic levels (Middelburg et al. 2000), sediment bacteria in this study operated more as sink for BMA-derived N by mediating its mineralization and release back to the water column.

A simple 2-end member (BMA and water column \(\text{NH}_4^+\)) isotope mixing calculation provided an estimate of the percent of the total \(\text{NH}_4^+\) flux derived from enriched BMA. Given estimates of BMA enrichments in the estuary (97% at 14k; 83% at 13.5k), the \(\text{NH}_4^+\) flux rate, and the observed \(\delta^{15}\text{NH}_4^+\) change in the cores, mineralization of BMA could account for roughly 40 to 50% of the total \(\text{NH}_4^+\) flux at 13.5k and approximately 100% (±5 to 10%) of the \(\text{NH}_4^+\) flux at 14k. These estimates (particularly at 14k) might be regarded as somewhat liberal for 2 reasons. First, our \(^{15}\text{N}\) enrichment estimate for BMA was very conservative due to variable detrital contamination (but typically <5 to 15%) of the BMA isolates. An underestimate in the BMA enrichment would result in an apparent increase in the proportion that BMA-N contributed to total mineralization. Second, we do not completely exclude the possibility that direct \(\text{NO}_3^-\) ammonification contributed to the \(^{15}\text{NH}_4^+\) flux (at 14k only). However, microalgal \(^{13}\text{C}\) enrichment studies (Middelburg et al. 2000) demonstrated that respiration of BMA-derived carbon accounted for up to 40% of the loss of \(^{13}\text{C}\) tracer added to the microphytobenthos in the Scheldt estuary. The higher proportion of BMA mineralized in the more sandy sediments of the Rowley estuary at 14k was also noted in the \(^{13}\text{C}\) tracer additions to high-sand sediments in the Scheldt.

Although we lacked porewater \(\delta^{15}\text{NH}_4^+\) measurements, it is reasonable to suggest that the shallowest (0 to 2 cm) BMA-dominated sediments possessed the highest \(\delta^{15}\text{NH}_4^+\) values. The small amount of isotopic dilution of \(\delta^{15}\text{NH}_4^+\) prior to its release to the overlying water indi-
cated a disconnection between the BMA-dense shallow sediments (0 to 1 cm) and the large porewater NH₄⁺ pool found in deeper sediments. The NH₄⁺, DAP, and BMA isotopic evidence suggested that the sediment-water exchange of DIN was largely controlled by reactions occurring in the BMA layer, rather than by an integration of processes or porewater inventory existing across, a deeper sediment cross section. The ultimate source of the ¹⁵N in the Rowley BMA was water column ¹⁵NO₃⁻ assimilated prior to core collection for the flux experiments. Therefore, the importance of BMA in regulating sediment water N exchange in the Rowley included both roles as a DIN sink (Cerco & Seitzinger 1997, Sundbäck & Miles 2000) and in rapidly recycling DIN recently imported from the watershed.

Nitrification, gross NO₃⁻ flux, and denitrification

The principal fate of NH₄⁺ produced during mineralization at 14k was diffusion to the overlying water, while the bulk of the NH₄⁺ generated at 13.5k was nitrified (Fig. 6). Nitrification at 13.5k accounted for >1/2 of the total organic N initially mineralized into NH₄⁺. At both stations, a portion of the NO₃⁻ produced during nitrification was fluxed to the overlying water although the sediments acted as a net denitrifying NO₃⁻ sink (Figs. 2, 3 & 5). The gross NO₃⁻ release was large enough to impact the δ¹⁵NO₃⁻ values in the estuary (Fig. 5). Yet there was some uncertainty in the rate estimate because the exact δ¹⁵NO₃⁻ of the NO₃⁻ diffusing from the sediments could not be measured due to its low porewater stock size. The rate based on the isotope dilution equation (Table 2) yielded a conservative minimum NO₃⁻ release estimate (Fig. 6). A maximum estimate was also calculated using an isotope dilution model that assumed the δ¹⁵NO₃⁻ was equal to that of the diffusing δ¹⁵NH₄⁺. Because gross NO₃⁻ release was small relative to the other measured processes, applying the maximum rate estimates (1.2 mmol N m⁻² d⁻¹ at 14k and 4.2 mmol N m⁻² d⁻¹ at 13.5k) would have only marginal impact on the overall interpretation of sediment N cycling. Despite the uncertainty, the identification of this gross NO₃⁻ flux from the sediments demonstrated the rapid turnover (days) of NO₃⁻ in the estuary, and allowed for a better partitioning of direct and coupled denitrification.

Nitrate in the Rowley River estuary was more dynamic than the conservative NO₃⁻ mixing along the estuarine axis suggested (Fig. 5), and was analogous to ‘nutrient spiraling’ observed in streams where rapid turnover of NO₃⁻ between water and sediments underlies the imprint of moderate net NO₃⁻ loss during downstream transport (Peterson et al. 2001). Assuming the following: average gross NO₃⁻ flux from the sediments (2.0 mmol m⁻² d⁻¹), the direct denitrification rate (3.5 mmol m⁻² d⁻¹), mean water depth (1.5 m), and the volume-weighted average NO₃⁻ concentration in the estuarine water column, approximately 12% of the water column NO₃⁻ stock in the upper estuary was turned over each day. At this turnover rate, sediment recycling of NO₃⁻ becomes the dominant control on water column NO₃⁻ dynamics in the upper estuary.

Denitrification

Direct denitrification rates were consistent with reported rates for other silty estuarine sediments under similar magnitudes of NO₃⁻ supply (Seitzinger 1988, Dong et al. 2000, Sundbäck & Miles 2000). After scaling rates to the upper 2 km of the estuary and correcting the mean denitrification rate for tidal inundation times, we estimated that direct denitrification in the upper 2 km of the estuary removed 0.67 kg of total N d⁻¹ from the estuary (~11% of the total daily NO₃⁻ flux from the watershed). Nitrate removed via direct DNF alone was substantially higher than the fraction of total N denitrified in other estuaries as predicted by N loading, residence time, and mean water depth (Nixon et al. 1996). This disproportionately large amount of DNF in the Rowley River suggests that small, well-flushed estuaries may not adhere well to existing regression...
models that predict DNF from physical estuarine characteristics (Nixon et al. 1996).

As seen in other organic-rich sediments, direct denitrification dominated total denitrification when NO\textsubscript{3}– concentrations were high (14k), and coupled denitrification dominated at lower NO\textsubscript{3}– concentrations (13.5k; Weston et al. 1996). Coupled DNF in the upper 2 km of the estuary was equivalent to roughly 25% of the daily watershed N loading rate and represented the bulk of the total DNF in the upper estuary. Despite the large differences in coupled denitrification rates (0.8 to 8.0 mmol m–2 d–1) between stations, the fractions of mineralized N that was denitrified (44% at 13.5k and 6% at 14k) were within the range reported for other estuaries (Hopkinson et al. 1999).

The gross NO\textsubscript{3}– flux from sediments contributed significantly to the total DIN flux and the interpretation of the DIC:DIN stoichiometry. In high organic estuarine or coastal sediments where no net NO\textsubscript{3}– flux from the sediments is observed, DIC:NH\textsubscript{4}+ rather than DIC:DIN ratios have been commonly used in the stoichiometric calculation of the coupled nitrification/denitrification rate (Weston et al. 1996). Rowley River sediments clearly violated that assumption, and if the experiment had lacked the ability to detect the gross NO\textsubscript{3}– flux from sediments (i.e. no 15N tracer) we would have overestimated coupled DNF by up to 20% at 13.5k and 220% at 14k. However, because the gross NO\textsubscript{3}– regeneration was accounted for in the direct DNF measure, total DNF rate estimates (direct + coupled) would have been unchanged if the gross NO\textsubscript{3}– regeneration had not been quantified. A significant gross NO\textsubscript{3}– flux from the sediments (contemporaneous with net NO\textsubscript{3}– uptake) is probably not unique to the Rowley River estuary, and may be more prevalent in BMA-rich sediments. Although, benthic primary production enhances coupled DNF (An & Joye 2001), high nitrification rates followed by large NO\textsubscript{3}– fluxes from sediments may also occur when microalgal O\textsubscript{2} production is high enough to inhibit denitrification (Tiedje 1988). Regardless, the inclusion of gross NO\textsubscript{3}– regeneration into stoichiometric calculations may help explain differences between stoichiometry-based DNF estimates and those measured from direct N\textsubscript{2} flux or isotope pairing techniques, or when stoichiometry yields DNF estimates that appear to be an unusually high percentage of total N mineralized (Hopkinson et al. 1999).

In summary, combining 15N isotope incorporated into benthic biota and in the overlying DIN with flux incubations demonstrated preferential recycling of benthic microalgal N, and a ‘spiraling’ of NO\textsubscript{3}– in the estuary through gross NO\textsubscript{3}– regeneration and net NO\textsubscript{3}– uptake. BMA was not a unidirectional sink for watershed-derived nor porewater-derived DIN. BMA mediated rapid turnover (on the scale of days) between the water column and estuarine benthos. The gross regeneration of NO\textsubscript{3}– in sediments may represent an important (but potentially unaccounted for) mechanism in BMA-rich sediments that could influence water column production and the interpretation of direct and coupled denitrification in estuaries.

Acknowledgements. We thank the following individuals who contributed to this work: Matthew Cieri, Josh Goldstein, Marshall Otter, David Vasilyiou, and Nat Weston. Special appreciation is extended to J. P. Montoya for allowing DAP samples to be run in his laboratory. This work was supported by grants from the U.S. National Science Foundation (NSF-DEB 9815598, NSF-REU) and Massachusetts Sea Grant (Project R/M—141, no. NA86RG0075).

LITERATURE CITED