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INTRODUCTION

Conservation managers need to predict the abun-
dance and distribution of fish species in estuaries
lacking fisheries-independent monitoring data and to
assess the possible effects that hydrodynamic changes
caused by environmental perturbations may have on
fish populations. Both needs can be met by models
which accurately describe the relationship between
species abundance and the local environment, given

information on environmental conditions or predic-
tions on conditions following hydrological perturba-
tion. Attempts have been made to model fish abun-
dance or distribution quantitatively (parametrically) or
qualitatively (or nonparametrically) as a response to
environmental conditions (Rubec et al. 1999, Brown et
al. 2000). However, these approaches fail to either
model the relationship between environment and
abundance realistically or in a quantifiable manner
(Hastie & Tibshirani 1990).
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Generalized additive models (GAMs) combine the
flexibility of non-parametric models with the quantifi-
able statistical evaluation of error structures and model
selection criteria. They represent a flexible semi-
parametric modelling approach to determining the
relationships between dependent and independent
variables and, in contrast to traditional parametric
habitat preference models, are not restricted to un-
realistic monotonic multi-parameter models, or by the
usual assumption of normality (McCullagh & Nelder
1989, Neter et al. 1996). The model-free parameter
estimation through multiple flexible splines and likeli-
hood-based error estimation covering a multitude of
possible error functions, can overcome many of the
restrictions of earlier habitat preference models
(Hastie & Tibshirani 1990). Spline functions are not
monotonic or tied to preconceived notions about the
relationship between dependent and independent
variables and can therefore more realistically describe
the multitude of physiological and behavioural effects
that determine the distribution of fishes. The number
of possible error structures available due to the use of
the log-likelihood approach allows for modelling the
non-normal errors typical of survey data. GAMs have
already been successfully employed to elucidate
complex relationships between fish abundance and
environmental conditions (Schwartzman et al. 1994,
Bigelow et al. 1999, Maravelias et al. 2000). However,
their ability to predict temporal and spatial variations
in fish distributions in independent datasets has yet
to be rigorously examined. 

The aim of this study is not to develop the best pos-
sible model describing juvenile fish distributions in all
estuaries, rather the aim is to test the ability of GAM
models developed based on data in one estuary to de-
scribe the spatial and temporal distribution of fishes in
other estuaries given local sets of environmental pre-
dictors. As a proof of concept of the use of GAMs in
modelling fish distributions independent of a particular
estuary, this study developed spatially and temporally
dynamic models describing the distribution of spotted
seatrout (Cynoscion nebulosus) based on their habitat
preferences in 3 different estuaries. An in-depth inves-
tigation of habitat preferences and spatial distribution
of juvenile spotted seatrout is fitting for several reasons.
First, due to its considerable recreational fisheries value
to Florida (Chester & Thayer 1990), much is known
about its biology (Moffet 1961, Iversen & Tabb 1962,
Tabb 1966, Peebles & Tolley 1988, McMichael & Peters
1989, Nelson & Leffler 2001). Such published informa-
tion is critical to qualitatively verify the model results in
terms of the species ecology and to judge the suitability
of models for describing habitat usage and recruitment,
even though nursery habitat is poorly defined and its
ultimate role in determining recruitment strength is not

yet clear. Second, comparable fisheries-independent
data sets are available for 3 Florida estuaries to facili-
tate quantitative comparison of models derived from
fisheries-independent collections made in one estuary
with the observed abundances of fishes collected in
other estuaries (foreign models). Third, because the
high level of fishing pressure and anthropogenically in-
duced environmental change, there is an urgent need
for tools to aid conservationists and fisheries managers
in protecting these economically important resources
(Helser et al. 1993, Rubec et al. 1999). Because of their
limited migratory behaviour and their absolute depen-
dence on estuarine habitats (Moffet 1961, Iversen &
Tabb 1962, Tabb 1966), seatrout are threatened by lo-
calized extinction through naturally or anthropogeni-
cally induced habitat perturbations. This paper as-
sesses the ability of GAM model to describe distri-
butions based solely on environmental conditions and
to examine where such models might help conservation
managers in predicting fish distribution in estuaries
lacking fisheries-independent monitoring information.
In addition, an assessment was made of the year-effect
from such pre-recruit models as a means of predicting
future recruitment, which is important to fisheries man-
agers.

MATERIALS AND METHODS

Study sites. Juvenile seatrout in 3 estuaries located
at comparable latitudes were examined in this study, 2
populations on the west and 1 population on the east
coast of central Florida (Fig. 1). Tampa Bay (TB) and
Charlotte Harbor (CH) are bays separated from the
Gulf of Mexico by barrier island systems. These 2 estu-
aries receive significant freshwater inflows from
several mainland tributaries, creating a conventional
salinity gradient, with salinities decreasing at increas-
ing distances from the Gulf of Mexico. The Indian
River Lagoon (IR), adjacent to the Atlantic Ocean, is
made up of 2 parallel basins: the more westerly Indian
River and the less extensive Banana River. In stark
contrast to the tidally driven estuaries on the west
coast, the IR hydrography is largely controlled by
prevailing wind patterns (Smith 1987). The lagoon
receives freshwater, but due to the location of its
tributaries and the position of man-made connections
to the Atlantic, the lagoon’s unconventional salinity
gradient is largely perpendicular to its net flow
(DaCosta et al. 1987).

Despite hydrographic and zoogeographic differ-
ences, species composition in catches and available
habitat types were similar in all 3 estuaries. Vegetated
habitats included seagrass meadows, made up of Halo-
dule wrightii, Thalassia testudinum or Syringodium
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filiforme, and mangrove fringing forest, predominantly
made up of red mangroves (Rhizophora mangle).

Sample collection. Sampling in each estuaries was
conducted from January 1996 to December 1999 using
a monthly, multigear stratified random sampling (StRS)
design, stratified spatially by zones (Fig. 1b–d) and
proportionally stratified by habitat type within zones.
Some changes to the sampling design, were made over
the 4 yr period for logistical reasons, slightly compli-

cating the interpretation of the results. The stratified
random sampling design in the IR was amended in
January 1998 to include the more southerly Zone H
and to reduce the monthly sampling effort in Zones A,
B and E to a single fall sampling period (Fig. 1b). In TB,
sampling in parts of Zone E was eliminated during
January to May 1998, after which monitoring in the
area resumed at effort levels lower than before
(Fig. 1c). In CH, Zone D was dropped from the
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Fig. 1. (a) Locations of the 3 study estuaries in Florida and the proportionally prestratified zones of the sampling designs in (b) the 
Indian River Lagoon, (c) Tampa Bay and (d) Charlotte Harbor
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sampling design (Fig. 1d) and sampling effort was
decreased in all other zones in 1998.

Three different techniques, boat, offshore, and beach
sets, were used to deploy a 21.3 m by 1.8 m center-bag
seine (3.2 mm #35 knotless nylon Delta mesh) in order
to effectively measure fish abundances in a wide
variety of habitats (Nelson 2002). Sample sites were
chosen randomly without replacement from a sam-
pling universe unique to each deployment technique,
consisting of 1’ latitude by 1’ longitude grids. Boat and
offshore sets were proportionally prestratified, and
beach sets were unstratified so that it was possible to
collapse the stratified design into a simple random
design for the purpose of this analysis.

Boat sets were used only in the tributaries of the west
coast estuaries to sample steep riverine banks, while
riverine habitats were not sampled at all in the IR. The
net was set in a semicircle from the shore by boat and
manually retrieved to the shore. Beach sets sampled
the estuarine shoreline and were set out perpendicular
to the shore and dragged for 9.1 m parallel to the shore
before being retrieved similar to the boat sets. Off-
shore sets were used to capture fish away from the
immediate shoreline by dragging the net for 9.1 m in
water <1.5 m and retrieving it around a pivot-pole to
concentrate the sample in the bag. The area swept dif-
fered for the 3 techniques, covering 68, 140 and 338 m2

for boat sets, offshore sets, and beach sets, respectively. 
At least 40 specimens were measured to the nearest

mm standard length (SL) from each set, and in case of
greater sample numbers the remainder were counted
and raised by the length–frequency distribution. Syn-
optic water-quality data were collected, and additional
variables on the spatial, temporal and biological prop-
erties of each sampling location were measured for
each sample. For a more detailed description of the
sampling design, deployment methods and environ-
mental variables collected, a full procedure manual
can be obtained from the Fisheries-Independent Mon-
itoring Program.1

Numerical analysis. Three independent models of
the habitat preferences of juvenile seatrout were
developed, each based on the data from one of 3 estu-
aries, CH, IR and TB. Only catch data for seatrout less
than 50 mm SL were analysed, because larger seatrout
have the ability to effectively avoid the sampling gear,
and they tend to occupy alternative habitats as a con-
sequence of ontogenetic behavioural changes such as
diet shifts (McMichael & Peters 1989). Additionally, the
initiation of schooling behaviour has also been docu-

mented for this species at >50 mm length (Tabb 1961).
As larger specimens school, they are encountered
more contagiously than would be expected in a ran-
dom distribution. That is, the mere presence of fish
increases the probability of higher abundance, while
the absence of fish reduces the probability of high
abundance. Schooling fish are better modelled as a
negative binomial error distribution. In any case,
mixing the assumed Poisson error distribution of the
<50 mm seatrout with the negative binomial error dis-
tribution of larger schooling individuals would invali-
date the error distribution of the model and lead to
unrealistic estimates of confidence limits for parame-
ters and hinder model selection through improper
evaluation of the deviances. 

S-Plus (Statistical analysis software, Insightful) was
used to develop a separate GAM (Venables & Ripley
1999) with an assumed Poisson error distribution for
each estuary system to describe the abundance of
seatrout as a response to day of the year, year, temper-
ature, salinity, water depth at the seine bag, percent
seagrass cover, and bottom type (mud, sand,
mud–sand mix, oysters with mud, oysters with sand).
The choice of the environmental variables was based
on either their reported performance as suitable indi-
cators of seatrout abundance or their ability to charac-
terize ichthyofaunal assemblages in estuaries (Kup-
schus & Tremain 2001). The year effect was
parameterised as a classification variable in the model
in order to examine interannual changes in the abun-
dance of seatrout in the fisheries independent survey
which were not explained by differences in the envi-
ronmental conditions encountered during sampling.

The differences in effort of each of the deployment
techniques associated with differences in the area
swept needed to be accounted for in the analysis. Fre-
quently, this is accomplished by dividing the catch by
the area to arrive at a catch per unit effort dependent
variable. This approach, however, disrupts the error
structure, since for very small areas the problem tends
towards a binomial problem (a fish caught or not),
while on a larger spatial scale the problem tends
towards a Poisson problem (how many fish are
caught). In this study, to compensate for the differ-
ences in effort between the techniques, while main-
taining the appropriate error structure the area cov-
ered was divided by the largest area (338 m2), and the
resulting ratios were used as an offset in the GAM
analysis (Venables & Ripley 1999).

A number of the measured environmental variables
were highly correlated, because of the interplay of the
sampling design and the individual hydrographic
characteristics found in each estuary. This multi-
collinearity can complicate or invalidate the interpreta-
tion of the results of any regression analysis, particu-
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larly in linear regression models. To mitigate against
this, one of a pair of correlated variables is usually
excluded from models (Geary & Leser 1968, Yeo 1984).
In the present study correlated variables were re-
tained, because correlation does not make them neces-
sarily redundant (Hamilton 1987). Instead, to avoid
including truly redundant variables in the analysis, yet
retain all important environmental information in the
analysis, the Akaike information criterion (AIC)
(McCullagh & Nelder 1989) was used in a bidirectional
stepwise procedure to select the most parsimonious
model. Implementing this procedure through the
S-Plus step.gam function (Venables & Ripley 1999)
enabled the objective selection of significant environ-
mental variables and avoided multicollinearity prob-
lems in the development of models. The final GAM
was of the form:

where α is the intercept of the linear predictor, β is the
slope of the i th linear component, ƒ is the spline func-
tion of the j th smoothed component, and ε is a Gauss-
ian error term (Hastie & Tibshirani 1990).

Originally, the AIC was seen as an objective criterion
not only for the selection of independent variables, but
also to choose the degrees of freedom (df) for the spline
function. However, the resultant models had unjustifi-
ably high degrees of freedom associated with only
minimal deviation of the overall trend from spline
functions with a lesser degree of freedom. The phe-
nomenon was explained by Hilborn & Mangel (1997),
who described the tendency of the AIC to overfit the
model beyond the complexity necessary to describe
the relationship between the independent variable
and its partial effect when the true error distribution
was more contagious (contained higher frequencies of
small and large values) than expected for a Poisson
distribution. To avoid overfitting, the final model was
scrutinized by reducing the spline complexity (degrees
of freedom for each bicubic spline smoother; Hastie
& Tibshirani 1990). If the reduction in the degrees of
freedom for the individual splines subjectively changed
the overall partial relationship in the new model, the
original complexity of the splines was maintained;
otherwise the spline complexity was reduced and
tested again.

Independent validation and transferability. The
flexibility of splines enables GAMs to realistically por-
tray complex relationships between fish and their envi-
ronment, but this flexibility is also their weakness.
When the exact error structure is unknown, the pre-
dicted means become susceptible to the effects of
outliers. The validity of each model was tested by
confronting the model with independent data from

other estuaries (foreign data) to evaluate its predictive
utility in other systems. The expected mean abun-
dance for each of the 3 survey data sets was predicted
from the environmental conditions by all 3 models
developed in this study. The summed deviances be-
tween observed and predicted values were used to
calculate the explained deviance for all model and
estuary combinations, to give an independent measure
of the accuracy and the interestuarine transferability
of each of the models. Systematic bias in the transfer-
ability of models was examined by studying the corre-
lation between the sample predictions from each of the
3 models for a particular estuary. 

Spatial comparisons. In contrast to models, maps
are static reproductions of a state at a given time. As
such, they cannot account for or predict changes in
the spatial distribution over time, and hence they
underestimate the fluctuations in the distribution over
time. This makes them unsuitable as a management
tool, or a way of statistically comparing models, how-
ever, they represent a useful visual assessment of
the ability of the models to capture interannual and
intra-annual changes in juvenile seatrout abundance.
To examine the spatial and temporal dynamics in
years and in months over years, surfaces of the local-
ized, model-predicted abundances were interpolated
by inverse distance weighting (IDW) from all collec-
tions made in one year and all collections made in
May, July, and September in all 4 years (the start,
middle, and end of the main recruitment season,
respectively). Observed abundance surfaces for the
equivalent time periods were also interpolated, but
rather than using the IDW method for predictions,
observations were kriged (variable radius 12 nearest
neighbours) in order to take into account the sample
variance associated with observations. The resulting
surfaces were standardized by the overall surface
mean and variance in order to more easily compare
the models and observations in light of differences in
the mean abundances and coefficients of variations
for the different surfaces.

RESULTS

Three independent GAMs predicting seatrout abun-
dance were developed, each based on the data from
one of the 3 Florida estuaries. The variables chosen by
the stepwise model selection procedure for inclusion
were the same in all models and the degrees of free-
dom chosen for each spline function were the same
and their shapes similar (Figs. 2-4). The models
explained 36.64 (IR), 42.54 (CH), and 44.04% (TB) of
the deviance in the data from which they were derived
(native data) (Table 1).
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Environmental variables

The partial effects of temperature indicated an
increased abundance of seatrout as water tempera-
tures increased to 28°C for all estuaries, after which
abundances declined in the IR (Fig. 2d),
continued to increase in TB (Fig. 3d), and
remained constant in CH (Fig. 4d). The
scale (range on the y-axis) of the partial
effect, and hence its importance, was
smaller in the IR than in TB or CH. The
partial effect of salinity implied a uni-
modal relationship between salinity and
seatrout abundance in all estuaries with a
maximum of 20 ppt (IR, 20 ‰; TB, 17 ‰;
CH, 18 ‰; Figs. 2e, 3e & 4e). As for tem-
perature, the scale of the salinity effect
was smaller in the IR than in the other 2
estuaries (Figs. 2e, 3e & 4e). The partial
effect of depth was unimodal in TB and
CH, rising to a maximum near 1m in both
estuaries, whereas in the IR, it continued
to rise beyond the range of the sampled
depths. The scale of the effect of depth
was largest in the IR, smaller in TB, and
smallest in CH (Figs. 2f, 3f & 4f). The par-
tial effect of percent seagrass cover rose
from 0 to about 60% cover in all estuaries,

after which it declined in the IR and CH and remained
constant in TB. The percent-seagrass-cover partial was
comparable in size in all models (Figs. 2g, 3g & 4g). Of
the frequently sampled bottom types (sand, sand–mud
mix, mud), the sand–mud mix was the most productive
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Fig. 2. Cynoscion nebulosus. Habitat-preference model of Indian River Lagoon
juvenile spotted seatrout. y-axes represent the partial effect of the independent
variable on the x-axes. Classification variables are (a) bottom type (M = mud,
MO = mud and oysters, MX = mud–sand mix, S = sand, SO = sand and oysters or
rock) and (b) year. Continuous variables are (c) day of the year (spline[s] with
7 df) (d) temperature (spline with 2 df), (e) salinity (spline with 2 df), (f) water
depth (spline with 2 df) and (g) percent seagrass cover (spline with 3 df).
Rug plots along the x-axis indicate the distribution of samples across each 

independent variable

Table 1. Catch statistics, model performance and transferability for the
environmental dataset from each of the 3 study estuaries. Numbers in bold 

indicate characteristics for foreign models

Characteristic Indian Tampa Charlotte
River Bay Harbor

Data
Number of samples 1603 2605 1862
Sum of fish caught in all samples 1465 2556 1593
Mean catch (fish haul–1) 0.91 0.98 0.86
% occurrence 19.15 21.00 19.33
Total deviation 6606.36 10 409.35 6969.47

Model
Indian River model

Mean predictions (fish haul–1) 0.91 0.62 0.76
Residual deviance 4185.61 7479.90 5851.97
% deviance explained 36.64 28.14 15.69

Tampa Bay model
Mean predictions (fish haul–1) 1.88 0.98 1.35
Residual deviance 6051.40 5824.85 5616.98
% deviance explained 8.40 44.04 19.41

Charlotte Harbor model
Mean predictions (fish haul–1) 1.55 0.63 0.86
Residual deviance 6080.55 7932.81 4004.84
% deviance explained 7.96 23.79 42.54
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Fig. 3. Cynoscion nebulosus. Habitat-preference model of Tampa Bay 
juvenile spotted seatrout. See Fig. 2 for explanation

Fig. 4. Cynoscion nebulosus. Habitat-preference model of Charlotte Harbor 
juvenile spotted seatrout. See Fig. 2 for explanation
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bottom type according to both the IR and TB models,
whereas sand was the most productive bottom type in
CH (Figs. 2a, 3a & 4a). The effect of bottom types con-
taining rock or oysters, irrespective of the presence of
mud or sand, fluctuated widely between models.
These differences may indicate behavioural differ-
ences between populations, but it is likely that the
overall rarity of the latter 2 substrates and the differ-
ences in their prevalence in each estuary account for
the disparity. The relative importance of bottom type
was significant, but small in all models. 

Temporal variables

In all models, the partial effect of day (January 1 =
1 through December 31 = 365) implied a general sea-
sonal increase in abundance of seatrout from May
through August (Figs. 2c, 3c & 4c). The timing and
exact form of the effect however was different between
the models. The IR model indicated a plateau of great-
est abundance lasting from Day 125 to Day 250 of the
year, with abundances declining sharply outside this
period (Fig. 2c). CH and TB models both indicated
longer periods of maximum abundance, lasting from
Day 100 to Day 280 (Fig. 3c & 4c). The effect of day was
bimodal in both estuaries, with local maxima around
Day 180 and Day 230, but in CH, the second peak was
larger than the first, whereas in TB the peaks were
symmetrical. The day partial represented the most
important variable describing the abundance of sea-
trout in each model, with the greatest importance
implied for the IR model.

The interannual patterns of abundance were specific
to each estuary. IR abundances declined from 1996
to 1997, but have risen since (Fig. 2b), whereas TB
seatrout abundances continued to decline until 1998,
recovering in 1999 to levels seen in 1996 (Fig. 3b). CH
abundances increased from 1996 to 1997 but have
declined since (Fig. 4b). The partial effect of year was
small, yet significant, in all estuaries.

Spatial comparison between catches and predictions

Distinct interannual differences in the spatial dis-
tribution of seatrout in each estuary were predicted by
the models derived from their respective data (native
models), as indicated by the interpolated surfaces
produced from observed and predicted point data
(Figs. 5–7). Predictions matched not only the spatial
pattern in the relative abundance but also the actual
magnitude of mean catches (e.g., TB 1996 to 1999:
Fig. 5). Intra-annual variations in the spatial distribu-
tion of seatrout within CH (Fig. 6) and TB were also

obvious. In CH and TB, these spatial dynamics could
largely be explained by native and foreign models as
caused by monthly changes in the environmental con-
ditions, although the CH model consistently overpre-
dicted the abundance of seatrout in the lower part of
estuary (Fig. 6), due to an insufficient sampling density
associated with the changes in sampling design to
Zone D. Despite good interannual correlation between
the observed and predicted abundances in the IR,
monthly spatial comparisons were less consistent. The
IR model demonstrated poor predictive ability, particu-
larly in the Banana River region (Fig. 7a,b), indicating
that there was some spatially systematic bias not
explained by the environmental conditions included in
the model. This part of the estuary is a wildlife refuge,
and the salinity regime is strongly influenced by the
presence of the Canaveral locks in this area resulting
in unusual salinity fluctuations, so that the discrepan-
cies are likely a reflection of the unusual conditions
experienced in the area.

Validation and transferability

Seatrout abundances predicted for each of the estu-
aries by their respective native model were signifi-
cantly correlated (α = 0.05) with abundances predicted
for the same samples by foreign models (Fig. 8,
Table 2). Although the IR model faired worst in
explaining deviance in the native data, it transferred
best between estuaries, explaining 28.14 and 15.69%
of the devia nce in the TB and CH data, respectively
(Table 1). The CH model only accounted for 7.96% of
the deviance in the IR data and 23.79% of the deviance
in the TB data. The TB model produced the worst fit
for foreign data (IR data 8.40%; CH data 19.41%), but
explained the largest amount of deviance of any model
for its native data (44.04%).

Comparisons of the standardized kriged model pre-
dictions by year and month showed spatially consistent
distribution patterns between models (Fig. 7). The
model prediction surfaces, although not dissimilar to
surfaces derived from observed data from each estu-
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Table 2. Pearson’s correlation coefficients for all combinations
of model to model comparisons of abundance predictions for
each sample in each of the 3 datasets from the 3 Florida estu-
aries. IR: Indian River; TB: Tampa Bay; CH: Charlotte Harbor. 

All correlations were significant at the α = 0.05 level

IR-data TB-data CH-data

IR-model × CH-model 0.515 0.589 0.564
IR-model × TB-model 0.674 0.767 0.751
TB-model × CH-model 0.609 0.700 0.608
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Fig. 5. Cynoscion nebulosus. Tampa
Bay standardized relative abundance
surfaces interpolated from predicted
(inverse distance weighting) and ob-
served (kriged) annual point sample
abundances and subsequently stan-
dardized by mean and variance, indi-
cating interannual differences in the
distribution accounted for by the TB
model: (a) observed 1996, (b) pre-
dicted 1996, (c) observed 1997, (d) pre-
dicted 1997, (e) observed 1998, (f) pre-
dicted 1998, (g) observed 1999 and 

(h) predicted 1999
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Fig. 6. Cynoscion nebulosus. Charlotte Harbor
standardized relative abundance surfaces inter-
polated from predicted (inverse distance
weighting) and observed (kriged) monthly point
sample abundances and subsequently stan-
dardized by mean and variance, indicating
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priate interpolation in this area
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Fig. 7. Cynoscion nebulosus. Indian River Lagoon stan-
dardized relative abundance surfaces interpolated from
the IR (Indian River), TB (Tampa Bay) and CH (Charlotte
Harbor) seatrout abundance model predictions (inverse
distance weighting) and observed (kriged) 1996 point
sample abundances and subsequently standardized by
mean and variance. (a) IR observed abundances, (b) IR
model predictions, (c) TB model predictions and (d) CH 
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ary, usually resembled each other more than they
resembled the observed data. As with the native
model, the foreign models were inconsistent predictors
of the spatial distribution of seatrout in the Banana
River region of the IR (Fig. 7c,d), again confirming the
unusual status of this area.

DISCUSSION

Models of seatrout habitat preferences indepen-
dently developed for 3 Florida populations showed that
juvenile spotted seatrout responded similarly to sal-
inity, temperature, depth, and percent seagrass cover.
Habitat preferences were alike for all 3 estuary
populations and were similar to documented habitat
preferences of this species. The GAMs described the
relationships between species abundance and envi-
ronment and supplied a robust measure of the inter-
annual variation in abundance. However, based on
published information of the biology and detailed
examination of the sampling designs used in this study,
it was clear that the models were susceptible to mis-
interpretation when independent variables were cor-
related. The predicted spatial distribution of juveniles
based on the spatial configuration of habitat character-
istics in the estuaries closely matched the observed
distribution of catches. What follows is a detailed
review of biological inferences from the models and
how the results compare with previously reported
findings for this species. This review is critical in order
to aid in model interpretation, assess transferability,
and judge model utility in conserving and managing
fish stocks.

Day was a prominent descriptor of seatrout abun-
dance in all models, despite the protracted spawning
period reported by Moody (1950), Tucker & Faulkner
(1987), Peebles & Tolley (1988), and McMichael &
Peters (1989). The CH and TB models showed a
bimodal relationship between day and abundance,
which was similar to reports of temporal fluctuations
in juvenile abundance in Florida by Rutherford et
al. (1989) and McMichael & Peters (1989). Seatrout
spawning intensity was reported to be similarly
bimodal elsewhere along the Gulf Coast (Hein &
Shepard 1979). Presumably, the bimodality in juvenile
abundance within a year reflected temporal variations
in reproductive activity (Nelson & Leffler 2001). In
contrast, the IR model indicated a unimodal seasonal
pattern of juvenile abundance, concordant with uni-
modal reproductive patterns reported from the Indian
River Lagoon (Crabtree & Adams 1998). The impor-
tance of the intra-annual variation in larval supply,
whether caused by variation in reproductive effort or
differential survival of larvae, greatly limits the abun-
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dance of juveniles, which was reflected in the primary
importance of day in all models.

The dominance of day in the model was diminished
in CH and TB models that were associated with con-
current increased importance of temperature. In addi-
tion to the quantitative differences in the importance of
temperature, the relationship between temperature
and abundance, at first glance, appeared to differ
between populations. The optimum temperature for
the species is around 28°C (Wohlschlag & Wakeman
1978), consistent with the predicted abundance in-
creases up to this temperature in all models. Higher
temperatures were reported to adversely affect the
physiology of this species, leading to stress and even-
tually death (Vetter 1977), so that declining abun-
dances would be expected at such temperatures. The
anticipated decline in abundance was only observed in
the IR model, with unrealistic increases in abundance
predicted by the CH and TB models. The differences in
the importance and shape of the temperature partial
between the west coast estuaries and the IR can be
explained by differences in the degree of correlation
between temperature and day within each estuary.
The large latitudinal expanse and shallow depth of the
IR (Smith 1987) leads to a greater temporal variability
in temperatures, resulting in less of a correlation
between temperature and the day of the year in the IR
than in the other bay systems. Therefore, the IR model
can correctly attribute the deviance to day, while the
CH and TB models associate some of the deviance due
to day with the temperature effect. The predicted high
abundances at high temperatures are scaled back by
an excessive dip in the day effect during the summer
period when temperatures are above 28°C. Multi-
collinearity between day and temperature, rather than
differences in the biology of the populations, was the
most likely cause for the difference in the day and
temperature effect, particularly given the evidence of
fatalities at high temperatures.

Percent seagrass cover was positively correlated to
seatrout abundance in all models, second only to day
in influence on seatrout distribution after accounting
for the collinearity between temperature and day. The
prominence attributed to seagrass cover in these mod-
els was consistent with reports by McMichael & Peters
(1989), Chester & Thayer (1990), and Gilmore (1977).
Despite the predicted high-ranking importance of sea-
grass, juvenile seatrout have also been frequently
encountered in areas devoid of seagrass, usually in
protected backwaters and tributaries over muddy bot-
tom (Peebles & Tolley 1988, Peebles et al. 1991, Llansó
et al. 1998). Even estuaries apparently lacking sea-
grass altogether have sustained viable populations of
seatrout (Darnell 1958). This presents evidence that
seagrass itself is not a facultative requirement of

seatrout but rather that percent seagrass cover served
as an indirect measure of the ability to find food (Orth
et al. 1984) and avoid predators (Hindell et al. 2000)
because of habitat complexity. This function may be
facilitated in other estuaries by shallow backwaters
(Ruiz et al. 1993, Halpin 2000, Paterson & Whitfield
2000). Quantitative measures of food availability and
protection from predators offered by different habitats
would be necessary in order to accurately predict the
distribution of seatrout in estuaries lacking seagrass.

All 3 models largely concur on the shape and the
importance of the salinity partial, indicating maximal
seatrout abundances at 20 ppt. This value is also close
to the physiological optimum of this species (Wohl-
schlag & Wakeman 1978). The divergence of the IR
model from the other estuaries at low salinities results
from the lack of sampling in the suboptimal riverine
habitats (Peebles et al. 1991) in the IR that are fre-
quently sampled in TB and CH. The few IR samples
taken in low-salinity environments are more represen-
tative of short-term conditions incidental to sampling
and not true long-term oligohaline conditions. Conse-
quently, the IR model overpredicts the abundance of
seatrout in mesohaline environments when compared
to the other models. In contrast, the CH and TB models
correctly predicted few seatrout at low salinities, but
unfortunately, the low-salinity river sites in these estu-
aries also yielded samples from the deepest water
depths because of the boat-set technique employed
solely in this habitat. Inevitably, this led to the low
abundance associated with low salinities also being
associated with increasing depth in the west coast
models. In contrast, the depth partial in the IR, where
rivers were not sampled, continued to increase for the
entire length of the depth gradient as reported else-
where (Rutherford et al. 1989). It is likely that the
observed differences between models in the salinity
and depth effects were again a result of sampling
design induced multicollinearity and not behavioural
divergence of the populations. The high degree of cor-
relation of salinity and depth in the CH and TB data,
the ecological evidence, and the transferability per-
formance of the IR model all attested to the greater
plausibility of the latter model and demonstrated that
multicollinearity is hampering the effectiveness of the
CH and TB models when predicting abundances in the
IR data.

Transferability

Transferability, in this case, is the ability of a model
derived from data in one estuary to predict the abun-
dance of seatrout in a second estuary based solely on
measured environmental conditions in the latter estu-
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ary. The developed models were able to achieve
reasonable transferability when confronted with non-
native environmental data, explaining significant por-
tions of the total deviance in the data from other
estuaries. Observed abundances were significantly
correlated to predicted abundances for all foreign
models, although the relationship was temporally
biased and the overall relationship between model
predictions always differed from the expected one-to-
one relationship.

The 3 models implied 3 distinct estuary-specific
year effects, indicating 3 independent populations,
each with its own specific population dynamics. This
type of information gleaned from these models has
important implications for fisheries managers, who
must ultimately consider such effects in producing
coast wide stock assessments in order not to allow
localized populations to collapse. It might be argued
that the sampling-design changes implemented at
the end of 1997 invalidate the use of the year effect
as a measure representative of estuarine recruitment
dynamics. The year effect was smallest in TB, the
estuary that has had the most modest sampling design
changes, and was largest in the IR, the estuary with
the most significant design changes. In CH only small
changes in abundance were observed across the sam-
pling design transition—1997 and 1998 data were
more similar to each other than to the 1996 and 1999
data. Consequently, differences could not be attrib-
uted solely to changes in the sampling design, and
abundances must at least in part be controlled by dif-
ferences in the population dynamics between estuar-
ies. The unique interannual trends meant that models
were not useful in predicting the number of seatrout
found in an area of a foreign estuary, but could be an
invaluable tool in grading the suitability of habitats in
a foreign estuary.

The multicollinearity unique to the sampling designs
within each estuary represented a hindrance to trans-
ferability, as indicated by the better ability of the IR
model—the model with the least correlation among
independent variables—to explain the most deviance
in foreign data sets. Presence of multicollinearity in
itself does not seriously impede model predictability,
provided that it is constant over the period and area of
interest (Neter et al. 1996). In the absence of sampling-
design changes, we can assume this is the case within
an estuary but certainly not between estuaries, as
shown here by the poorer transfer performance of the
CH and TB models. It is important to consider the
sampling design in light of the species’ ecology during
the development phase of these complex models and
to remember that changes to the design will potentially
invalidate the use of the indices of abundance across
such changes.

Implications for conservation management

In order to protect and conserve species, conserva-
tion managers need information on the resource
requirements of all life stages of a species, especially
the vulnerable juvenile stages. The models described
here allow quantitative evaluation of the important
habitats of juvenile seatrout for their native estuaries
based on actual environmental data. All models clearly
indicated areas of high seatrout abundance (high suit-
ability) as well as areas of low seatrout abundance (low
suitability) in non-native estuaries. The suitability of
specific estuarine regions was consistent between all
models and all estuaries, despite considerable dynam-
ics in space and time. Because the location of optimum
conditions (e.g., nursery habitat) varies dynamically in
space and time, protection of a specific locale will
unlikely suffice to ensure the survival of the species.
GAMs can clearly aid conservation managers in re-
viewing proposed changes to the environment and
deciding on options with the least deleterious effects
to populations.

For conservation managers it is important to identify
the areas of most suitable habitat within an estuary
lacking fisheries-independent sampling data. Despite
the high residual deviance in these models, it is clear
from the maps presented in this paper that, when envi-
ronmental conditions are sampled in suitable density
in space and time, all models were capable of identify-
ing the areas of most suitable habitat in native and for-
eign estuaries. This justifies the use of low-explanatory-
power models by conservation managers. Preference
should always be given to those models with least cor-
relation of the independent variables in order to avoid
multicollinearity issues during transfer of models, even
if it is thought to be at the expense of explanatory
power in native estuaries.

Although transferable on a relative scale, the models
discussed here were not transferable on the scale of
absolute abundances caused by the significant contri-
bution of the population-specific year effect. There-
fore, the current models would not be capable of
assessing the absolute number of fish affected by envi-
ronmental alterations or disasters in foreign estuaries.
But this might be different for species with a well
mixed population or one that recruits from a single-
ocean-spawned pool of larval recruits.

Implications for fisheries management

Fisheries managers are interested in obtaining infor-
mation on the abundance of juveniles before they
enter the fishery in order to predict future stock sizes
and implement management changes early. In the
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past, the most important factor in determining the
size of recruitment was thought to be the size of the
spawning stock as reflected by the spawning stock bio-
mass (SSB) benchmark currently used for Florida’s
spotted seatrout stocks. It has, however, become in-
creasingly clear that recruitment can only be poorly
linked to SSB, particularly for species restricted to very
specific juvenile habitats, because of the variance-
dampening effect enforced by its limited availability
(Iles & Beverton 2000, van der Veer et al. 2000). A poor
spawner–recruit relationship has been observed for
Florida spotted seatrout. Therefore, it is expected that
the variance-generating function of the reproductive
part of the life cycle was overshadowed by the vari-
ance dampening function of the other life stages.
Assessment of habitat quality and availability should
produce better estimates of recruitment than informa-
tion solely on the spawning stock size. The year effect
described by the models represents a robust measure
of native juvenile seatrout abundance or future recruit-
ment, assuming a consistent sampling design, stable
environmental conditions, and constant niche breadth.
Interannual fluctuations were estuary specific, indi-
cating the different seatrout populations are less well
mixed than assumed by current stock assessments, and
quantitative prediction of recruitment for foreign estu-
aries is not possible from these models. In contrast to
conservation managers, fisheries managers using the
models purely in the native estuaries would place
heavier emphasis on the explanatory power of the
models, rather than their transferability.

Conclusions

The prohibitive costs of intense fisheries-indepen-
dent surveys has led conservation managers to look for
models that can be used to predict fish abundances in
systems lacking suitable surveys (Rubec et al. 1999,
Brown et al. 2000). This analysis suggests considerable
savings can be made by the development of environ-
mentally driven models of species distribution based
on modern regression techniques. Generalized addi-
tive models are also sure to be invaluable tools for fish-
eries managers in determining useful recruitment
indices for implementation in stock assessments pro-
vided that the time series are sufficiently long and
uninterrupted by large-scale changes in the sampling
design.

The ability of generalized additive models to statisti-
cally deal with non-normal data and weighting of dif-
ferent environmental variables as well as the flexibility
of splines used to more sensibly model the relationship
between abundance and environment means that in
data-rich situations these models provide a temporally

and biologically more accurate picture of seatrout dis-
tributions than habitat-suitability models (Rubec et al.
1999). However, the susceptibility of the models to
multicollinearity issues means special attention needs
to be paid to the sampling design under consideration
of the biological and ecological characteristics of a spe-
cies, in order to produce robust distribution models.
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