
MARINE ECOLOGY PROGRESS SERIES
Mar Ecol Prog Ser

Vol. 265: 297–302, 2003 Published December 31

INTRODUCTION

The study of marine systems has a great deal to con-
tribute to the burgeoning field of macroecology, which
seeks understanding of abundance and distribution at
large spatial and temporal scales (Brown & Maurer
1989). Despite a long history of investigation into the
patterns of organisms’ distribution (e.g. Thorsen 1957,
Sanders 1968, Pearson et al. 1986, Rex et al. 1993), and
the elucidation of macroecological patterns through
studies in other disciplines such as fisheries science
(Swain & Sinclair 1994), marine ecologists have only
recently (see Gaston 1996a) begun to apply data
explicitly addressing questions in macroecology (Cor-
nell & Karlson 1996, 2000, Brazeiro 1999, Fernandez et
al. 2000, Roy et al. 2000, Findley & Findley 2001, Gas-
ton & Spicer 2001, Gray 2001, Defeo & Cardoso 2002).
A search of the term ‘macroecology’, within the titles,
keywords and abstracts in the Science Citation Index
of primary research literature produced 138 articles of

which 53 had publication dates of 2002 or later; only 8
of these articles contained the term ‘marine’, of which
3 have been published since the start of 2002. Interest
in marine macroecology is however gathering pace;
the ‘Workshop on Marine Macroecology and Conser-
vation’ held in Chile in 2000 (Wieters 2001), and the
2002 British Ecological Society symposium ‘Macroecol-
ogy: reconciling divergent perspectives on large-scale
ecological processes’ (see Blackburn & Gaston 2003)
both highlighted the need for macroecological studies
in marine systems.

Large-scale, multi-species approaches to ecology
offer both a new way of predicting the responses of
ecosystems to the challenges of climate change and
environmental degradation, and also provide a ‘top
down’ route to formulating hypotheses about the
mechanisms underlying the distribution and abun-
dance of organisms (Gaston & Blackburn 1999, Lawton
1999). Marine examples are important missing pieces
of the macroecological jigsaw because the marine
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environment imposes a contrasting set of constraints
upon life history, physiology, energetics and behaviour
to those in terrestrial and freshwater systems. Differ-
ences between patterns in marine and terrestrial sys-
tems may allow for development of new hypotheses to
explain mechanisms underlying large-scale distribu-
tion patterns, whilst existing hypotheses developed
from analyses of terrestrial datasets can be effectively
tested using marine data.

One macroecological pattern from terrestrial exam-
ples that is well documented is the positive interspe-
cific relationship between organisms’ abundance and
their degree of site occupancy or range size (Gaston
1996a,b, Holt et al. 1997, Gaston 1999, Gaston et al.
2000). Gaston (1996a) proposes that this pattern is so
ubiquitous that it constitutes one of the broad statistical
generalisations upon which the study of ecology
should be founded. Despite this, such relationships
between either species total population size or mean
density within sites, and the extent of range size or
proportion of potential sites occupied (‘occupancy’),
have rarely been explicitly documented in marine sys-
tems, however. Russel & Lindberg (1988) reported a
significant positive relationship between abundance
and extent of occurrence in a partial study of proso-
branch molluscs of the eastern temperate Pacific, and
Macpherson (1989) reported a weak positive relation-
ship for benthic fish off the coast of Namibia.

The absence of a body of literature supporting the
presence of patterns for marine organisms could be due
to a lack of focus upon such issues amongst marine
ecologists, but it could also be due to a general lack of
such patterns. De Troch et al. (2002) presented results
of studies of harpacticoid copepods in tropical seagrass
beds that indicate a possible difference between
marine and terrestrial systems with respect to the distri-
bution of range sizes. Such differences are also indi-
cated by studies of rocky intertidal assemblages in
which narrow ranges were uncommon in contrast with
the situation in terrestrial systems (Rivadeneira et al.
2002). If limits to the extent of occupancy in marine sys-
tems are different to those in the terrestrial environ-
ment, a strong abundance–occupancy pattern may not
be apparent. However, other reported studies fail to
support the case for a marine/terrestrial difference;
studies of sandy beaches have found patterns that are
in accordance with those from terrestrial habitats, with
species of greater abundance occupying a greater
number of sandy beach sites (Wieters 2001). There is
clearly a need for further studies of marine assemblages
to determine whether the ‘general laws’ (Lawton 1999)
that are tentatively being applied to terrestrial and
freshwater systems can be extended to marine habitats.

Here, we examine an extensive dataset describing
the in- and epi-macrofaunal assemblages of estuaries

across the mainland of Great Britain, for patterns link-
ing both total population size and mean abundance in
sites to the extent of occupancy of the organisms rep-
resented by the proportion of sites occupied by the
species. Estuaries have long been regarded as classic
examples of ‘closed’ ecosystems with limited dispersal
potential for many of the taxa (Bilton et al. 2002). Such
a scenario presents an interesting opportunity to test
the generality of abundance–occupancy patterns, and
in particular, mechanisms based upon population
dynamics of the organisms. Many of the estuarine
organisms in the UK fall broadly into 2 categories in
terms of reproductive strategy: those with low inherent
dispersal including brood developers (peracarid crus-
taceans) and frequent asexual reproducers (oligo-
chaetes), and those with greater inherent dispersal
characteristics, particularly lecithotrophic/planktonic
dispersal (many decapods, most polychaetes and
bivalves). Within-site population dynamics (e.g. rela-
tive importance of larval retention vs. immigration/
emigration of dispersive stages) are likely to differ in
these 2 groups (Woolf 1973, Bilton et al. 2002). We
therefore also seek similarities and differences in the
nature of the abundance–occupancy relationship be-
tween taxonomic groups with different reproduc-
tive/dispersal biologies, in order to investigate the role
that these parameters might have in determining any
patterns.

MATERIALS AND METHODS

Data are derived from the Marine Nature Conserva-
tion Review (MNCR) of the UK (Macdonald & Mills
1996); the methodologies employed whilst undertak-
ing this review are described in detail by Hiscock
(1996). Over 250 of the sites surveyed in this review
include quantitative sampling of estuarine macro-
infauna and epifauna. We selected data from sites that
met a set of arbitrary a priori criteria; they had variable
salinity in the range of 18 to 40 ppt, with sediment com-
prising a minimum of 40% mud/clay fraction, and a
maximum of 10% of large sediment fraction. These
prescriptions ensured that sites included were subjec-
tively classified as ‘estuaries’ and precluded sites des-
ignated as ‘muddy beaches’. All the sites were sam-
pled with multiple-sediment cores across the full tidal
range of the estuary and samples were sieved through
a 0.5 mm mesh. We calculated the mean abundance
(organisms m–2) of each species across all samples from
the site. We then allocated sites to 1 km grid squares
based on the British Ordnance Survey system, and
eliminated any 1 km squares that contained fewer than
3 sampled sites. We reviewed the species list for the
sites for synonymy, and any taxonomically intractable
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species complexes or sister taxa were lumped together.
We finally used the mean density of organisms in each
site to calculate mean abundance for each species in
each 1 km grid square.

Hanski & Gyllenberg (1997) model the interspecific
abundance–occupancy relationship at macroecologi-
cal scales as:

log[ρ/(1 – ρ)]  =  α + β log µ’ (1)

where ρ is proportion of occupied sites, µ’ is mean den-
sity of a species across all occupied sites, and α and β
are the regression constant and coefficient, respec-
tively. This form has proven more rigorous than other
ways of representing the relationship, so we applied
the following log-log regression to our data. First we
regressed the log of occupancy against log of mean
abundance at 1 km resolution for the entire dataset.
We then tested for the abundance–occupancy relation-
ship separately in the 4 main taxonomic groups pre-
sent: oligochaetes, polychaetes, bivalves and crus-
taceans. Two species of decapods were excluded from
the analysis of the pattern in Crustacea as they are
known to disperse planktonically, and 4 species of
polychaetes in the families Cirratulidae and Spionidae
were similarly excluded as they are known to demon-
strate either epitoky or asexual reproduction (Barnes
1994).

We routinely tested both our data and the residuals
of each regression for normality using Kolmogorov-
Smirnov (K-S) tests. We then tested for a significant
interaction between the taxonomic group and log
abundance in determining occupancy using an analy-
sis of covariance in the ANOVA/MANOVA module of

STATISTICA version 5.5 (StatSoft), and used the ‘par-
allelism test’ in the same module to test the assumption
of homogeneity of the slopes of the regressions for the
4 taxonomic groups.

RESULTS

The database yielded data for 143, 1-km grid
squares over 30 estuary systems; 95 reliably identified
taxa were included in analyses, of these 85 were mem-
bers of the 4 most dominant taxonomic groups. All
regressions tested (Figs. 1 & 2) gave significant rela-
tionships between log abundance and log occupancy
(Table 1); all data and regression residuals were nor-
mally distributed (K-S tests Dmax < 0.11, p > 0.05 in all
cases). ANCOVA indicated that the slopes of the
regression lines for the 4 groups did not violate the
assumption of parallelism, and that there were no sig-
nificant differences between occupancy levels in the
4 groups (Table 2).

DISCUSSION

Macroecological approaches rely on taking ‘a suffi-
ciently distant view that idiosyncratic details disap-
pear, and only the important generalities remain’ (Gas-
ton & Blackburn 2000), an approach first advocated by
MacArthur (1972). This approach can be criticised,

299

Fig. 1. Linear regression of log occupancy (see ‘Materials and
methods’ for details) against log abundance (mean density
per m2 in occupied sites) for 95 estuarine taxa sampled across

143, 1-km grid squares distributed throughout the UK

Fig. 2. Separate linear regressions of log occupancy (see
‘Materials and methods’ for details and Table 1 for regression
coefficients) against log abundance (mean density per m2 in
occupied sites) for 4 major taxonomic groups of estuarine
macroinvertebrates sampled across 143, 1-km grid squares
distributed throughout the UK (crustaceans and polychaetes
with atypical reproductive-dispersal traits excluded from the

models and represented by encircled, closed symbols)
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however, and all of the commonly levelled criticisms
may apply to our study (see Blackburn & Gaston 1998).
‘Noise’ in the data derived, for example, from differ-
ences in the way staff performed individual sampling
exercises, and the problems of the using Model I
regression where there is error variance in the X vari-
able, are unlikely to pose significant problems for the
analyses presented. Missing species which occur at the
limit of the sampled size range, or at extremely low
abundances where they could have been overlooked,
are likely to exist. However, these will be particularly
those fragile organisms that are lost in the separation
of organisms from the sediment. We believe that the
influence of such taxa is unlikely to significantly
change the broad patterns elucidated. Patterns of spa-
tial distribution of the fauna may also produce artefac-
tual abundance–occupancy relationships (Blackburn
& Gaston 1998); however, we examined our data for
significant spatial autocorrelation and found no evi-
dence of such effects.

The results of our analyses indicate that abun-
dance–occupancy relationships in the UK estuarine
macrofauna are of comparable strength and the fit of
the data to the estimated regression lines are broadly
similar to published results for terrestrial and fresh-
water organisms.

Gaston (1996a) provides a summary of these rela-
tionships for over 90 studies, of which 14 had no signif-
icant slope, and only 4 had negative slope. The signifi-
cant relationships in Gaston’s table have r2 values
ranging from 0.075 to 0.756, with the numbers of taxa

involved ranging from 12 to 461; the values we report
here are at the high end of this scale, notwithstanding
the influence of sample size upon the statistic. There is
also no indication from this that the spread of abun-
dance or occurrence in the UK estuarine macrofauna
differs from that in other systems such as those
described by Gaston (1996a), as suggested by other
studies (De Troch et al. 2001). Moreover our analysis
indicates consistent patterns of abundance–occupancy
amongst a variety of phylogenetic groups with differ-
ing reproductive and/or dispersal strategies.

Gaston & Blackburn (2000) propose 9 potential
mechanisms underlying the positive relationship
between species abundance and range size (see Gas-
ton & Blackburn 2000 for a review). Amongst these
metapopulation dynamics and aspects of species’
physiological and ecological traits such as reproduc-
tive and dispersive modes appear to receive little sup-
port from our data. The fact that groups with funda-
mentally different reproductive/dispersal strategies
differ only slightly in the strength of the abun-
dance–occupancy relationship indicates that such
variables might only moderate, rather than generate,
the abundance–occupancy relationship amongst the
estuarine macrofauna.

The remaining hypotheses explaining the positive
abundance–occupancy relationship relate to the fun-
damental biology of the organisms such as their niche
breadth, resource utilization and availability (Brown
1984, Gaston & Spicer 2001), and to their population
dynamics (Hanski et al. 1993) and vital rates (Holt et al.
1997). Resource availability is unlikely to be of signifi-
cance in the estuarine macrofauna; Barnes (1994)
states that most experimental studies in brackish
waters failed to find much evidence of competition for
resources, either within or between species. Niche
breadth estimation for many of the species involved,
meanwhile, is not possible, as there are too few data
available to perform the calculations for many of the
species. However, factors which are likely to be impor-
tant in determining the suitability of sites for colonisa-
tion such as the salinity range of the sites (Attrill 2002)
and particle size characteristics of the sites (e.g.
Alexander et al. 1993) might warrant further investi-
gation.

There are several important implications of the posi-
tive abundance–occupancy relationships we have
demonstrated. Gaston (1999) has reviewed these, and
highlights 4 main areas in which the generality of
these patterns might be significant. These comprise
(1) the potential use of presence-absence patterns as
a surrogate for species abundance in biodiversity
studies, (2) their use in predicting the implications of
harvesting for long-term survival of species’ local pop-
ulations, (3) the use of the strength of the abun-
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n r2 Slope p-level

All taxa 95 0.638 0.583 <0.001
Crustaceans 22 0.548 0.869 <0.001
Bivalves 12 0.687 0.664 <0.001
Polychaetes 38 0.586 0.441 <0.001
Oligochaetes 7 0.750 0.724 <0.012

Table 1. Results of linear regressions of log occupancy against 
log abundance

df SS MS F p-level

Parallelism
Taxonomic group 3 0.857 0.286 1.459 0.233
Error 71 13.888 0.196

Difference
Taxonomic group 3 0.517 0.172 0.865 0.463
Error 74 14.745 0.199

Table 2. Results of ANCOVA tests of parallelism of regression
slopes for the 4 taxonomic groups, and effects of taxonomic 

group upon occupancy levels
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dance–occupancy relationship in predicting the effec-
tiveness of maintaining locally high abundances of
species in conservation, and (4) prediction of the
spread of invasive species depending upon the extent
of their sites of invasion, or their densities at invaded
sites. Further studies of patterns of abundance and
occupancy, and revisitation of existing data with the
explicit intent of investigating these patterns, are
required.

Our data show consistent, comparatively strong
abundance–occupancy relationships across 4 taxo-
nomic groups in 3 different phyla; such scope is rare in
previous macroecological studies. The comparison of
groups we have attempted here provides both evi-
dence for the generality of the patterns, and a sugges-
tion that the population biology of the taxa may play a
role only in moderating the strength of the relation-
ship. More rigorous testing of this tentative hypothesis
is necessary however, along with further studies to cor-
roborate or refute our findings and to further progress
in marine macroecology in general.
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