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INTRODUCTION

On the deep-sea floor, tests of agglutinating xeno-
phyophores are often the dominating biogenic struc-
ture present at bathyal and abyssal depths below
500 m. They range from a few millimeters to 25 cm in
length. Xenophyophores (rhizopod protozoans) were
recently recognized as belonging to the foraminifera
group (Pawlowski et al. 2002). An extensive accumu-
lation of waste pellets (stercomes), packed together in
strings covered by a thin organic membrane, is con-
tained inside the tubes of the agglutinated test com-
posed of foreign particles. The protoplasm of xeno-
phyphores is a multinucleate plasmodium enclosed as
strands within a branching organic tube. Many of the
descriptions and theories on xenophyophores were
initiated by the pioneering works of Tendal (Tendal

1972, 1979, 1994, 1996, Tendal & Gooday 1981, Ten-
dal et al. 1982).

Despite the presumed ecological importance of these
agglutinated xenophyophores in bathyal and abyssal
environments, little information is available regarding
their growth (Gooday et al. 1993), their life cycle, and
their nutrition habits, and they are not available in cul-
tures. Initially, xenophyophores were described as
suspension feeders (Tendal 1972) or surface-deposit
feeders. Traces of pseudopode movements on surface
sediments indicate that they feed by active uptake
(Gooday et al. 1993). In addition, their reticulated tests
act as elaborate particle traps, often oriented parallel to
the flow, the shapes and sizes of reticulations inducing
a further entrainment of water, in order to enhance the
deposition of particles (Levin & Thomas 1988). Xeno-
phyophores generally thrive in regions where the flux
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of nutritive particles is high. Similar to other benthic
foraminifera (Gooday 1996, Levin et al. 1999), xeno-
phyophores can rapidly process fresh organic matter
from seasonal inputs of phytodetritus, well docu-
mented in the northeastern Atlantic (Billett et al. 1983,
Méjanelle et al. 1995). Xenophyophores are presumed
to consume sedimentary particles by extracellular
digestion in lacunae, which leads to an accumulation
of stercomes (Tendal 1979), or by the direct absorption
of dissolved organic matter (Sibuet 1991, Levin &
Gooday 1992, Riemann et al. 1993).

Compared with those from the Pacific, xeno-
phyophore tests from the North Atlantic seem to be
particularly fragile (Tendal & Gooday 1981, Gooday &
Tendal 1988, Gooday 1991, 1996). Though visible in
bottom photographs taken during the sample collec-
tion, they are totally disrupted by conventional sam-
pling methods (Tendal & Gooday 1981, Gooday & Ten-
dal 1988, Gooday 1991). Therefore, these animals are
easily overlooked or lost in the sampling process, in
spite of their significant presence in the deep-sea. In
the framework of the France-JGOFS programme, dur-
ing the EUMELI 2 cruise, a large photographic survey
was performed using the autonomous submersible
Epaulard to observe the spatial distribution of the
epibenthic fauna. At an abyssal mesotrophic site, a
high density of xenophyophores was observed (ca.
3 m–2; Sibuet et al. 1993). A sole species was present:
Syringammina sp. (Cosson et al. 1997), described in
Tendal (1972) and Gooday (1996) (Fig. 1). In addition,
Richardson (2001) collected xenophyophores at the
same site, Cape Verde Plateau (18° 28’ N, 21° 02’ W),
and identified them as Syringammina corbicula.

Until now, the lipid characterization of xenophyo-
phores has not been undertaken, but recently that of
an agglutinated foraminiferan Bathysiphon capillare
was published (Gooday et al. 2002). During the

EUMELI 2 cruise, a limited number of intact individu-
als were recovered, which gave us the opportunity to
study their lipids. The lipid composition of Syringam-
mina corbicula was compared with that of surficial
sediments from the same environment, but devoid of
these protists, in order to gain more information on
these poorly understood protozoans. Various lipid
classes are present in animals. Triacylglycerols (TAG)
and wax esters (WE) are storage lipids whose con-
stituent fatty acids partly originate from their diet.
Consequently, fatty acid composition of these lipid
classes provides information on the diet of xeno-
phyophores. Additionally, phospholipids (important
constituents of membranes) contain the fatty acid bio-
markers for living organisms and can give an insight
into specific biomarkers of the study animals.

MATERIALS AND METHODS

Sampling site and sample processing. The EUMELI
JGOFS programme sampled 3 sites of contrasting
trophic regimes: eutrophic (EU), mesotrophic (ME) and
oligotrophic (LI) sites in the tropical northeastern
Atlantic. Sediments at the 3 sites were collected during
January and February 1991, using RV ‘Atalante’.
Xenophyophores were only found at the mesotrophic
site (18° N, 21° W). Intact animals were collected in 3
different box cores, using a modified 50 × 50 cm
USNEL box corer (Hessler & Jumars 1974), equipped
with large top-flaps to minimize the bow-wave effect.
Xenophyophores were collected for lipid analyses at
the surface of the box cores (Table 1) by sliding a stain-
less steel spatula underneath and combined for analy-
sis. For comparison, a mesotrophic sediment free of
xenophyophores was collected from a core at the same
site (Table 1) using a SMBA multicorer (Barnett et al.
1984) with 12 tubes of 6 cm inner diameter that pro-
vided cores with an undisturbed sediment/water inter-
face (Legeleux et al. 1994). For this study, the upper
sediment (0 to 0.5 cm) of the KTB6 core was chosen for
analyses. On board, cores were immediately sliced and
the samples were stored frozen at –70°C until return to
the laboratory. Then, xenophyophores and sediments
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Fig. 1. Syringammina corbicula (6 cm in diameter) on the
Cape Verde Plateau

Table 1. Position of the samples analysed. Sed: reference 
sediment devoid of xenophyophores; xeno: xenophyophores

Sample Core Latitude Longitude Depth (m)

Sed KTB 6 18° 31.96’ N 21° 03.12’ W 3121
Xeno KGS 22 18° 29.09’ N 21° 03.18’ W 3112

KGS 29 18° 34.06’ N 21° 58.57’ W 3134
KGS 32 19° 29.33’ N 21° 05.33’ W 3080
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were freeze dried. Freeze drying destroyed the struc-
ture of the organisms, so that entire tests were treated
as a whole. The 2 samples selected for analysis — com-
bined xenophyophores and the upper sediment devoid
of xenophyophores — were treated identically: homog-
enized by short-term grinding, stored under argon at
<20°C and analysed. Additional specimens of xeno-
phyophores, collected at the same sites, were fixed in
5% formalin for microscopic observation. Unfortu-
nately, it was impossibsle to perform any detailed
cytological work because they were totally destroyed
during transport.

Analysis of lipid classes. The analytical procedure
used for the lipid extraction and analysis using a
Iatroscan MK-5 analyser (thin layer chromatography/
flame ionization detector; TLC/FID) is described in
detail by Laureillard et al. (1997) and Pinturier-Geiss et
al. (2001).

Analysis of fatty acids and sterols. TLC: An aliquot
of the total lipid extract was separated into 9 subfrac-
tions for molecular characterization of fatty acids of the
different lipid classes using TLC. This was performed
on 20 × 20 cm 150 A silica gel plates (Whatman). The
plates were washed twice with methanol to eliminate
impurities and dried in precombusted aluminium foil
in a fume hood. Several mixtures of solvents were used
as mobile phases to separate successive lipid classes
according to their respective polarities (Table 2).
Recoveries for lipid classes were ca. 80 to 90%.

Derivatization and gas chromatography (GC)
analysis: The lipid extracts were treated as described
in Laureillard et al. (1997). Briefly, the acyl lipid classes
were transesterified, after addition of an internal stan-
dard: deuterated tricosanoic acid (C22D45COOH). Fatty
acid methyl esters (FAME) were prepared by trans-
esterification in toluene with BF3/methanol (1:2, v/v)
at 65°C for 1 h. For gas chromatographic analysis,
the sterols were converted to their corresponding

trimethylsilyl ether derivatives using a mixture of
bis(trimethylsilyl)-trifluoroacetamide and trimethyl-
chlorosilan (BSTFA-TMCS, 99:1, Silyl-99). α-Choles-
tane was used as an internal standard for quantifica-
tion. FAME were analysed using both a polar (BPX 70)
and a non-polar column (HP5). GC analysis of sterols
was carried out on a non-polar DB5 column. Structural
assignments were based on comparison of the GC
retention times with those of authentic standards, and
by interpretation of mass spectra or comparison with
published spectra. Monounsaturated fatty acid double-
bond position was determined by gas chromato-
graphy- mass spectrometry (GC-MS) analysis of the
dimethyl disulphide (DMDS) adducts.

Nomenclature: Fatty acids (FA) are designated, for ex-
ample, as 22:6ω3, where 22 is the total number of carbon
atoms, 6 is the number of double bonds and 3 is the po-
sition of the double bond nearest the methyl end. The
sediment bearing xenophyophores is named ‘xeno’ and
the reference sediment devoid of protists is named ‘sed’.

RESULTS

Bulk parameters

Particulate organic carbon (POC), particulate or-
ganic nitrogen (PON), C/N (POC/PON ratio), and total
free lipids (Σfree lipids) for the xenophyophore sample
(xeno) and the reference sediment (sed) are reported
in Table 3. POC and Σfree lipid values were signifi-
cantly higher for the xeno sample: 6.6 and 0.78 mg g–1,
respectively, compared with 4.1 mg g–1 and 0.22 mg g–1

in the control sediment. The C/N values lay in a close
range: 11.0 and 12.4, respectively. The sed bulk para-
meters are in agreement with other results from sedi-
ments collected in the same mesotrophic site (Relexans
et al. 1996). The PON and Σfree lipids for the xeno
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Table 2. Separation of lipid classes using thin layer chromatography (TLC)

Mobile phase Elution distance Compounds Eluent used for extraction from silica gel

Hexane-diethyl ether, Upper side + 10 min Hydrocarbons 10 ml diethyl ether
95 + 5 (v/v)

Hexane-diethyl ether-acetic 3 cm from the Wax esters 10 ml diethyl ether
acid upper side Triacylglycerols 15 ml diethyl ether
75 + 25 + 1 (v/v)  twice Free fatty acids

Alcohols + sterols 10 ml methylene chloride-methanol, 50 + 50 (v/v)
Diacylglycerols
Monoacylglycerols

Ether-dimethylketone, 6 cm from the lower Glycolipids 10 ml methylene chloride-methanol, 50 + 50 (v/v)
50 + 50 (v/v) side

Methanol 4 cm from the lower Phospholipids 10 ml methylene chloride-methanol, 50 + 50 (v/v)
side + 5 ml methanol
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sample are comparable with those of sediments from
the eutrophic site sampled during the same cruise (J.
Laureillard et al. unpubl.), pointing to the particular
richness in organic matter of the xenophyophores.

Lipid classes

The concentrations of intact lipids, determined using
Iatroscan TLC/FID, are presented in Table 4 for xeno
and sed samples. They displayed very different lipid
class proportions and, for the same class, lipids were
always considerably more abundant in the xeno sam-
ple. Lipids originate from living organisms and detrital
matter. Polar lipids, which consist of phospholipids (PL)
and glycolipids (GL) were by far the major constituents
of the total lipid extract. They accounted for 518 and
167 µg g dry weight (dw)–1, for xeno and sed samples,
respectively. These high contents in labile compounds,
representative of living populations due to their rapid
turnover after cell death, underline that the 2 samples
were hotspots of living organisms, especially the xeno-
phyophore-containing sample. TAG and sterols,

important compounds in animals and
plants but absent in bacteria, were 8 and 6
times less abundant in sed (3 and 4 µg g
dw–1) than in xeno (24 and 23 µg g dw–1),
respectively. Among the reserve lipids,
TAG, with a lower specific gravity than
WE, are by far the commonest storage lipid
in benthic animals (Pond et al. 2000). This
can explain the minor importance of WE
even in the rich xeno sample: 6 µg g dw–1.
The detrital part of the organic matter
essentially consists of lipids resulting from

degradation of glycerides (PL, GL and TAG), including
diacylglycerols (DAG), monoacylglycerols (MAG), and
free fatty acids (FFA). These degradation lipids
occurred in higher proportions in the xeno sample
(19.3%) than in the sed sample (13.5%), along with
more DAG and MAG (1.0 and 11.2%, compared with 0
and 4.5%, respectively). Nevertheless, a lower abun-
dance of FFA is observed for the sample of xeno-
phyophores: 7.1 vs 9.0%.
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Table 3. Characteristics of the bulk organic matter. POC: particulate organic
carbon; PON: particulate organic nitrogen;  Xeno: xenophyophore sample;
Sed: reference sediment; Sed-bis: sediments from the same mesotrophic
site, data from Relexans et al. (1996); nd: non determined; dw: dry weight

POC PON C/N Σfree lipids Σfree lipids/
(mg g dw–1) (mg g dw –1) ratio (mg g dw–1) POC (%)

Xeno 6.6 0.6 11 0.78 12
Sed 4.1 0.33 12.4 0.22 5.4
Sed-bis 3.7–4.3 nd nd 0.20–0.34 4.6–8.9

Table 4. Concentration and percentage composition of lipid
classes. HC: hydrocarbons; WE: wax esters; FFA: free fatty
acids; TAG: triacylglycerols; ALC: alcohols; ST: sterols; DAG:
diacylglycerols; MAG: monoacylglycerols; PL: phospholipids;
GL: glycolipids; CHL: chlorophylls; Xeno: xenophyophore

sample; Sed: reference sediment

Xeno Sed
(µg g dw–1) (%) (µg g dw–1) (%)

HC 37 4.7 7 3.2
WE 6 0.8 0 0
FFA 56 0.1 20 9
TAG 24 3.1 3 1.4
ALC 5 0.6 4 1.8
ST 23 2.9 4 1.8
DAG 8 1 0 0
MAG 88 11.2 10 4.5
PL 321 40.9 101 45.7
GL 197 25.1 66 29.9
CHL 19 2.4 6 2.7

Table 5. Concentration  and percentage composition of fatty
acids (FA) in phospholipids (PL). Xeno:  xenophyophore 

sample; sed: reference sediment

Xeno Sed
Fatty Concentration Percentage Concentration Percentage
acids (µg g dw–1) (%) (µg g dw–1) (%)

i-14 0.085 0.8 0.011 0.4
14:0 0.49 4.8 0.19 6.7
i-15 0.41 3.9 0.052 1.8
a-15 0.53 5.2 0.095 3.3
15:0 0.25 2.5 0.11 3.9
i-16 0.17 1.7 0.031 1.1
16:0 1.56 15.2 0.76 26.9
16:1ω10 0.51 5.0 0.33 11.6
16:1ω7 1.38 13.4 0.18 6.5
16:1ω5 0.44 4.2 0.026 0.9
i-17 0.11 1.0 0.015 0.5
a-17 0.067 0.6 0.0 0.0
17:0 0.12 1.2 0.038 1.4
17∆ 0.14 1.3 0.049 1.7
18:0 0.29 2.8 0.26 9.2
18:1ω9 0.62 6.1 0.30 10.5
18:1ω7 1.53 14.9 0.13 4.7
18:2ω6 0.074 0.7 0.020 0.7
20:0 0.074 0.7 0.012 0.4
20:2ω6 0.080 0.8 0.005 0.2
20:3ω6 0.0 0.0 0.012 0.4
20:4ω6 0.25 2.4 0.022 0.8
20:3ω3 0.039 0.4 0.0 0.0
22:0 0.030 0.3 0.0 0.0
20:5ω3 0.42 4.0 0.073 2.6
22:1ω9 0.063 0.6 0.0 0.0
22:4ω6 0.0 0.0 0.004 0.1
24:0 0.085 0.8 0.045 1.6
24:1ω9 0.12 1.2 0.0 0.0
22:6ω3 0.35 3.4 0.056 2.0
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Phospholipids (PL)

It is in this lipid class that the FA characteristic of liv-
ing organisms are found. The main FA occurring in the
xeno and the sed samples (Table 5) were 16:0 (15.2 and
26.9%, respectively), 16:1ω7 (13.4 and 6.5%, respec-
tively), 18:1ω7 (14.9 and 4.7%, respectively), 18:1ω9
(6.1 and 10.5%, respectively), and 16:1ω10 (5.0 and
11.6%, respectively). The sum of the saturated acids
considered as bacterial (branched, cyclic, and odd-
numbered FA) represented a higher percentage in the
xeno sample than in the reference sediment (18.2 vs
14.1%). Relative abundances of the monounsaturated
FA were more variable. Deep benthic organisms typi-
cally have a low level of polyunsaturated fatty acids
(PUFA) and C20 and C22 PUFA are present only as
traces (Reinhardt & Van Vleet 1986). However, they
contributed significantly to the deep-sea xeno and sed
samples, with a higher level in the xeno sample (11.7%
vs 6.8%). Moreover, the PUFA distribution was not
identical in the xeno and the sed samples.

Triacylglycerols (TAG)

Fatty acids in the diet are partly stored in reserve
lipids, and the analysis of their constituent fatty acids can
be used to investigate predator-prey relationships. The
main fatty acids in TAG for the xeno and the sed samples
were 16:0 (24.5 and 22.5%, respectively), 18:1ω9 (8.8 and
11.6%, respectively), and 18:1ω7 (13.6 and 6.9%,
respectively), (Table 6). The saturated and monounsat-
urated FA were more abundant in the xeno sample,
whereas PUFA made up a larger proportion in the sed
sample. Palmitoleic acid, in particular, was more abun-
dant in the xeno sample at 8.7 vs 2.8% for the reference
sediment. The contents of the 2 essential PUFA, 20:5ω3
and 22:6ω3, were higher in the sed sample (3.5 and
1.0%, respectively) than in  the xeno sample (1.8 and
0.8%, respectively). The C15 and C17 acids, branched or
not, are considered as bacterial markers. All of them
were in higher proportions in the xeno sample.

Sterols

Sterols are encountered in higher plants, animals
and algae, but not in most bacteria. Their much higher
abundance in the xeno sample (Table 7) reflected an
important concentration of the former organisms, or
their remains, in this sample. The main animal sterol is
usually cholesterol, whereas this sterol generally
accounts only for a small proportion of phytosterols,
which varies according to the species. The high
amounts of cholesterol (28.0%) in the xeno sample,
where it was the most important sterol, and in the sed
sample (24.4%), can be ascribed mainly to benthic ani-

mals. Marine sterols attributed to diatoms were repre-
sented by cholesta-5,22-dien-3β-ol (5.5 and 4.9% in
xeno and sed samples, respectively), 24-methyl-
cholesta-5,24(28)-dien-3β-ol (3.7 and 4.6%) and 24-
methylcholesta-5,22E-dien-3β-ol (12.2 and 8.8%)
(Volkman et al. 1980a, Volkman 1986). The last sterol
is considered as a diatom biomarker in productive
waters, even though it also occurs in high levels in
most Prymnesiophyceae. 4-Methyl sterols often occur
in dinoflagellates in significant amounts (Nichols et al.
1983). Prymnesiophytes of the genus Pavlova can be
an important source of these compounds (Volkman et
al. 1990), while diatoms are usually a marginal source
(Volkman et al. 1993). Thus, an algal origin can be
attributed to 4α,23,24-trimethyl-5α-cholest-22E-en-
3β-ol (dinosterol), which accounts for 5.0 and 4.7%
of total sterols in xeno and sed samples, respectively.
Otherwise, the major sterols found in vascular
plants are 24-ethylcholest-5-en-3β-ol, 24-ethylchol-
esta-5,22E-dien-3β-ol, and 24-methylcholest-5-en-3β-
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Table 6. Concentration and percentage composition of fatty
acids (FA) in triacylglycerols (TAG). Xeno: xenophyophore

sample; Sed: reference sediment 

Xeno Sed
Fatty Concentration Percentage Concentration Percentage
acids (µg g dw–1) (%) (µg g dw–1) (%)

14:0 0.43 6.4 0.055 3.7
i-15 0.16 2.4 0.012 0.8
a-15 0.11 1.6 0.014 1.0
15:0 0.20 2.9 0.045 3.0
i-16 0.12 1.9 0.013 0.9
16:0 1.64 24.5 0.33 22.5
16:1ω10 0.23 3.4 0.12 7.9
16:1ω7 0.58 8.7 0.042 2.8
16:1ω5 0.17 2.6 0.011 0.7
i-17 0.090 1.3 0.012 0.8
a-17 0.027 0.4 0.0 0.0
17:0 0.12 1.8 0.023 1.5
17∆ 0.16 2.3 0.0 0.0
18:0 0.29 4.3 0.12 8.1
18:1ω9 0.59 8.8 0.17 11.6
18:1ω7 0.91 13.6 0.10 6.9
18:2ω6 0.047 0.7 0.022 1.5
18:2ω4 0.026 0.4 0.0 0.0
18:3ω3 0.0 0.0 0.005 0.3
20:0 0.054 0.8 0.015 1.0
20:1ω9 0.15 2.2 0.038 2.6
20:2ω6 0.13 1.9 0.048 3.2
21:0 0.0 0.0 0.004 0.2
20:4ω6 0.085 1.3 0.12 8.2
22:0 0.044 0.7 0.022 1.5
20:5ω3 0.12 1.8 0.053 3.5
22:1ω9 0.029 0.4 0.005 0.3
24:0 0.081 1.2 0.042 2.8
24:1ω9 0.033 0.5 0.011 0.8
22:6ω3 0.055 0.8 0.015 1.0
26:0 0.033 0.5 0.013 0.9
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ol. Here, they accounted for 23.0, 5.9, 3.4% and 30.2,
8.9, 3.1% for the xeno and sed samples, respectively.
They are considered as representative of higher plants,
in sediments from areas of low productivity, even
though several microalgae synthesize these com-
pounds (Volkman et al. 1998). The ratios of these 3
sterols were similar in the xeno sample (1:1.7:6.8) and
in the sed sample (1:2.9:9.7), which points to a common
source, and similar degradation rates. Since compara-
ble ratios were found in many higher plants and in sed-
iments where the sedimentary inputs were essentially
land-derived organic matter (Volkman 1986), these 3
sterols most likely derived from terrigenous sources at
the study site, coming from aeolian inputs of African
vegetation (J. Laureillard et al. unpubl).

DISCUSSION

Metazoa–xenophyophore association in the
xeno sample

Generally, the presence of xenophyophores on the
deep-sea floor plays a significant role in locally struc-
turing metazoan community organization. For Pacific

protists, in addition to the inside colonization of the
test, an increase in the abundance of metazoa is
observed beneath the xenophyophore tests and in
their folds (Gooday 1984, Levin et al. 1986, 1991b,
Levin & Thomas 1988, Levin 1991, 1994). Therefore an
important issue required for interpreting our results is
discovering whether the organic matter analyzed in
the xeno sample corresponds to the xenophyophores
themselves or to the xenophyophores and the associ-
ated metazoa. In the northeastern Atlantic Ocean, near
our study site, only 6% of the tests of the xeno-
phyophore Aschemonella ramuliformis broken open
with small apertures were occupied by metazoans
(Gooday 1984), whereas 100% of the xenophyophore
tests in the eastern Pacific were inhabited by meta-
zoans (Levin et al. 1986, Levin & Thomas 1988). In the
same way, in Syringammina corbicula, distinct aper-
tures are absent (Richardson 2001). Only a single
harpacticoid copepod nauplius was found associated
with the stercomes of this species, and the test was
replete with stercomes and cytoplasm. Given the
fragility of xenophyophore tests in the North Atlantic
(Tendal & Gooday 1981, Gooday & Tendal 1988, Goo-
day 1991, 1996), one could suppose that the small
metazoans succeeding in the penetration of the tests
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Table 7. Concentration and percentage composition of sterols. Xeno: xenophyophore sample; Sed: reference sediment; 
M: marine sterol; T: terrigenous sterol; A: animal sterol

Xeno Sed Sterol
Sterols Common name Concentration Percentage Concentration Percentage attribution

(µg g dw–1) (%) (µg g dw–1) (%) here

27-nor-24-methylcholesta- 0.070 1.0 0.019 1.1
5,22-dien-3β-ol

Cholesta-5,22E-dien-3β-ol Dehydrocholesterol 0.39 5.5 0.089 4.9 M

5α-cholest-22E-en 3β-ol Dehydrocholestanol 0.033 0.5 0.016 0.9

Cholest-5-en-3β-ol Cholesterol 1.98 28.0 0.44 24.4 A

5α-cholestan-3β-ol Cholestanol 0.16 2.3 0.038 2.1

24-methylcholesta-5,22E- Brassicasterol or epimer 0.86 12.2 0.16 8.8 M
dien-3β-ol

24-methyl-5α-cholest-22E- Brassicastanol or epimer 0.068 1.0 0.020 1.1
en-3β-ol

24-methylcholesta-5,24(28)E- 24-methylenecholesterol 0.26 3.7 0.083 4.6 M
dien-3β-ol

24-methylcholest-5-en-3β-ol 24-methylcholesterol 0.24 3.4 0.056 3.1 T

24-methyl-5α-cholestan-3β-ol 24-methylcholestanol 0.019 0.3 0.007 0.4

23,24-dimethylcholesta- 0.12 1.7 0.025 1.4
5,22-dien-3β-ol

24-ethylcholesta-5,22E- Stigmasterol or epimer 0.42 5.9 0.16 8.9 T
dien-3β-ol

23,24-dimethylcholest-5- 0.15 2.1 0.0 0.0
en-3β-ol

24-ethylcholest-5-en-3β-ol 24-ethylcholesterol 1.62 23.0 0.55 30.2 T

24-ethyl-5α-cholestan-3β-ol 24-ethylcholestanol 0.15 2.1 0.067 3.7

24-ethylcholesta-5,24(28)Z- Stigmasta-5,24(28)- 0.17 2.4 0.0 0.0
dien-3β-ol dien-3β-ol

4α,23,24-trimethyl-5α- Dinosterol 0.35 5.0 0.084 4.7 M
cholest-22E-en-3β-ol
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cause them to break up when they grow. Conse-
quently, owing to the low level of internal colonization
of S. corbicula, we can consider that the lipids analysed
belonged essentially to these protists. Moreover, S.
Richardson (pers. comm.) thought that it would be pos-
sible to attribute the high lipid content of the xeno
sample to the developed membrane system of S. cor-
bicula, which would account for the high amount of PL
observed (Table 4), in spite of the small volume of pro-
toplasts of xenophyophores (1 to 5% for Syringaminna
sp.; Levin & Gooday 1992).

According to the aforementioned literature, the xeno
sample included the protoplasms, the stercomes, and
the agglutinated tests, which together make up the
animals themselves. It also included, in the folds of the
tests, sedimenting particles as well as resuspended
sediment due to a weak bottom nepheloid layer (Van-
griesheim et al. 1993), and, maybe, for a very minor
part, some associated metazoans. Consequently, the
lipid composition of the xeno sample will reflect these
different sources.

Influence of xenophyophores on organic matter
composition

Xenophyophores were richer in POC, PON and lipid
contents than the reference sediment (Table 3). More-
over, this increase corresponded to an organic matter
much richer in lipids, as inferred from the values of Σfree
lipids/POC ratio. PL were the major lipid class (Table 4),
and their higher quantity in the xeno sample points to a
high concentration of living benthic organisms.

Phytoplanktonic inputs and freshness of the collected
particles

Passive modifications in the flow due to shapes and
sizes of the reticulations in the xenophyophore tests,
active trapping and selection of particles (Levin &
Thomas 1988) may enhance local particle flux and its
composition, leading to fresher and more nutritive sed-
iments collected by the protozoan. Evidence of particle
freshness inside and in the immediate vicinity of the
xenophyophore tests was previously provided by an
enhancement of excess 234Th (Levin et al. 1986, Levin
1991). Labile compounds constituting chloroplasts
(CHL and GL) were more abundant in the xeno sample
(197 and 19 µg g–1 vs 66 and 6 µg g–1 for the reference
sediment, respectively), which corroborates Levin’s
findings and points to the increase of sedimentation
near the tests, associated with a selective collection of
fresh nutritious phytoplanktonic particulate matter
(Table 4). The relative proportions of sterols principally
indicative of the 3 possible origins, higher plants, ani-

mals and phytoplankton (Table 7), are reported in
Fig. 2. Differences appeared between the sed and xeno
samples, where cholesterol, an animal sterol, and
marine sterols prevailed. In addition, the latter sample
included less poorly nutritious particles originating
from continental inputs, as evidenced by a lower per-
centage of terrigenous sterols (Table 7). The higher
C/N ratio (Table 3) for the sed sample also suggested
an organic matter which was more continental and
more refractory (Stein 1991) than in the xeno sample,
in agreement with the preceding results. The greater
phytoplanktonic imprint and lower terrigenous imprint
in the particles on the test of xenophyophores than in
the reference sediment evidenced an active selection
of nutritious particles by the protists.

However, the percentages of GL and CHL, represen-
tative of the phytoplanktonic inputs, were lower in the
xeno sample than in the sed sample (Table 4) because
of dilution of these fresh particles with relatively large
quantities of detrital matter in xenophyophores:
already-digested particles packed in stercomes and
stored inside the test on one hand, and the organic part
of the test which may include as much lipid as the living
part of the animal (DeLaca 1986), on the other hand.
This detrital matter constitutes a source of lipids much
poorer in GL, CHL, and PL than fresh phytoplankton
detritus. Compared with the sed sample, a large
amount of degradation lipids (DAG + MAG + FFA) was
observed in the xeno sample (152 vs 30 µg g dw–1),
leading also to a much higher percentage (19.3 vs
13.5%). The percentages of DAG and MAG were con-
siderably higher in the xeno sample, while FFA, a lipid
class indicative of more decayed organic matter, were
less abundant. Consequently, the xeno sample corres-
ponded to fresher sedimented phytoplankton and less
decayed detrital organic matter than the sed sample.
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Fig. 2. Distribution of sterols according to their origin in xeno-
phyophores (Xeno) and in sediment free of protists (Sed). Ter-
rigenous sterols: 24-ethylcholest-5-en-3β-ol, 24-ethylcholesta-
5,22E-dien-3β-ol and 24-methylcholest-5-en-3β-ol. Marine
sterols: 24-methylcholesta-5,22E-dien-3β-ol, cholesta-5,22E-
dien-3β-ol, 24-methylcholesta-5,24(28)E-dien-3β-ol and 4α,

23,24-trimethyl-5α-cholest-22-en-3β-ol
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Living organism presence: bacteria and
xenophyophore imprint

Phospholipids, are the most labile part of the organic
matter (Harvey et al. 1986), and can give an overview
of the living organisms in a sample. PL components of
membranes accounted for a large part of total lipids
(Table 4). Here, they originated from animals, bacteria,
and probably from only a very small amount of living
algae. Indeed, even in areas with high sedimentation
rates, no algal PL could be identified in surficial sedi-
ments at deep sites (Pinturier-Geiss et al. 2001). Phos-
pholipid fatty acids (PLFA) (Table 5) can give an
insight into the different sources of living or fresh
organic matter, since some fatty acids are specific to
bacteria, algae or animals.

Branched-chain fatty acids, and especially iso and
anteiso C15 and C17, are commonly used as bacterial
markers, and they occur widely in bacteria (Kaneda
1991). Cyclopropanyl fatty acids (∆C17 and ∆C19) are
also characteristic of bacteria (Guckert et al. 1986,
Balkwill et al. 1998). All these bacterial markers
accounted for a significant part of the PL for the xeno
sample (Fig.3), 14.7 vs 8.9% for the sed sample, point-
ing to an important development of bacterial commu-
nities in the xenophophyore structures. This feature is
corroborated by the finding that microbial respiratory
activity associated with xenophyophore samples was 5
to 6 times higher than that measured in control sedi-
ments (Sibuet et al. 1993). Futhermore, vaccenic acid
(18:1ω7) has very often been attributed to sedimentary
bacteria (Perry et al. 1979, Gillan & Johns 1986) and
also to bacteria attached to particles in surface waters,
where it covaried with branched fatty acids (Saliot et

al. 1997). Although 16:1ω5 is found in very small quan-
tities in diatoms (Dunstan et al. 1994), this fatty acid is
considered as a bacterial marker (Desvilettes et al.
1997). Indeed, it was found in PLFA of anoxic sedi-
ments, where eukaryotic participation was very weak
(Rajendran et al. 1992, 1994, 1995), and in bacterial
cultures (Lambert et al. 1983, Carballeira et al. 1995,
1997). Odd-carbon-numbered normal fatty acids in the
range C13 to C17 are also contributed by bacteria (Volk-
man et al. 1980b, Jantzen 1984, Harvey 1997). Here,
they were represented by n-15:0 and n-17:0. The dis-
tribution of bacterial markers can characterize bacter-
ial assemblages. In Fig. 4 we use the relative percent-
ages of all these compounds originating from bacteria
and their ratios to compare the bacterial populations of
the 2 samples. The patterns are very different, high-
lighting the development of specific bacteria within
the xenophyophores, probably on stercomes.

The higher quantity of PUFA observed in the xeno
PLFA compared to the sed sample (Fig. 3) may corre-
spond to a higher biomass of animals or deep-sea bac-
teria, since these bacteria can be rich in PUFA (Delong
& Yayanos 1986). They can account for the PUFA
20:5ω3 and 22:6ω3, but the others most probably origi-
nated from xenophyophores. Non-bacterial PLFA
observed in the xeno sample and absent or rare in the
reference sediment could be attributed to xeno-
phyophores. Such fatty acids are 20:2ω6, 20:4ω6,
20:3ω3, 22:0, 22:1ω9, 24:1ω9 (Table 5). Zooflagellates
and ciliates are a source of ω6 PUFA (Zhukova & Khar-
lamenko 1999) which are considered as protist mark-
ers (Vestal & White 1989, Desvilettes et al. 1997).
Indeed, in the total fatty-acid pattern of the aggluti-
nated foraminiferan Bathysiphon capillare, 20:4ω6 is a
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Fig. 3. Percentage distribution of fatty acids (FA) of phospho-
lipids (PL) in xenophyophores (Xeno) and in sediment free of

these protists (Sed). PUFA: polyunsaturated fatty acids

Fig. 4. Distribution of bacterial fatty acids (FA) of phospholipids
(PL) in xenophyophores (Xeno) and in sediment free of these

protists (Sed)
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prominent compound (Gooday et al. 2002). However,
these ω6 acids have also been identified in a wide
range of deep-sea fauna (Ginger et al. 2000, Pond et al.
2002, Howell et al. 2003). Moreover, 2 sterols (23,
24-dimethylcholest-5-en-3β-ol and 24-ethylcholesta-
5,24[28]-dien-3β-ol) (Table 7) were found neither in
the sed, nor in sediments of eutrophic and oligotrophic
sites of the same area. They might constitute, with
20:2ω6 and 20:4ω6, either xenophyophore markers or
specifically associated organism markers.

Trophic relationships

An especially high level of TAG, reserve lipids which
are found in senescent phytoplankton or in animals as
storage lipids, was observed in the xeno sample
(Table 4) and most likely represents an input from the
xenophyophores. The distribution of fatty acids in TAG
is representative of diet and may throw light on the
feeding habits of the dominant fauna, xenophyo-
phores. However, little information is available regard-
ing their nutritional habits, and we only have hypo-
theses.

In the TAG of the xeno sample, the contents of bac-
terial markers — (branched and cyclic fatty acids)
(Fig. 5), as well as the fatty acid 18:1ω7 (Fig. 6) — were
much higher than in the sed sample. Accordingly,
xenophyophores must be considered as bacterivorous.
The fact that similar fatty acid patterns and acid ratios
were observed in the TAG (Fig. 6) and the PL (Fig. 4) of
the xeno sample highlighted the fact that xeno-
phyophores fed on a particular assemblage, different
from the bacteria growing in the ambient seafloor sedi-
ments (sed). This feature pointed to the same origin for

the ingested bacteria and the bacteria colonizing the
stercomes. In contrast, for the sed sample, the different
patterns of bacterial fatty acids in PL (Fig. 4) and TAG
(Fig. 6) indicated selective predation of sedimentary
bacteria by bacterivorous organisms in mesotrophic
sediments. The higher level of the acid 16:1ω7 fre-
quent in bacteria in TAG of the xeno sample (8.7 vs
2.8% for sed; Table 6) might also suggest that the
xenophyophore diet was richer in bacteria than the
diet of other protists at the mesotrophic site.

These results support Tendal’s hypothesis (Tendal
1979) about xenophyophore nutrition, according to
which xenophyophores cultivate bacteria in the ster-
comes, probably to maintain a food-reserve rich in
amino-acids and other labile nutritive elements, in
otherwise food-poor settings. In the agglutinating
foraminiferans Pelosina cf. arborescens and a mud-
walled astrorhizinid which lack stercomes, Levin et al.
(1991a) found no evidence either of selective collection
of fresh particles, microbial cultivation or bacteria
enhancement associated with the tests. Thus, this
absence of an increase in the microbial abundance
might be attributed to the lack of stercomes under the
tests. The substantial bacterial component in the diet of
the infaunal agglutinated foraminiferan Bathysiphon
capillare, a species with stercomes, is considered as
originating from the bacteria associated with the
ingested fine-grained sediment (Gooday et al. 2002).

The whole TAG analysed may not originate solely
from the xenophyophores; a part of TAG might derive
from associated metazoans. These colonizers could
then feed on non-protected stercomes. Consequently,
in the xeno sample, a part of TAG containing bacterial
markers could originate from metazoans fed on ster-
comes. Several observations reported elsewhere cor-
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Fig. 5. Percentage distribution of fatty acids (FA) of triacyl-
glycerols (TAG) in xenophyophores (Xeno) and in sediment
free of these protists (Sed). PUFA: polyunsaturated fatty acids

Fig. 6. Distribution of bacterial fatty acids (FA) of triacylglycerols
(TAG) in xenophyophores (Xeno) and in sediment free of these

protists (Sed)
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roborate this finding. Meiofauna with stercome-filled
guts have been collected in the tubes of xeno-
phyophore tests (Gooday 1991, Levin & Gooday 1992)
and, more precisely, C. Huggett observed a great num-
ber of harpacticoid copepods with stercome-filled guts
inside the tests of Syringammina sp. (Levin & Gooday
1992). The occurrence of ω6 PUFA probably originat-
ing from xenophyophores in TAG of the xeno sample
evidenced the presence of some predators of these
protists associated with them. These observations de-
monstrate that metazoans join with xenophyophores in
a trophic relationship (Levin & Gooday 1992). Bacterial
populations on stercomes could constitute an addi-
tional food source for xenophyophores and for associ-
ated metazoans.

Conclusions

Xenophyophore presence on deep-sea sediments
induced environmental modifications, especially a
higher abundance of bacteria, which led to sites of
great biological activity, as shown by lipid content and
composition of the xenophyophores analysed com-
pared with a reference sediment. On the reticulated
tests, an increase of fresh sedimentary particles, richer
in phytoplanktonic labile compounds (GL and CHL)
and poorer in refractory terrigenous material, high-
lighted a selection in the collection of particles by
xenophyophores. In addition, the huge quantity of
already-digested particles, stored under the test as
stercomes, was indicated from the greater amounts of
degradation lipids, DAG, MAG, and to a lesser extent
FFA.

Xenophyophores seemed to ‘cultivate’ bacteria on
stercomes under their tests and feed on them to sup-
plement their diet with this highly nutritious food
source when the arrival of sedimentary particles is not
sufficient. The consumption of these bacteria was
inferred from the significance of bacterial markers in
TAG of the xeno sample, which essentially repre-
sented their reserve lipids, and thereby their diet. The
bacterial assemblage in xenophyophores was different
to that of the reference sediment, highlighting the
development of different bacteria on fecal pellets.

The colonization of metazoans in the folds of xeno-
phyophore tests would occur due to the vicinity of sub-
stantial food sources: input of sedimentary phytoplank-
ton and bacteria growing on stercomes. They could
take advantage of the latter source of nutritious food
after the rupture of the tests due to animal intrusion.

Two ω6 fatty acids and 2 sterols were only detected
in the xenophyophore sample, and they might be bio-
markers of xenophyophores or organisms associated
only with these animals.
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