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INTRODUCTION

Group formation is prevalent amongst almost all ani-
mal taxa (Wilson 1975). For example, more than 50%
of fish species form schools (Shaw 1978), and 50% of
bird species form feeding flocks (Lack 1968). Group-
level characteristics—such as regular inter-individual
spacing, a particular degree of polarization, or a char-
acteristic group velocity—are generally believed to
have important biological consequences (Parrish &
Edelstein-Keshet 1999), potentially affecting member
fitness by (1) determining foraging success (Cody
1971, Krebs et al. 1972), (2) providing defense against,
or escape from, predation (Hamilton 1971, Vine 1971,
Watt et al. 1997, Viscido & Wethey 2002), and (3) im-

proving reproductive success (Lack 1968, Burger &
Gochfeld 1991). However, because they result from
collective interactions and are not under direct control
of any group member, these characteristics are not
under simple, direct selection. Instead, selection on
schooling behaviors reflects the complex dynamics of
social interactions within groups: the fitness of a novel
schooling behavior is mediated partly through its
effects on others in the group, as well as the changes in
group characteristics that consequently result. Thus,
traits with short-term benefits to individual members
may fail to arise because of overriding negative long-
term consequences at the group level. Conversely,
traits that are beneficial at the group level may fail to
persist because individuals who do not exhibit them

© Inter-Research 2004 · www.int-res.com*Email: viscido@u.washington.edu

Individual behavior and emergent properties of fish
schools: a comparison of observation and theory

Steven V. Viscido1, 2,*, Julia K. Parrish1, 2, Daniel Grünbaum3

1Department of Biology, 2School of Aquatic and Fishery Sciences, and 3School of Oceanography, Box 351800 Kincaid Hall, 
University of Washington, Seattle, Washington 98195, USA

ABSTRACT: Polarity, group velocity, and inter-individual spacing are characteristics of fish schools
that strongly affect individual school members. However, these characteristics are group-level ‘emer-
gent properties’: collective outcomes of behavioral interactions among members, not under direct
control of any single member. The relationships between members’ behaviors and the emergent
group properties they produce are complex and poorly understood. In this study, we quantified 3D
trajectories of all individual fish within 4- and 8-fish populations of Danio aequipinnatus, using stereo
videography and a computerized tracking algorithm. We compared group polarity, group speed, and
mean nearest-neighbor distances of schools within these populations to a simulation model that
explored how fish responded to attraction/repulsion, alignment and random forces. Real fish exhi-
bited a high degree of temporal variability in both polarity and group speed. Polarity and speed of
simulated schools depended very strongly on the strength of the alignment force. Time-averaged
polarity of real fish schools was most similar to simulated schools when alignment force was 1 to 5%
of the attraction/repulsion force. For both real and simulated fish, a clear relationship existed
between group speed and polarity: polarized groups were faster than non-polarized groups. We pro-
pose a multi-dimensional state space where several emergent property statistics are represented
along the axes, and suggest certain ‘preferred’ ranges of state space within which animal groups tend
to localize, and in which they can sustain distinct types of regular architecture. 

KEY WORDS:  Social aggregation · Schooling behavior · Emergent properties · Polarity · Group
speed · Nearest-neighbor distance · Danio aequipinnatus

Resale or republication not permitted without written consent of the publisher



Mar Ecol Prog Ser 273: 239–249, 2004

enjoy a relative advantage. Furthermore, some desir-
able group traits may be unattainable simply because
no individual behaviors exist that could generate them.

Group characteristics that result from decentralized
interactions are termed ‘emergent properties’ (Clark et
al. 1997). Emergent properties of fish schools and bird
flocks in particular have been frequently studied using
simulation models. In most such models, each individ-
ual’s behavioral choices are interpreted as a set of
forces that affect the velocity or heading of an individ-
ual (e.g. Okubo 1986, Huth & Wissel 1990, Flierl et al.
1999). These forces include biomechanical and envi-
ronmental forces such as drag (Flierl et al. 1999),
attraction and repulsion forces between sets of neigh-
bors (Warburton & Lazarus 1991, Romey 1996, Couzin
et al. 2002), alignment or behavior-matching forces
(Aoki 1982, Huth & Wissel 1992), and randomness
(Reuter & Breckling 1994, Vabo & Nottestad 1997,
Stocker 1999). Simulation models typically connect
specific individual behaviors to emergent properties
by following each individual’s position over time and
statistically quantifying group-level characteristics.

The strength of the modeling approach is the relative
ease of exploring many behavioral variants; however,
there are also weaknesses. Chief among these are
(1) that it is unclear which statistical measures best
reflect biologically important characteristics and
(2) that few quantitative observations of fish move-
ments inside schools are detailed and long enough to
provide a basis for comparison with model assump-
tions (Partridge & Pitcher 1980, Aoki 1984, Parrish &
Turchin 1997, Hiramatsu et al. 2000). The lack of
observational data is primarily due to the difficulties of
tracking relatively large, fast objects (e.g. fish, birds) in
3D space over an extended period of time (Parrish et al.
2002). These observational difficulties are an impor-
tant limitation on our understanding of how social ani-
mal groups function and how the underlying social
behaviors evolved.

In this study, we develop a quantitative database of
individual movements within fish schools and compare
it with a simplified individual-based model of fish
schooling using a specific subset of emergent property
statistics—mean nearest-neighbor distance (NND),
group speed, and polarity —applied analogously to
both real and model fish trajectories. We assess which
parameter values most closely correspond to actual
fish behaviors, and which of our group-level statistics
appear most informative about the biological functions
of fish schools. Specifically, because one of the more
striking emergent properties of fish schools is their
polarized arrangement (Couzin et al. 2002, Parrish et
al. 2002), we focus our simulations on one behavioral
force, the alignment force, and compare the emergent
properties observed in simulations with those of real

fish schools in laboratory populations by systematically
varying that force. 

We present here the observational methods we used
to quantify fish movements, followed first by descrip-
tions of our schooling simulations and then by sum-
maries of the emergent property statistics. We show
how these statistics differed between our observations
and simulations, and discuss the implications of our
results for the mechanisms of social group formation.
Finally, we suggest future directions in the analysis of
these mechanisms.

MATERIALS AND METHODS

Biological observations. We observed 4- and 8-fish
groups of giant danios Danio aequipinnatus. This spe-
cies was also the physical model for our simulated fish.
The danios were 5.3 cm long on average (±0.6 SD, N =
14 fish measured) and had a mass of 1.7 g (±0.5 SD,
N = 14 fish measured). Danios were held in two 600 l
holding tanks on a fixed 14:10 h light:dark cycle and
fed ad libitum. At 09:00 h on the day of an observation,
4 or 8 fish were haphazardly selected from holding
tanks and placed into a 1 m3 clear acrylic observation
tank. The observation tank contained still water at the
same temperature as the holding system, and was illu-
minated by nine 100 W floodlights equipped with fres-
nel diffusers and arranged to minimize both glare and
shadows. Fish were filmed against a white back-
ground. Pilot trials showed no difference in behavior
among acclimation times in the observation tank rang-
ing from 6 to 24 h. Therefore, we acclimated animals
for 6 h before recording their behavior.

We used Panasonic PVDV-401 mini-DV video cam-
eras mounted directly over the tank (to record x–y
movements) and at floor level (to record x–z move-
ments) connected by firewire to 2 Sony DSR-20 digital
tape decks. Tape decks and monitors were housed
behind a screen such that an observer could operate
the decks and observe fish behavior in real time with-
out disturbing the animals. After filming for 30 min-
utes, the fish were removed from the observation tank,
and a metal calibration frame was inserted. The frame
consisted of a 7 × 7 square grid of small black beads
located 14 cm apart. The frame was filmed in 4 differ-
ent positions, facing toward and away from each cam-
era to establish a coordinate system just inside the
outer edges of the tank.

Preliminary trials indicated that fish in small groups
occasionally spend time nudging against the sides of
the tank, interacting with their own reflections rather
than with other fish (‘glass kissing’). Because glass
kissing is clearly an artifact of the observational condi-
tions and not a part of the animals’ natural behavior,
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only video sequences with more than 10 consecutive
minutes of ‘natural’ swimming within the central vol-
ume of the tank were retained. We then randomly
selected a 5 min subset of the natural schooling behav-
ior in each trial for analysis. Below, we present results
from three 4-fish trials and three 8-fish trials.

Image capture and conversion: Digital recordings of
fish observations were transferred via firewire to an
Apple G4 Power PC computer at the standard NTSC
frame rate (29.97 Hz) and converted to QuickTime
movie format using Adobe Premier 5.1 for Macintosh.
We divided each 5 min digital movie into smaller
30 s (900 frame) segments in Adobe Premier to facili-
tate analysis. Pixel coordinates of fish centroids in each
camera view were obtained using automated NIH
Image (v. 1.62 for Macintosh) macros. Analysis steps
included background subtraction using the time-
averaged image, thresholding, and recording of posi-
tions to an ASCII text file.

Trajectory reconstruction: The program we used for
trajectory reconstruction, Tracker3D, was written in-
house using MatLab (The Mathworks 2001, Release
12.1). This program used pixel coordinate data and cal-
ibration images to convert each fish position in each
video frame to a ray through space in a real-world
coordinate system, and then reconstructed fish trajec-
tories within a camera view by associating the corre-
sponding fish centroids in sequential frames using
nearest-neighbor criteria. This simple criterion was
adequate because data were oversampled. 

Tracker3D then entered an ‘editing’ step in which
the user could review the reconstructed paths and, if
necessary, make corrections. Most often, because the
2D reconstruction step used very conservative path
parameters, the user would simply join fragments of a
trajectory into a single longer path. Whenever there
was any doubt about whether to join fragments, we
watched the original video on a 14” TV monitor to help
make our decision.

Tracker3D then entered the 3D reconstruction step,
in which paths from both cameras were combined to
triangulate trajectories in 3 dimensions. The criteria for
associating paths between cameras were upper limits
to distances of closest approach between the rays
through physical space from paths in the 2 views,
together with limits on plausible fish velocity between
successive frames. 

Details of the Tracker3D algorithms are available at
www.ocean.Washington.edu/people/faculty/grunbaum/
Tracker3D. The output from Tracker3D was a simple
ASCII text file containing an identifier for each fish and
its 3D (x-y-z) position. To reduce high-frequency noise
due to frame-rate oversampling, the output file was then
passed through a filtering program written in Perl that
reduced the frame rate to 5 Hz. We used the filtered out-

put to compute the polarity and speed of fish groups
over time.

Computer simulation experiments. Basic model: We
constructed a 3D model of fish schooling based loosely
on preliminary measurements of danio movements
taken from early film trials. Note that we did not
attempt to perfectly emulate the real-world behavior of
danios. Rather, we were interested in using computer
simulations to inform us on general self-organization
principles. Therefore, although our simulated fish are
reasonably realistic, they are not perfectly so (e.g.
gravity is not included). However, our simulations are
a more physically realistic extension of existing sum-
of-forces fish school models (e.g. Aoki 1982, Huth &
Wissel 1990, Romey 1996, Couzin et al. 2002). 

We set maximum speed at 12 body lengths (BL) s–1,
and the maximum force (Fmax) was set to impart a
12 BL s–2 acceleration on the fish, reflecting limits we
observed in a pilot study. Since real danios are ca.
5.3 cm long and have a mass of 1.7 g (see ‘Biological
observations’ above), Fmax = 102 dynes. Although real
danios are laterally compressed, our model fish were
cylindrical for simplicity, with 1 BL = 5.3 cm, and a
body diameter 0.15 BL. Finally, because most fish have
a rear blind area (Aoki 1982), we imposed a maximum
(forward) viewing angle θ = ±150°. Individuals outside
the maximum viewing angle were ignored (Couzin et
al. 2002).

Each simulation began at time t = 0 with a population
of 4 or 8 fish scattered randomly within a spherical vol-
ume scaled to 12 π BL3 per fish, centered at the origin.
Thus, starting density was constant regardless of pop-
ulation size. All fish started with a random velocity,
uniformly distributed between 0 and 6 BL s–1. Individu-
als did not begin a simulation inside each other’s body
volume; however, during simulations such overlaps
sometimes occurred. We considered these intrusions to
be analogous to ‘collisions’ (i.e. mistakes in schooling
behavior) and recorded when and where they oc-
curred. Once the simulation began, the individuals
were not constrained; the domain was empty and infi-
nite. We used simulated population sizes of 4 and 8 fish
so model results could be directly compared with the
behavioral observations and ran each simulation for
1800 time steps (60 s at 30 Hz, so that each time step =
1/30 s). Each set of simulation conditions was repli-
cated 15 times.

Behavioral movement rules: Many simulations use
forces that accelerate the masses of individual fish
to represent behavior (Aoki 1982, Niwa 1994, 1996,
Romey 1996). The strength and direction of those
forces are taken to implicitly reflect the consequences
of complex sequences of events, including sensory per-
ception, cognitive and reflexive processing, and swim-
ming biomechanics. In this paper, we assumed all
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model fish were subject to only 2 force vectors: the
‘social force’ (Si) and the ‘random force’ (Ri) on each
fish i during time t. The social force likely depends
on many parameters in real animals: (1) the number
of influential neighbors (Warburton & Lazarus 1991),
(2) the shape of the attraction/repulsion function
(Romey 1996), (3) the strength of the ‘alignment’ force
(Sannomiya & Duostari 1996), (4) the width of attrac-
tion, repulsion, and alignment regions (Couzin et al.
2002), and (5) the total population size (Flierl et al.
1999). In this paper, we explore the strength of the
alignment force, and how it affects certain emergent
properties of fish schools (e.g. polarity, group speed).
We consider other factors elsewhere (Viscido et al.
unpubl.).

To determine the behavioral decision of a fish, we
first defined a total force vector (Fi) on any individual i
during time t as a sum of social and random forces (Ina-
gaki et al. 1976, Matuda & Sannomiya 1980, Aoki 1982,
Niwa 1994, Sannomiya & Duostari 1996):

(1)

If the computed magnitude of Fi exceeded Fmax, the
simulation program re-scaled Fi to have magnitude
Fmax (while preserving direction). Note that, in addition
to random and social force, real fish will also experi-
ence an opposing force due to drag. For simplicity, we
did not include drag in this model; the effects of drag
are reported elsewhere (Viscido et al. unpubl.).

Social force: The total social force acting on fish i
during time step t was the sum of social forces between
fish i and each other member of the population:

(2)

where ρ is population size (ρ = 4 or 8), and Sij repre-
sents the social force between fish i and each neighbor
j. The social force, consisted of 2 distinct components:
the attraction/repulsion force and the alignment force.
Fish had a preferred distance to their neighbors (δp =
1.9 BL) based on observed preferred distances for
Chromis punctipinnis (Parrish & Turchin 1997). We
defined a neighbor fish j that was within ±0.5 BL of the
preferred distance as being within the ‘alignment
zone’ (Fig. 1a). Within the alignment zone, fish i expe-
rienced an alignment force due to j (ΑΑij) in the swim-
ming direction of fish j. We varied the magnitude of
vector ΑΑij from 0.5 to 50% of Fmax (i.e. always far less
than the maximum possible attraction/repulsion force)
in separate model runs. The magnitude of ΑΑij was con-
stant throughout the alignment zone, and for all indi-
viduals in a given simulation experiment (Fig. 1b).

Outside the alignment zone, fish i was either
attracted to, or repulsed from, fish j, depending on the
distance between them. When fish j was closer than

the repulsion distance δr, it was in the ‘repulsion zone’
(Fig. 1a), and the force acting on fish i due to fish j was
directed along the vector from j to i. This ‘repulsion
force’ increased linearly from –Fmax at a distance of 0
from fish i, to 0 at exactly δr = 1.4 BL (Fig. 1b). When
fish j was farther away than the attraction distance δa,
fish j was in the ‘attraction zone’ (Fig. 1a), and the force
acting on fish i due to fish j was directed along the vec-
tor from i to j. This ‘attraction force’ increased linearly
from 0 at exactly δa = 2.4 BL to a maximum of +Fmax at
a distance of 5 BL (Fig. 1b). The social force remained
at +Fmax to a distance of 100 BL (except within the blind
region), at which point fish j was assumed to be outside
the visual range of fish i (and hence the social force
was 0).

S Si ij
j

  =
=

−

∑
1

1ρ

F S Ri i i  = +
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Fig. 1. Social attraction and alignment forces used in the sim-
ulation model. (a) The 3 regions over which social forces act:
the repulsion zone (R), the alignment zone (α), and the attrac-
tion zone (A). Arrows point to the distance at which repulsion
begins (δr), the distance at which attraction begins (δa), and
the distance of maximum attraction (δm). The 60° arc behind
the fish is the ‘blind spot.’ (b) The 2 forces over distance, with
social (attraction/repulsion) force (thick line) in units of dynes,
and alignment force (shaded area) as a percent of maximum
force (Fmax). For simplicity only the 25% alignment force is 

shown. δp: preferred distance to neighbor
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Random force: During each time step, a variable
random force acted on each simulated fish, represent-
ing stochastic behavioral and environmental factors
that were not explicitly modeled (Flierl et al. 1999).
This random force was a vector with random direction
and whose magnitude was a random normal variate,
with a mean of 0 and a standard deviation of Fmax/6
(i.e. 17 dynes). Because there was an upper limit to
total force on an individual (Fmax), this random force
was a relatively smaller component of total force
when social forces were large, such as when a fish
was about to collide with a neighbor, or was sepa-
rated from the school. Conversely, the random force
was a relatively larger component of total force when
social forces were small, such as when all neighbors
were in the alignment zone (where forces were
always 50% of attraction/repulsion or less), or when
no neighbors were present within the maximum sens-
ing distance (where social force was 0). 

Statistical analysis. Because our observational ex-
periments lasted a relatively long time (10 min), and
therefore fish were likely to encounter the aquarium
edge frequently during an observation, we tested
whether our metrics might have been affected by the
group’s proximity to an edge surface. We compared
the distance between the group center and the nearest
tank edge, in each frame, to each of the 3 schooling
metrics tested here, using a product-moment correla-
tion. There was no relationship between edge proxim-
ity and any of the metrics used (4 fish: r 2

polarity = 0.03,
r2

speed = 0.02, r2
NND = 0.05; 8 fish: r 2

polarity = 0.01, r 2
speed =

0.01, r 2
NND = 0.03; p > 0.05 in all cases).

We report statistical results for 3 emergent proper-
ties of both real and simulated fish schools: polarity,
group speed, and mean NND. Polarity and group
speed are characteristics of the group (not the individ-
ual), and we therefore computed a single value of each
property for each group at each time step. Fish were
defined as being in a group if they were within 5 BL of
at least 1 other neighbor, and otherwise were consid-
ered stragglers (and, hence, not included in the group
property analysis). When more than 1 group was pre-
sent during a single time step (e.g. 2 groups of 4 fish in
an 8 fish trial), we computed the average value across
all groups, to obtain a single mean polarity and mean
group speed for each time step. These group-based
means were not ‘weighted’ in any way (e.g. by group
size). NND is a property of individuals, and we there-
fore computed a single mean NND value for the entire
population at each time step. Additional metrics at the
individual, group, and population level, including path
curvature, group size, and collision rate, are reported
elsewhere (Viscido et al. unpubl.). We also display the
polarity and group speed of a single group in several
places (see Figs. 2 & 3). This second approach is merely

a visual mechanism to demonstrate the observed
group-level patterns (which would not be visible if
‘averaged out’), and was not used for computing time-
averaged statistics. In these cases only (see Figs. 2 & 3),
we report the maximum value obtained by any group
within the population for each time step.

Time averages of the 3 properties were computed for
each single 30 s segment of a real fish trial. For simula-
tions, we used the latter half (time steps 900 to 1800).
This choice was designed to (1) make the simulation
time period and the filmed time period comparable,
and (2) eliminate the effects of initial conditions (i.e.
reduce simulation artifacts). We also compared polarity
and group speed using a correlation analysis.

Polarity: We estimated group polarity as the mean
vector angle deviation between group and individual
heading (Huth & Wissel 1992). Let Vi represent a unit
velocity vector for fish i (scaled to preserve direction)
and let U represent the unit velocity vector for
the group’s center. We compute the 3D angle deviation
αi between each fish’s velocity vector and that of the
group, by taking the inverse cosine of the dot product:

(3)

The group’s polarity φ is then the mean of these
angle deviations:

(4)

where G represents the group size. Note that as φ
approaches 0°, fish headings approach parallel,
whereas when polarity approaches 90°, fish headings
approach perpendicular. Because this metric is
counter-intuitive (high numbers represent a low
amount of polarity), we used a non-dimensionalized
form of polarity (φ*) defined as:

(5)

The non-dimensionalized polarity φ* thus took on
values ranging from 0 (completely non-polarized) to 1
(perfectly aligned). Note that this approach computes
the polarity for a single group of fish; this measure was
reported either as the maximum observed for all
groups within the population (see Fig. 2), or as the
mean across all groups within the population (see
Figs. 4, 6 & 7).

Group speed: Group speed vt in a single time step
was computed as the magnitude of the group cen-
troid’s velocity vector from time t to t + 1. The speed
was calculated in units of cm frame–1 for real fish and
BL time step–1 for simulated fish and converted to
cm s–1 and BLs–1, respectively. For ease of comparison
between real and simulated data, we used a non-
dimensionalized form of group speed (v*) computed as:

φ φ
*  = ° −( )

°
90

90

φ α  =
=
∑1

1G
i

i

G

  α i i  cos= ⋅( )−1 V U
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(6)

where vmax represents the maximum speed achieved
across all replicates. For real fish, vmax represented the
maximum for an entire trial (5 min); for simulated fish,
vmax represented the maximum for all runs for each
set of simulation conditions. The non-dimensionalized
group speed v* therefore ranged from 0 (stationary)
to 1 (moving at the maximum velocity observed for
that set of experimental conditions). Note that this
approach computes the speed for a single group of fish;
this measure was reported either as the maximum
observed for all groups within the population at each
time step (see Fig. 3), or as the mean across all groups
within the population (see Figs. 6 & 7).

Nearest-neighbor distance: The NND for any fish i
(NNDi) was the minimum distance di,j between fish i
to all neighbors j in the population ρ (Krebs 1989):

(7)

We report time-averaged NND values for each simu-
lation run (N = 15 for each population size and alignment
force strength) and each real fish trial (N = 3 for each
population size). For real fish, we used 1 BL = 5.3 cm to
obtain NND in units of BL. Note that computing NND in
this fashion means that, in some cases, the same distance
will be counted twice when there is a reflexive pair (e.g.
A is the closest neighbor to B, and vice versa).

RESULTS

In our observations, the maximum observed polarity
(φ*) of all giant danio schools within the population
varied over the full possible range from 0 (non-
polarized) to 1 (perfectly aligned) throughout each trial
for both 4- and 8-fish populations (Fig. 2a,b). Fish
schools in populations of 4 individuals had a mean
polarity across all trials (N = 3) of 0.57 (±0.08 SD),
whereas schools within 8-fish populations (N = 3) had
a mean polarity of 0.41 (±0.11 SD). Group speeds (vt)
for schools within 4- and 8-fish populations were dyna-
mic, ranging from 0 (stasis) to 11.6 cm s–1 (maximum)
within 60 s (Fig. 3a, b). Mean speed was 7.35 cm s–1

(±1.79 S.D.) and 5.17 cm s–1 (±2.39 SD) for 4- and 8-fish
populations, respectively. However, average relative
(non-dimensionalized) speed was very similar for both
4 fish (v* = 0.64 ± 0.15 SD) and 8 fish (v* = 0.56 ±
0.26 SD) groups. NND was not affected by population
size (2-sample t-test, ts = 0.715, p > 0.25). Mean NND
was 12.3 cm (±6.6 SD) (i.e. 2.3 ± 1.2 BL) for 4 fish and
16.8 cm (±19.6 SD) (i.e. 3.1 ± 1.8 BL) for 8 fish.

By comparison, ranges of polarity in simulated fish
schools depended strongly on both the population size

and the amount of alignment force (Fig. 2c–f). Even
very small amounts of alignment force (e.g. 1% of Fmax)
caused schools within populations of 4 model fish to
trend towards perfect alignment (Fig. 2c). Increasing
population size, even to just 8 model fish, destroyed
this alignment (Fig. 2d). For the stronger alignment
forces used (e.g. 10% of Fmax, Fig. 2e, f), schools always
tended to near-perfect alignment, regardless of popu-
lation size.

We quantified the relative effects of population size
and alignment force strength on φ* using a 2-way
ANOVA across all simulation runs. The 1-way compar-
isons were highly significant (df = 1, F = 247.20, p <
0.001 for population size; df = 6, F = 328.24, p < 0.001
for alignment force), indicating that both population
size and alignment force affect alignment. Further-
more, the 2-way population size × alignment force
interaction was also highly significant (df = 6, F =
32.65, p < 0.001), indicating that the population size
affects how sensitive polarity is to alignment force.

To estimate the relative amount of alignment force
real fish might experience to produce these observed

  NND d d di i i  min ,  ,  ...,  , ,= ( )1 2 ρ
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Fig. 2. Maximum observed polarity (φ*) across fish schools
within a single trial over time for populations of (a) 4 real fish,
(b) 8 real fish, (c) 4 simulated fish with an alignment force of
1% of Fmax, (d) 8 simulated fish with an alignment force of 
1% of Fmax, (e) 4 simulated fish with an alignment force of
10% of Fmax, and (f) 8 simulated fish with an alignment force 

of 10% of Fmax
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polarities, we plotted mean polarity for model fish
across all replicates for each alignment force used,
essentially creating a ‘standard curve’ (Fig. 4a). The
mean polarity observed for schools in populations of
4 live fish was similar to simulations where the align-
ment force was 1 to 2% as strong as Fmax (Fig. 4a),
whereas the mean polarity observed for schools in pop-
ulations of 8 live fish was most similar to simulations
where the alignment force was just above 5% of Fmax

(Fig. 4b). 
Schools in model populations of 4 fish quickly

reached maximum speed (12 BL s–1), with the time
course of equilibrium exacerbated by increasing the
alignment force strength (Fig. 3c,e). Increasing popu-
lation size to 8 individuals damped this sensitivity,
resulting in a relative group speed that was a fraction
of the maximum observed (v* = 0.17 ± 0.07 SD at 1%
alignment, Fig. 3d), a pattern visually similar to real
fish (e.g. Fig. 3b). However, increasing the alignment
force to 10% destroyed this similarity (Fig. 3f).

To quantify the relative effects of population size and
alignment force strength on v*, we performed a 2-way

ANOVA across all simulation runs. As with polarity,
1-way comparisons were also highly significant (df = 1,
F = 193.34, p < 0.001 for population size; df = 6, F = 477.98,
p < 0.001 for alignment force), indicating that both popu-
lation size and alignment force have strong effects on
group speed. The 2-way population size × alignment
force interaction for v* was also highly significant (df = 6,
F = 40.66, p < 0.001), indicating that population size af-
fects how sensitive group velocity is to alignment force.

To deduce the relative amount of alignment force
real fish might experience to produce observed NND
values, we plotted mean NND for model fish across all
replicates for each alignment force used, similar to the
‘standard curve’ created for polarity (Fig. 5). The mean
NND observed in 4-fish populations, was similar to
simulations where the alignment force was 1 to 2% as
strong as Fmax (Fig. 5a), whereas the mean NND
observed in populations of 8 live fish was considerably
higher in all cases than that observed in simulated
schools (Fig. 5b). In general, however, the mean NND
for simulated fish fell within ±1 SD of that observed for
real fish, regardless of the alignment force used. 
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Fig. 3. Maximum observed group speed (v*) across fish
schools within a single trial over time for populations of
(a) 4 real fish, (b) 8 real fish, (c) 4 simulated fish with an align-
ment force of 1% of Fmax, (d) 8 simulated fish with an align-
ment force of 1% of Fmax, (e) 4 simulated fish with an align-
ment force of 10% of Fmax, and (f) 8 simulated fish with an 

alignment force of 10% of Fmax

Fig. 4. Mean time-averaged polarity (φ*) as a function of the
alignment force strength, across all simulation experiments,
for populations of (a) 4 and (b) 8 individuals. Alignment force
strength is represented as a percentage of the maximum at-
traction/repulsion force Fmax. For reference, the overall mean
polarity for real fish is shown (dashed line) ± 1 SD (thin lines)
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To quantify the relative effects of population size and
alignment force strength on NND, we performed a
2-way ANOVA across all simulation runs. As with the
other metrics, the 2-way population size × alignment
force interaction for NND was highly significant (df =
6, F = 13.42, p < 0.001), indicating that the value of
each factor can change the NND that would otherwise
be observed due to the other factor. However, when
considering the 1-way effects, NND was significantly
affected by alignment force alone (df = 6, F = 477.98,
p < 0.001), but not by population size alone (df = 1, F =
0.0, p > 0.95). Thus, results with simulated fish
reflected the results with real fish: population size, by
itself, was not important in determining NND.

Correlation analysis showed a positive relationship
between v* and φ*. For populations of 4 live fish, there
was a moderate positive correlation between the
2 properties (r 2 = 0.42, p < 0.01, Fig. 6), while in
populations of 8 live fish there was a stronger positive
correlation (r2 = 0.67, p < 0.001, Fig. 6). The relationship

was even more dramatic (r 2 = 0.98 and 0.99, p < 0.001 in
both cases) for simulated fish regardless of population
size (Fig. 6). For real fish, the position of the time-aver-
aged values along the v*–φ* axes depended partly on
the individual fish in the school: each 8-fish trial had a
‘characteristic’ set of values (Fig. 6c), for example, sug-
gesting that emergent properties depend very strongly
on the quirks of the individual school members. For
simulated fish (populations of which were always en-
tirely identical), the position of the time-averaged val-
ues along the v*–φ* axes depended entirely upon the
strength of the alignment force (Fig. 6b,d).

DISCUSSION

Our results quantify the relationship between the
speed of motion and polarity of fish schools, and
directly compare emergent properties displayed by
real fish with those displayed in simulation. The simi-
larity of simulated fish school behavior to that of real
fish depended strongly on the alignment force strength
of the former (Figs. 4 & 5).

Real fish schools showed a wide range of polarity val-
ues over time (Fig. 2), from completely non-polarized
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Fig. 5. Mean time-averaged nearest-neighbor distance (NND)
as a function of the alignment force strength, across all simu-
lation experiments, for populations of (a) 4 and (b) 8 individu-
als. Alignment force strength is represented as a percentage
of the maximum attraction/repulsion force Fmax. For refer-
ence, the overall mean NND for real fish is shown (dashed 

line) ±1 SD (thin lines)

Fig. 6. Relationship between time-averaged group speed (v*)
and time-averaged polarity (φ*) for simulation experiments
with (a) 4 real fish, (b) 8 real fish, (c) 4 simulated fish, and (d)
8 simulated fish. Polarity φ* is expressed as a function of
group speed. For real fish (a,b), each point represents a 30 s
time average, with triangles, squares, and circles represent-
ing the 3 different trials for that population size. For simulated
fish (c,d), each point represents the 30 s time average for a
single simulation run, with symbols representing percent of
alignment force: 50% (j), 25% (m), 10% (e), 5% (×), 2% 

(d), 1% (h), and 0.5% (n)
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(i.e. a ‘swarm,’ Shaw 1978) to perfectly aligned (i.e. a
‘school,’ Shaw 1978). Inspection of school polarity time
series reveals that real fish schools were very strongly
aligned most of the time, with irregular periods during
which this orderly structure was destroyed and the
school became a disorganized swarm (e.g. Fig. 2b). For
real fish, therefore, an aligned school appears to be
rather like a self-organized critical state, which is dy-
namically stable until something happens that destroys
the self-organization (Bak et al. 1988, Wu & David
2002) —such as a single individual abruptly changing
position, forcing other group members to re-shuffle.
Schools within populations of 8 simulated fish with an
alignment force of only 1% of Fmax showed the opposite
pattern, spending most of their time in a disorganized
swarm, and then occasionally becoming a polarized
school (e.g. Fig. 2d). However, if the alignment forced
was substantially increased (to 10% or higher), contin-
uous polarization resulted (Fig. 2f).

Theoretical studies have indicated that there may be a
few dynamically stable group types, and that inter-
mediate group types may be relatively unstable. For
example, Couzin et al. (2002) found several dynamically
stable collective behaviors—the swarm, the torus, and
the parallel group—and predicted that animal groups
should change rapidly between these 3 states, but spend
little time in the intermediate states. Our findings agree
with this prediction, for both real fish (where the stable
state is a parallel group, Fig. 2a) and model fish (where
the stable state is either a swarm or a school, Fig. 2e). In
such dynamically stable configurations, transitions to
another configuration are probably the result of changes
in individual behavior (Couzin et al. 2002).

In model fish, polarity depended strongly on the pop-
ulation size as well as on the strength of the alignment
force (Fig. 4). Even weak alignment strength (e.g. 1%)
drove schools in 4-fish populations to perfect polarity, but
it caused schools in 8-fish populations to enter a dynam-
ically stable swarm configuration (Fig. 2). Couzin et al.
(2002) showed convincingly that attraction and orienta-
tion zone widths are critical factors in determining group
structure, and we hypothesize that the relative size of the
zones we used played a key role in the differences ob-
served between 4- and 8-fish populations. In a 4-fish
population, all individuals could conceivably be in each
other’s alignment zone (Fig. 1), allowing rapid and
unswerving alignment. In an 8-fish population, on the
other hand, at least 1 neighbor will almost always lie out-
side each individual’s alignment zone, leading to in-
creasing disorganization as fish turn toward or away
from those in the other zones. If our hypothesis is correct,
then 4-fish model populations can reach a dynamically
stable state, and 8-fish model populations can have their
stable state changed from swarm to parallel school, by
changing the size of 1 or more zones.

To date, most other zone-based models implicitly as-
sume that the alignment force is equal in magnitude to
the attraction/repulsion force (Aoki 1982, Huth & Wissel
1990, Hiramatsu et al. 2000, Inada & Kawachi 2002). As
we have shown in this paper, alignment forces that are
high relative to attraction/repulsion forces are likely to
produce schools that have artificially high and invariable
alignment (Figs. 2 & 4). Additionally, the little available
experimental evidence indicates that such a high align-
ment force is unlikely in real fish. Using tank experi-
ments to estimate the parameters of a zone-based model,
Duostari & Sannomiya (1995) and Sannomiya & Duostari
(1996) calculated the alignment force as being roughly
1/3 to 1/2 the strength of the attraction/repulsion force.
Our own tank observations indicated that the time-
averaged polarity of real fish schools is similar to that of
simulated schools whose members experience an align-
ment force around 1 to 2% of the attraction/repulsion
force’s magnitude. However, with few exceptions (e.g.
Hiramatsu et al. 2000) the polarity of real fish schools is
rarely reported. Our results also indicate that time-
averaged group statistics may be misleading, particu-
larly when the group is rapidly transitioning between
2 very different states (Fig. 2).

Interestingly, while both group-level metrics exam-
ined here (polarity and group speed) varied depending
on population size for simulated fish, the individual-
level metric (NND) did not, either for real fish, or for
simulated fish (Fig. 5). Indeed, simulated fish ap-
proached very nearly the preferred NND defined in
the model, and they were increasingly good at main-
taining that distance as alignment force increased.
Simulated schools with higher alignment forces more
perfectly approached the preferred NND because they
were more perfectly polarized (Fig. 4), and members of
polarized schools will be more likely to maintain a con-
stant distance from one another. For real fish, NND
may depend on fish body shape or sensory apparatus.
For example, fish that have been blinded or had their
lateral line damaged can still school, but their average
NND is different from fish with all sensory systems
intact (Pitcher et al. 1976). 

For both real and simulated fish, group speed (v*)
and group polarity (φ*) were positively correlated
(Fig. 6). This implicitly makes sense: when the group is
not aligned, individual members are facing in many
different directions, and their velocity vectors will tend
to cancel each other out, leading to little net movement
for the group as a whole. It is also difficult, if not impos-
sible, for non-aligned individuals to move very far
without colliding with one another. On the other hand,
when the group is highly aligned, individual members
are facing in approximately the same direction, and
this can lead to rapid group movement in that direc-
tion. To our knowledge, the relationship between
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group speed and velocity has not been investigated in
previous models, although the experimental results of
Hiramatsu et al. (2000) suggest a relationship.

Our results suggest certain ranges of state space
over which animal populations can sustain a regular
architecture. We imagine a 3D state space where each
emergent property statistic measured in this study
(NND, group speed, and polarity) is represented along
an axis, and within which different group types can be
placed (Fig. 7). The simple behavioral rules we used in
this study (zone-based attraction, repulsion, and align-
ment, with only other group-mates as stimuli) lead to a
certain subset of possible architectures. The rela-
tionship between polarity, group speed, and NND was
extremely strong in our simulations (2-way regression,
r2 = 0.98, p < 0.001), and followed the functional form:

(8)

(indicated by the meshed plane, Fig. 7). Thus, if group
types were observed in a different region of the state
space, we would imagine other behavioral ‘forces’ were
at work. For instance, in the Gulf of California, immense
herring schools (hundreds of thousands) tend to hover in
space, with group speed effectively zero, but are aligned
almost perfectly (Parrish 1992). The herring school in this
case is subject to a major force (predation risk) not con-
sidered in our simple attraction/repulsion/alignment
scheme, the defense against which is to remain in
polarized schools to facilitate escape (Parrish 1992). We
hope to improve the realism of our model in the future by
including factors such as internal state and predation

risk, so that a greater diversity of group architecture
types can be exhibited using a single set of simple rules.

The connection between different emergent proper-
ties such as group speed and polarity also suggests
constraints on individual and group behavior: if the
individual group members want the group to acceler-
ate, for example, a viable strategy may be to increase
their polarity or decrease their NND, such that the
group moves to a different region of the 3D state space
(Fig. 7). We also suspect that a few variable individuals
can have a strong effect on group characteristics, and
hence the position of the school in the 3D state space.
For example, adding even a single individual whose
movement rules differ from the other group members
can change overall school structure and motion
(Romey 1996). In the past, little attention has been
given to how different emergent properties such as
group speed and NND relate to one another. Instead,
these properties are reported separately, and often
only 1 or 2 properties are measured in a given study
(reviewed in Parrish et al. 2002). Our research indi-
cates that understanding the relationships between
multiple emergent properties is an especially fruitful
avenue for investigating group behavior. To further
examine these questions, a more detailed version of
the model is being implemented (Viscido et al.
unpubl.). We are also conducting experiments with
larger fish schools (16, 32), and in a larger experimen-
tal tank (4 m3), as well as adding perturbations to the
system (e.g. artificial predators) to make it less static.

The coupling of observational and modeling efforts
can produce insights neither technique would provide
by itself (Bumann et al. 1997). For example, our obser-
vations with real fish showed how polarity and group
speed changed over time, providing a basis for compar-
ison with the simulation results. That comparison indi-
cated that a relatively simple simulation model, includ-
ing only a large social force, a small alignment force, and
a small random force, can produce results approaching
those of real fish (Figs. 2 & 3). The model, in turn, sug-
gested that the emergent properties observed in the live
fish observations can only be achieved with a small
alignment force. With too large an alignment force
(above 5% of the total force), fish schools would be per-
fectly and invariably aligned, which they are not in real
life (Fig. 2a,b), whereas with too small an alignment
force, groups would be completely non-polarized (Fig.
4). Thus, our model indicates that, in the absence of other
environmental factors (e.g. foraging behavior, predation
avoidance), these schooling fish may primarily be con-
cerned with maintaining the proper distance to their
neighbors, and only secondarily concerned with align-
ment. How those other environmental factors would af-
fect both model and real fish behavior is an important av-
enue of future investigation.

  φ*   . *   .   .= − ( ) +0 25 0 61 1 84v NND
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