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INTRODUCTION

Maerl is a carbonate-rich type of marine sediment
deposited by loose-lying calcified algae (Rhodophyta:
Corallinales) (Giraud & Cabioch 1976). It is dredged
industrially as a source of soil conditioner (Grall
& Hall-Spencer 2003) and subject to international
conservation legislation provisions (Donnan & Moore
2003). Maerl deposits build up over thousands of years
in areas characterised by strong water movement (tidal
and/or wave action) in the photic zone (Grall & Hall-
Spencer 2003). Varying in area from 10s to 1000s of m2,
maerl grounds occur from the tropics to polar waters
and form a gravel composed of high numbers of usu-
ally monospecific thalli (Woelkerling 1988). 

These coralline algal gravels support an extremely
diverse fauna and flora (BIOMAERL Team 2003, Steller
et al. 2003) and have significantly greater structural
heterogeneity than common adjacent substrata (Ka-
menos et al. 2003). This is perhaps to be expected, as
high heterogeneity equates to high biodiversity in
many marine systems (Purvis & Hector 2000, Tilman
2000, Sala 2001). However, maerl is slow-growing,
fragile and easily damaged, and a single impaction
event with hydraulic fishing gear and scallop dredges
significantly reduces the heterogeneity of maerl thalli
by breakage, and kills the thalli by burial (Hall-Spencer
& Moore 2000, Hauton et al. 2003, Kamenos et al. 2003),
changing a pristine live maerl (PLM) ground into an im-
pacted dead maerl (IDM) ground (Kamenos et al. 2003).
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Whilst the ecosystem services provided by coastal
habitats such as mangrove forests (Schiermeier 2002)
and sea-grass beds (Naylor et al. 2000) have been
increasingly recognised, the services provided by
maerl habitats have not been addressed. Rocky habi-
tats dominated by coralline algae (e.g. Lithophyllum
sp.) are often described as ‘coralline barrens’ due to
their low diversity and low structural heterogeneity
(Rowley 1989, Sala et al. 1998). Coralline algal gravels
are very different, forming structurally complex sedi-
ments noted for their high biodiversity of juvenile
invertebrates (BIOMAERL Team 2003). We focus
herein on the commercially important queen scallop
Aequipecten opercularis, drawing attention to the eco-
nomic importance of the PLM habitat, as the impor-
tance of benthic habitats is becoming central in fish-
eries management (Kaiser et al. 2002). We also provide
data on the nursery area function of maerl for other
marine invertebrates, with observations on sea urchin
Psammecinus miliaris, Echinus esculentus starfish
Asterias rubens and clam Mya arenaria population
densities during their most elusive period, i.e. after set-
tlement and before recruitment to adult populations. 

Although scallop settlement has been well studied
(Eggleston 1962, Le Pennec 1974, Minchin 1981, Paw-
lik 1992, Harvey et al. 1995, 1997), there are few obser-
vations after detachment from primary settlement sur-
faces but prior to colonization of adult habitats. Some
species move little, such as the bay scallop Argopecten
irradians which uses sea-grass beds both as a nursery
area and an adult habitat (Arnold et al. 1998, Bologna
& Heck 1999, Irlandi et al. 1999), whereas commercial
NE Atlantic scallops are more mobile. Juvenile queen
Aequipecten opercularis and great Pecten maximus
scallops attach primarily to various algae, including
Laminaria saccharina and Desmarestia aculeata, but
also to bryozoans, hydroids, gravel, clean shell and
general benthic epifauna (Eggleston 1962, Paul 1981,
Minchin 1992); but we know little about how they sub-
sequently recruit onto adult habitats. 

In this study we were interested in the intermediate
role played by maerl habitats as ecosystem service
providers, particularly as coralline algae have a macro-
molecular fraction of GABA (γ-aminobutyric acid)
which chemically stimulates invertebrate settlement
(Giraud & Cabioch 1976, Morse et al. 1980, Morse &
Morse 1984), for example by gastropods Haliotis spp.
(Morse & Morse 1984, Daume et al. 1999, Day &
Branch 2002) and polychaetes Spirorbis spp. (Gee
1965, Crisp 1974). Scallops are known to respond to
chemical cues during metamorphosis and settlement
(Pawlik 1992, Harvey et al. 1997). In Pecten maximus
for example, metamorphosis can be induced by jacara-
none extracted from the red algae Delesseria san-
guinea (Yvin et al. 1985, Cochard et al. 1989). Recently,

post-settled juvenile queen scallops have been shown
to be attracted to live maerl, possibly by the presence
of GABA or the biofilm associated with the presence of
the live maerl veneer (Kamenos 2004, Kamenos et al.
2004a). In the presence of predators, live maerl with
highest heterogeneities was selected preferentially,
with juvenile queen scallops using the inter- and intra-
matrix spaces of maerl thalli as refuges (Kamenos et al.
2004a). Similarly high numbers of juvenile Placopecten
magellanicus (Brethes & Bourgeois 2003) and Chlamys
islandica (Himmelman & Guay 2003) have been ob-
served associated with empty scallop shells resting on
less heterogeneous substrata. It is predicted that other
juvenile invertebrates will also utilise the maerl matrix
in a similar manner to scallops.

Despite the global distribution of maerl, it remains
one of the most overlooked shallow-water marine
habitats. We describe maerl and other substratum
usage, focusing on juvenile queen scallops but includ-
ing other invertebrates on PLM, IDM and comparative
substrata on the west coast of Scotland at various spa-
tial and temporal scales.

MATERIALS AND METHODS

Sampling sites. We selected 9 sampling sites on the
west coast of Scotland at –3 to –12 m chart datum
within the Clyde Sea area, Loch Sween, Loch Carron
and Loch Torridon (Fig. 1). At all sites, either PLM or
IDM (Lithothamnion glaciale and Phymatolithon cal-
careum) was present along with other common com-
parative substrata. Gravel was present at all sites
except Site 2, and was used as a comparative standard
for other substrata. All IDM sites were in the Clyde Sea
area and have, in the past, been heavily impacted by
scallop-dredging (Kamenos et al. 2003), all other sites
assessed have suffered no physical anthropogenic
impaction and were in pristine condition (assessed
using the techniques described by Kamenos et al.
2003).

Sampling regime. Site 7 was surveyed every 2 mo
from February 2002 to February 2003. Other sites
(Fig. 1) were surveyed once in winter 2002/2003. Den-
sities of juvenile Aequipecten opercularis (<45 mm
shell height, sh; for sample numbers see Fig. 3) were
quantified using timed SCUBA transects. Randomly
selected transects were swum by 2 divers at 9 to
10 m min–1 for 5 min. All transects were surveyed at
slack water ±2 h to minimise current effects on swim-
ming distance. Scallops observed in a 2 m wide strip
were measured and recorded along each 50 m transect
(transect area = 100 m2). Species, time of sighting, shell
height and total number of individuals in each transect
were recorded. Erect algae were inspected for the at-

184



Kamenos et al.: Maerl grounds as nursery areas

tachment of juvenile A. opercularis on each sampling
trip at Site 7. Asterias rubens (<3 cm diam at Site 7),
Echinus esculentus (<5 cm diam at Site 9) and Mya
arenaria (siphon < 0.5 cm diam at Site 9) densities were
surveyed in randomly selected 20 m2 transects (n = 5
per substratum) using SCUBA. Psammechinus miliaris
(<2 cm diam) densities were surveyed using randomly
selected 2.5 m2 quadrats (n = 8 per substratum) by
SCUBA at Site 9. 

Data analysis. Data were analysed using Minitab®

Version 13 and Excel®. Data sets did not deviate sig-
nificantly from the assumptions required by the as-
sociated tests. Juvenile scallop densities at each site/

substratum were analysed using multiple-comparison
Kruskal-Wallis tests between substrata. Temporal
changes in scallop densities at Site 7 were analysed
using a repeated-measures ANOVA. Due to the pres-
ence of an interaction (substratum and month) post-
hoc Tukey pairwise comparisons were carried out
using cell and not level means, using the error MS,
which is the denominator MS, of the interaction term
(Neter et al. 1996). All other species densities were
compared using 1-way ANOVAs. 

RESULTS

Juvenile queen scallop (<45 mm sh) densities were
significantly (H5 = 94.32, p < 0.0001) (Fig. 2) higher on
PLM than on all other substrata surveyed (IDM, gravel,
sand, rock, sea-grass) for 9 sites on the west coast of
Scotland (Fig. 1).

Surveys every 2 mo over a 14 mo period indicated
significantly higher juvenile queen scallop densities on
PLM than on gravel or rocky substrata at Site 7 (F2 =
180.62, p < 0.0001). Juvenile population densities on
gravel were significantly higher than those on rocky
substrata only during June and August 2002; at all
other times no differences were detected (Fig. 3). For all
substrata, juvenile queen scallop densities were sig-
nificantly highest in December (F6 = 29.04, p < 0.0001)
(Fig. 3). During 91 SCUBA dives (136.5 man-hours) at
Site 7, only 6 queen scallop juveniles were observed on
non-coralline algae: 5 on Halidrys siliquosa (growing
on rock) and 1 attached to H. siliquosa (on PLM). Shell
height frequencies of all Aequipecten opercularis mea-
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Fig. 1. Areas on west coast of Scotland where surveys were
completed in winter 2002/2003. 1: Ardlamont Point; 2: Brod-
ick Bay/Merkland Point; 3: Craeg Gobhainn; 4: Stravanan
Bay; 5: Tan Buoy; 6: North Strome Slip; 7: Caol Scotnish; 

8: Linne Mhuirich; 9: Inner Loch Torridon

Fig. 2. Aequipecten opercularis. Mean juvenile (<45 mm shell
height) densities on pristine live maerl (PLM), impacted dead
maerl (IDM), gravel, rock, sand and sea-grass (SG) at 9 sites
on west coast of Scotland. Error bars = SD; horizontal bar = 

non-significant (p > 0.05) differences
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sured indicated that recruitment to all substrata oc-
curred in October to December. There was a greater in-
crease in scallop densities on PLM in October and De-
cember than the corresponding increases observed on
gravel and rocky substrata (F12 = 4.6, p < 0.0001) (Fig. 3).

Juvenile Psammechinus miliars densities on PLM
(18.2 ± 2.7 (mean ± SD)) were significantly higher
(F2 = 187.17, p < 0.0001) than those on gravel (2.9 ± 1.2)
and sand (0.6 ± 0.9) during winter in Loch Torridon.
Juvenile Echinus esculentus densities on PLM (14.6 ±
3.1) were significantly higher (F2 = 57.9, p < 0.0001)
than those on gravel (1.8 ± 0.8) and sand (0.6 ± 0.9) dur-
ing winter in Loch Torridon. Juvenile Asterias rubens
densities on PLM (25.4 ± 2.1) were significantly higher
(F2 = 72.5, p < 0.0001) than those on gravel (11 ± 3.4)
and sand (5.4 ± 2.5) during winter in Loch Sween.
Juvenile Mya arenaria densities on PLM (108 ± 28.9)
were significantly higher (F2 = 221.38, p < 0.0001) than
those on gravel (3.8 ± 1.1) and sand (5.4 ± 1.5) during
winter in Loch Torridon (all spp.: Fig. 4). 

DISCUSSION

We have shown that live maerl grounds provide a
critically important service amongst the patchwork of
shallow-water NE Atlantic coastal habitats. These
structurally complex carbonate sediments consistently
harbour significantly higher numbers of juvenile
queen scallops and other juvenile invertebrates than
adjacent habitats. Parallels can be drawn with the
ecosystem services provided by other structurally com-
plex biogenic habitats. Maerl habitats are similar to the
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Fig. 3. Aequipecten opercularis. Mean juvenile (<45 mm shell height) densities on pristine live maerl (PLM), gravel, and rock
substrata during 7 surveys every 2 mo from February 2002 to February 2003 at Site 7 (Caol Scotnish). Error bars = 95% CI. 

Horizontal bars at same level = non-significant differences (p > 0.05)

Fig. 4. Mya arenaria 20 m–2 (n = 5), Asterias rubens 20 m–2

(n = 5), Echinus esculentus 20 m–2 (n = 5) and Psammechinus
miliaris 2.5 m–2 (n = 8). Mean numbers of juveniles on pristine
live maerl (PLM), gravel, sand and rock on west coast of
Scotland. All species were sampled on PLM, gravel and
sand, apart from A. rubens which was sampled on PLM, 

gravel and rock 

140

120

100

20

0

N
um

b
er

 o
f i

nd
iv

id
ua

ls

Species
M. arenaria A. rubens E. esculentus P. miliaris

PLM
Gravel
Sand
Rock



Kamenos et al.: Maerl grounds as nursery areas

marine habitats formed by kelp forests, sea-grasses
and mangroves. In each of these cases, perennial pri-
mary producers provide habitats that are essential in
the life histories of associated marine life. Juvenile
invertebrates utilise maerl habitats in much the same
way as juvenile cod utilise kelp forests (Lindholm et al.
1999), juvenile wrasse, bream, cod and scallops utilise
sea-grasses (Moore & Jennings 2000) and juvenile
prawns and finfish utilise mangroves (Primavera 1998,
Naylor et al. 2000), i.e. for the provision of food and
shelter from predation (Kamenos 2004).

Juvenile queen and great scallops tend to attach pri-
marily to debris such as clean shells or to erect benthos
such as macroalgae, bryozoans and hydroids (Eggles-
ton 1962, Paul 1981, Minchin 1992). Where PLM was
present, Aequipecten opercularis juveniles were at-
tracted away from the substrata on which they initially
settle (Kamenos et al. 2004a). They used PLM to ful-
fil nursery area prerequisites preferentially to IDM,
gravel, sand, and rocky substrata as well as sea-grass,
Halidrys siliquosa, Chorda filum and laminarian algae.
Movement of juvenile A. opercularis from a settlement
substratum to nursery sites may be facilitated by their
high surface area-to-volume ratio and thin, light shells.
Thus they are easily transported (Minchin 1992), par-
ticularly in regions with strong currents such as over
maerl grounds. Spat have been observed to use post-
metamorphic byssal drifting (Beaumont & Barnes
1992) and are active swimmers, with adult populations
shown to migrate large distances (Mathers et al. 1979).

Scallops spawn during August/September in UK and
Irish waters (Minchin 1992). This is followed by post-
settlement recruitment, with significantly higher popu-
lation densities of juvenile scallops observed on all
substrata during October to December, as we have
observed. The reduction in juvenile scallop densities
from December to January was probably caused by a
combination of predation of new recruits, growth of the
older cohort to >45 mm shell height and migration of
older juveniles to adult populations.

Juvenile Aequipecten opercularis are attracted to
PLM by an hierarchical series of chemical and physical
cues (Kamenos et al. 2004a) known to occur in other
settling invertebrates (Crisp 1984, Chia & Koss 1988),
using maerl thalli as a refuge in the presence of preda-
tors (Kamenos et al. 2004a). It is likely that the higher
post-settlement recruitment to PLM rather than gravel
and rock substrata, observed in December at Site 7, is
attributable to such stimuli, combined with the refuge
capacity of PLM and the subsequent effects that refuge
utilisation has on differential predation between PLM
gravel and rock substrata.

The significantly higher juvenile queen scallop pop-
ulation densities in February 2003 than in February
2002 may be attributable to (1) delayed recruitment in

2002, thus higher scallop densities at the end of the
2002 recruitment period would still have been present
in February 2003, (2) a better recruitment in 2002 than
2001, that would have increased scallop densities in
general, (3) improvement in juvenile queen scallop
recognition on PLM by the authors and (4) any combi-
nation or all of these factors.

This is the first report of live maerl grounds being
consistently used by commercially important inverte-
brates during a critical phase in their life histories, i.e.
between settlement and their appearance in adult pop-
ulations. It is likely that, similar to bay scallops in sea-
grass beds (Bologna & Heck 1999), PLM offers the opti-
mum compromise between food supply and refuge
availability and thus the highest growth potential for
residing juvenile queen scallops and other inverte-
brates (Kamenos 2004). Although our study focused on
the commercially important queen scallop as an indi-
cator of ecosystem service provision, the observation
that other juvenile invertebrates were found in signifi-
cantly higher population densities on live maerl than
adjacent substrata indicates the wider importance of
PLM in the provision of nursery areas. Not only do
juveniles of mobile commercially important (Aequi-
pecten opercularis and Psammechinus miliaris) and
non-commercially important (Asterias rubens and Ech-
inus esculentus) species utilise maerl grounds, but also
a commercial species (Mya arenaria) which has a
mobile juvenile phase and a sedentary adult phase
(Yonge 1949). This is highly significant as it indicates
that, while mobile, juvenile M. arenaria use PLM
grounds to fulfil nursery-area prerequisites, possibly
gaining anti-predatory or growth advantages, before
recruiting to sandy substrata where the sessile adult
populations burrow deeply to avoid predation.

Our study has focused on maerl grounds in Scotland.
However, these coralline algal gravels have a wide-
spread global distribution (Foster 2001). A fertile area
for future research would be to determine whether
maerl beds are just as important for commercial spe-
cies and juvenile invertebrates at other sites around
the globe. In Scotland, not only do PLM grounds fulfil
nursery area prerequisites for commercially exploited
species, but also the destruction of these fragile habi-
tats will be ecologically and economically detrimental
to regional biodiversity. 

Understanding the importance of benthic habitats is
becoming central in fisheries management, e.g. the
concept of ‘essential fish-habitat’, as we attempt to
avoid fish-stock collapses. The high juvenile biodiver-
sity and biomass associated with maerl grounds (BIO-
MAERL Team 2003), combined with findings of this
and other studies (Kamenos 2004, Kamenos et al.
2004a,b), indicate that maerl grounds supply many of
the prerequisites of a nursery area, including high
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juvenile densities, somatic growth and survival, to a
wide array of organisms. Maerl habitat degradation
has been noted world-wide (BIOMAERL Team 2003);
such losses will diminish nursery-area function and
reduce regional biodiversity, and may damage com-
mercial fisheries. Given such findings, more urgency is
needed to conserve maerl habitats and the ecological
services they provide.
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