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INTRODUCTION

Diel variation in foraging behavior is a common
feature of diving animals. Penguins, for example, are
primarily diurnal foragers (Wilson et al. 1993, Pütz &
Bost 1994, Pütz et al. 1998, Bost et al. 2002) while fur
seals are generally nocturnal foragers (Croxall et al.
1985, Boyd & Croxall 1992). On the other hand, some
pinniped species appear to forage during both day-
light and darkness (Kooyman 1975, Le Boeuf et al.
1988, 2000, Feldkamp et al. 1989, Coltman et al.
1997). Different tactics could be used during the day
and at night because of changes in the relative
importance of the predator’s sensory systems and
because many aquatic organisms, including pinniped
prey, make diel vertical migrations (e.g. Stich &

Lampert 1981, Wurtsbaugh & Neverman 1988,
Scheuerell & Schindler 2003). However, little is known
about how pinnipeds may change their foraging tac-
tics in response to diel cycles in aquatic ecosystems.

In this respect, Baikal seals Phoca sibirica are
interesting models. Firstly, they appear to forage
almost continuously both day and night (Stewart et
al. 1996). Secondly, their prey, such as sculpin fishes
and amphipods, are known to undertake pronounced
diel vertical migrations in Lake Baikal (Melnik et al.
1993, Pankhurst et al. 1994), probably to escape
predators, which are efficient hunters even at sub-
stantial depths in the clear waters of Lake Baikal
(Gliwicz 1986). Therefore, we would expect Baikal
seals to use different foraging tactics during day and
at night.
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Time-series data on diving behavior have not previ-
ously been obtained for Baikal seals. One practical
reason may lie in the fact that animal-borne micro-
data loggers require the recapture of animals for data
retrieval and the recapture of instrumented Baikal
seals in Lake Baikal is almost impossible (Baranov
1996). An exception is satellite-linked telemetry
(Stewart et al. 1996); however, such systems can
transmit only a limited amount of data (see Fedak et
al. 2002). In the present study, we used a newly-
developed time-scheduled release system. The sys-
tem releases micro-data loggers from the seals and
allows the loggers to be retrieved via VHF radio sig-
nals. Recapture of the seals is therefore not neces-
sary. Our objective in this study was to determine
possible differences between the foraging tactics of
Baikal seals during the day and those at night.

MATERIALS AND METHODS

We captured 2 female Baikal seals using modified
twine gill-nets placed just offshore at the Selenga
River Delta (52.47° N, 106.88° E) in Lake Baikal, Rus-
sia, during December 2002. The seals (Individuals 1
and 2) were held in captivity at the Limnological
Institute aquarium in Listvyanka for about 6 mo. Indi-
vidual 1 (54.6 kg) and Individual 2 (72.8 kg) were
released on the shore in Listvyanka (51.85° N,
104.90° E) on 19 and 22 June 2003, respectively, after
the following instruments had been attached to their
backs.

We used 2 types of micro-data loggers. A multi-
sensor data logger (UWE1000-PD2GT: 22 mm in dia-
meter, 124 mm in length, 92 g in the air; Little
Leonardo) with a memory of 32 Mb and 12-bit resolu-
tion, recorded swimming speed, depth and tempera-
ture at 1 s intervals, and 2 D accelerations (for detect-
ing flipper movement and body angle) at 1/16 s
intervals (see details in Sato et al. 2003). A digital
still-picture logger (DSL-380DTV: 22 mm in diameter,
138 mm in length, 73 g in the air; Little Leonardo)
with a memory of 2 Gb, recorded depth and tempera-
ture (12-bit resolution) at 1 s intervals, and still-color
images (370 × 296 pixels) at a pre-programed sam-
pling interval of 30 s after a pre-programed start time
of 2 h. Because the DSL does not contain a light
source (e.g. flash), the sampling intervals and start
time were selected to use all of the memory (ca. 1300
images) during daylight hours.

The data loggers were attached to a float of co-
polymer foam, in the top of which a VHF radiotrans-
mitter with a 45 cm semi-rigid wire antenna was
embedded (Fig. 1). A plastic cable connected to a
time-scheduled release mechanism (Little Leonardo)

bound the package to an aluminum plate, which was
glued onto the seals with a quick-setting epoxy resin.
The release mechanism included a timer that was
activated 24 h after attachment. Once the release
mechanism had been activated, the plastic cable was
severed by an electric charge from the battery of the
device, and the whole buoyant package was released
from the seals. The package floated to the surface of
the lake and was located via VHF radio-signals. The
total weight of the system was 360 g in the air
(approx. 0.6% of the body mass of a Baikal seal).

The PD2GT logger uses a 2-axis acceleration sensor
that measures both dynamic acceleration (such as
propulsive activities) and static acceleration (such as
gravity). Swaying accelerations often contained low-
frequency variations that were assumed to be the
result of various turning and rolling movements by the
seals. These were separated using a 0.1 Hz highpass
filter (IGOR Pro, WaveMetrics). The remaining peaks
and troughs with absolute amplitudes greater than
0.5 m s–2 were considered to be stroke activities of
the seals (Sato et al. 2003). Surging accelerations are
affected by both the forward movements of the seal
and gravity (Tanaka et al. 2001, Yoda et al. 2001).
High-frequency variations in the surging acceleration
record were believed to be caused by flipper move-
ments (Sato et al. 2003). Surging acceleration was fil-
tered out using a 0.1 Hz lowpass filter (IGOR Pro).
When the seal is still or moving at a constant speed,
the gravity vector will change in response to its body
angle, which can thus be calculated (Tanaka et al.
2001, Sato et al. 2003). Swimming speed was calcu-
lated using the number of rotations per second
(rev s–1) of an external, anteriorly-mounted propeller.
The rotation value was converted to actual swimming
speed (m s–1) using a calibration line that was calcu-
lated for each individual from a linear regression of
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Fig. 1. Top and side views of micro-data logger system (PD2GT).
DSL: digital still-picture logger
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rev s–1 against a second independent method of cal-
culation, which used the body angle and vertical
speed (as determined from the depth recorder). This
second method is only reliable for steeper body
angles, and hence we used only the absolute value of
the angles over 45° in our calculations (see details in
Sato et al. 2003).

Based on the sensor’s absolute accuracy, a dive was
defined as any excursion below the surface to a depth
of >2 m. Each dive was subdivided into a descent
phase (from the beginning of a dive to the time of the
first ascent), an ascent phase (from the depth of the
last descent to the end of dive), and a bottom phase
(the time between the end of descent and beginning
of ascent) (Le Boeuf et al. 1988). Statistical analysis
was performed using Stat View (SAS Institute). Val-
ues for statistical significance were set at p < 0.05.
Means (±1 SD) are reported.

RESULTS

The time-scheduled release mechanism worked as
planned, and the packages were successfully re-
trieved on both attempts. The 2 packages were found
34.7 km (51.5°N, 104.95° E) and 24.8 km (51.70° N,
105.17° E) away from the release point of the seals, 4 h
and 2.5 h after activation of the release mechanism,
respectively. Both seals swam offshore to the opposite
bank of the lake. The PD2GTs provided 20 h of data
including 174 dives for Individual 1, and 20 h includ-
ing 162 dives for Individual 2. The dive depths of the
first 10 dives for Individual 1 and the first 11 dives for
Individual 2 were shallower (range 3 to 8 m) than
those of the following dives. Therefore, we suspected
that these dives might have been influenced by the
instruments’ deployment and shallower water depths,
and thus removed these data from further analyses.
Over all of the dives used in the analysis (n = 315), the
mean and maximum dive depths and durations were
68.9 ± 53.3 m and 245 m, respectively, and 6.0 ±
2.8 min and 13.5 min, respectively, for Individuals 1
and 2. The DSL deployed on Individual 1 provided
only 700 images (ca. half of the memory) due to water
leakage into the device; no image showed prey. The
DSL provided 1315 images for Individual 2, among
which 1 image showed a pelagic sculpin (Comephorus
spp.) (Fig. 2), the primary prey of Baikal seals (Thomas
et al. 1982).

Both the instrumented seals dived almost continu-
ously during the recording period (Fig. 3) ,with similar
proportions of diving time (Individual 1 78%, Individual
2 82%). Deeper dives occurred near dusk, with dive
depth decreasing and then increasing again toward
dawn for both seals (Fig. 3). The seals velocity changed

abruptly during dives (Fig. 4). Steep accelerations to
speeds greater than the mean +3 SD swimming speed
(1.75 m s–1) detected by the speed sensor were termed
‘acceleration events’. Deceleration to less than the
mean –3 SD swimming speed (0.36 m s–1) were termed
‘deceleration events’. Acceleration and deceleration
events were accompanied by changes in the body an-
gle (Fig. 4). Individuals 1 and 2 swam upward (i.e. body
angle > 0) in 78% (n = 45) and 83% (n = 105) of the
acceleration events, respectively, and in 85% (n = 252)
and 52% (n = 172) of the deceleration events, respec-
tively. Acceleration events occurred at significantly
shallower depths and within narrower depth ranges
(Individual 1 mean 37.2 ± 14.6 m, range 10 to 67 m, n =
45; Individual 2 mean 32.2 ± 12.9 m, range 3 to 58 m, n =
105) than deceleration events (Individual 1 mean 60.2 ±
48.6 m, range 3 to 205 m, n = 252; Individual 2 mean
76.2 ± 51.4 m, range 3 to 234 m, n = 172) in both seals
(Mann-Whitney U-test: Individual 1, p < 0.01; Individ-
ual 2, p < 0.0001). The prey image obtained by DSL was
taken during an acceleration event. Both seals showed
distinctly different diving patterns between day and
night in terms of the sequential pattern in the maximum
depth of dive and the occurrence of acceleration and
deceleration events (Fig. 3). Therefore, dives fell into 2
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Fig. 2. Pelagic sculpins Comephorus spp., the primary prey of
Phoca sibirica. (a) Comephorus spp. (taken with digital still-
picture logger attached to Individual 2 at 14:32 h at 54 m
depth, looking forward over the seal’s back), (b) C. baicalensis

caught by a trawl

(b)

(a)

10 cm
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discrete categories, day dives and night dives, based on
the local sunset and sunrise time (22:22 and 05:41 h,
respectively).

During day dives, the swimming speed of the seals
increased rapidly from 0 m s–1 at the surface to a
constant value (mean 1.1 ± 0.2 and 1.2 ± 0.3 m s–1 for
Individuals 1 and 2, respectively) (Table 1, Fig. 4a).
Acceleration events interrupted the velocity record
during the bottom phase of dives. There was no signifi-

cant difference in the speeds of day dives for both
individuals between descent, bottom and ascent
phase (1-way ANOVA: Individual 1, p = 0.06; Individ-
ual 2, p = 0.25) (Table 1). During the night dives, seals
decelerated gradually until the beginning of the bot-
tom phase, which was characterized by low speed
(mean 0.8 ± 0.1 m s–1 for both individuals) with a series
of deceleration events (Table 1, Fig. 4b). The speeds of
night dives were significantly different between
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Fig. 3. Phoca sibirica. Swimming speed (upper graphs) and dive profiles (lower graphs) in relation to time of day for (a) Individual 1
and (b) Individual 2. (ny) Acceleration and deceleration events, respectively (see ‘Results’ for definition of events). Horizontal

bars: daytime (white) and nighttime (black)
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phases for both individuals (1-way ANOVA: Individu-
als 1 and 2, p < 0.0001) (Table 1) and a Fisher’s PLSD
(protected least-significant difference) post hoc test
showed that the speed during the bottom phase was
significantly lower than that during the descent (Indi-
viduals 1 and 2, p < 0.0001) or ascent (Individuals 1 and
2, p < 0.0001) phases. Comparisons of the diving
behavior during the day and at night revealed that day
dives had higher swimming speeds (Mann-Whitney U-
test: Individuals 1 and 2, p < 0.0001) and higher stroke
frequencies (Mann-Whitney U-test: Individuals 1 and
2, p < 0.0001) than night dives (Table 1). The number of
acceleration events per dive was significantly higher
during day dives than night dives (Mann-Whitney U-
test: Individuals 1 and 2, p < 0.0001), while the number
of deceleration events per dive was significantly higher
during night dives than day dives (Mann-Whitney U-
test: Individuals 1 and 2, p < 0.0001) (Table 1).

DISCUSSION

The results presented here are, to our knowledge, the
first time-series data on the diving activity of free-
ranging Baikal seals. They indicate that there is a
distinct difference in the diving behavior of Baikal
seals during the day and at night. We hypothesize that

these differences in the diving behavior are related to
different foraging tactics employed during the pursuit
and capture of different prey. The diet of Baikal seals is
thought to comprise primarily pelagic sculpins com-
monly known as golomyankas (Comephorus baicalen-
sis and C. dybowskii), benthic sculpins such as Cotto-
comephorus grewingki and C. comephoroides (Thomas
et al. 1982, Pankhurst et al. 1994) and amphipods such
as Macrohectopus branickii (Melnik et al. 1993).

Day dives were characterized by a relatively con-
stant speed interrupted by acceleration events
(Fig. 4a). An image taken during an acceleration
event showed a prey, Comephorus spp. (Fig. 2) sug-
gest that seals sometimes actively chase pelagic
fishes during the day. Both seals swam upward
during most acceleration events, suggesting that seals
use vision to  search for silhouetted prey against the
brighter water overhead (Fig. 2a). The use of a back-
lighting effect to detect and capture prey has been
observed in Weddell seals Leptonychotes weddellii
(Davis et al. 1999). Additionally, attacks on Comepho-
rus spp. from below may prevent pelagic fishes from
escaping, since these have dorsally located eyes with
a restricted  visual field dorsally (Fig. 2b) (Pankhurst
et al. 1994). In the present study, each acceleration
event lasted on average 7 s, and the seals swam on
average 11 m during this period. This suggests that,
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during the day, seals may detect prey from this dis-
tance visually, although it is possible that the prey
may flee to avoid predation and increase the pursuit
distances of the seals. The lower depth limit of accel-
eration events we recorded was 67 m. While this
depth may indicate the limit of prey distribution, it is
also possible that it is the maximum depth at which
seals can detect prey visually.

Night dives had 2 notable characteristics: one was
the swimming speed profile, with slower speeds than
during the day, and a series of deceleration events
during the bottom phase (Fig. 4b); the other was the
sequential pattern of the maximum dive depth
throughout the night (Fig. 3); this pattern was not
likely to have been affected by the proximity of the
bottom of the lake because both seals were estimated
to be swimming offshore, where the bottom is over
1000 m deep, and no flat-bottomed dives were
recorded during the period. These 2 observations sug-

gest that the night dives observed in this
study might correspond to foraging
dives focused on swarming amphipods
such as Macrohectopus branickii. Wil-
son et al. (2002) showed that penguins
feeding on small swarming crustaceans
tend to slow their speed during prey
exploitation, whereas those feeding on
larger fishes tend to increase speed.
Maximum swimming speed underwater
is dependent on body size, with larger
animals being able to swim faster
(Peters 1983). M. branickii is a small
animal (< 30 mm) and known to form
aggregations (Melnik et al. 1993). Such
crustaceans would lead the seals to slow
down their swimming speed to optimize
foraging efficiency (Wilson et al. 2002).
Deceleration events could correspond to
capture and ingestion of the amphipods.
These events occurred primarily during
the night at greater depths and within
wider depth ranges than acceleration
events which were observed exclu-
sively during the day, suggesting that
the seals may rely on senses other than
vision to locate and capture prey at
night. Dehnhardt et al. (1998, 2001) sug-
gested that harbor seals Phoca vitulina
may use their whiskers to gain hydrody-
namic information resulting from move-
ment of prey. Tactile sensation may be
of primary importance to Baikal seals
foraging on swarming amphipods, since
hydrodynamic object-detection may be
better over shorter distances. Amphi-

pods in Lake Baikal are known to undergo a vertical
diel migration that brings them close to the surface at
night (Melnik et al. 1993). Both of the Baikal seals
dived deeper near sunset (Fig. 3), which could be the
time at which the vertically migrating amphipods
become more readily available as they move upward
in the water column. After sunset, dive depths
decreased, increasing again toward dawn, presumably
in response to the vertical migration of the amphipods.
Such tracking of vertically migrating prey has been
documented for Antarctic fur seals Arctocephalus
gazella (Croxall et al. 1985) and northern elephant
seals Mirounga angustirostris (Le Boeuf et al. 1988).

In conclusion, in the summer, Baikal seals showed
different foraging tactics during the day and at night.
During the day, they accelerated upward during dives
to track and chase pelagic fishes from below, possibly
using vision. At night, they changed dive depths to
presumably track swarming crustaceans engaged in

Parameter Day dives Night dives

Individual 1
n 100 64
Dive depth (m) 89.6 ± 60.9 * 45.4 ± 38.6
Dive duration (min) 5.7 ± 2.6 ns 5.6 ± 3.1
Swimming speed (m s–1) for: 

dive 1.1 ± 0.1 * 0.8 ± 0.1
descent (m s–1) 1.1 ± 0.1   0.9 ± 0.1
bottom (m s–1) 1.1 ± 0.2  ns *  0.8 ± 0.1
ascent (m s–1) 1.1 ± 0.2   1.0 ± 0.1
Stroke frequency (Hz) for:
dive 1.39 ± 0.31 * 1.03 ± 0.13
descent (Hz) 1.61 ± 0.36   1.49 ± 0.32
bottom (Hz) 1.24 ± 0.51  * *  0.86 ± 0.29
ascent (Hz) 1.24 ± 0.45   1.01 ± 0.28

Acceleration events dive–1 0.46 ± 0.82 * 0 ± 0
Deceleration events dive–1 0.36 ± 0.95 * 3.36 ± 3.76

Individual 2
n 106 45
Dive depth (m) 60.3 ± 49.5 ns 70.0 ± 47.5
Dive duration (min) 5.4 ± 2.6 * 8.2 ± 2.9
Swimming speed (m s–1) for: 

dive 1.2 ± 0.3 * 0.9 ± 0.1
descent (m s–1) 1.2 ± 0.2   1.0 ± 0.2
bottom (m s–1) 1.2 ± 0.3  ns *  0.8 ± 0.1
ascent (m s–1) 1.2 ± 0.2   1.1 ± 0.1
Stroke frequency (Hz) for: 
dive 1.70 ± 0.44 * 1.36 ± 0.14
descent (Hz) 1.37 ± 0.45   1.21 ± 0.23
bottom (Hz) 1.57 ± 0.65  * *  1.19 ± 0.32
ascent (Hz) 1.98 ± 0.45   1.92 ± 0.27

Acceleration events dive–1 0.98 ± 1.35 * 0 ± 0
Deceleration events dive–1 0.21 ± 0.79 * 3.33 ± 2.82

Table 1. Phoca sibirica. Dive variables (means ± SD) during day and night dives
for each individual. See ‘Results’ for definition of acceleration and deceleration
events. Mann-Whitney U-test was used to test for differences between day and
night dives; 1-way ANOVA was used to test for differences between descent, 

bottom and ascent. *p < 0.0001. ns: not significant
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diel vertical migrations. The seals decelerated during
these nighttime dives possibly to capture crustaceans
using non-visual sensory mechanisms such as their
whiskers.
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