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INTRODUCTION

The cascading trophic interactions hypothesis sug-
gests that nutrient supply determines the potential
productivity of an aquatic ecosystem, whereas the
deviation of the actual from the potential productivity
is caused by variability in predator–prey interactions
and their influence on community structure (Carpenter
et al. 1987). According to this hypothesis, alterations at
the top of the food web cascade to the lower trophic

levels, the major process involved being the concept of
selective predation by consumers on prey type and
size, which shapes the structure of each lower trophic
level (top-down control) as demonstrated in many
freshwater lakes (Kitchell & Carpenter 1993). 

Trophic structure and dynamics of eutrophic brack-
ish lakes differ substantially, however, from eutrophic
freshwater lakes (Jeppesen et al. 1994). They are typi-
cally species-poor and generally lack large-sized mus-
sels (Moss 1994), and the zooplankton:phytoplankton
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ratio is markedly lower, indicating lower grazing pres-
sure on phytoplankton. Yet, how phytoplankton re-
sponds to changes in fish densities has received little
attention. The salinity of most Danish brackish lakes is
low (0.5 to 8 psu) and the lakes are characterised by
low water depth, high nutrient levels, a low zooplank-
ton:phytoplankton biomass ratio and low water trans-
parency (Jeppesen et al. 1997a, Jensen et al. 2000).
Planktivorous fish, mainly sticklebacks, constitute the
major part of the fish community and apparently main-
tain a high predation pressure on zooplankton (Jeppe-
sen et al. 1997b). To further elucidate the structuring
role of planktivorous fish in eutrophic-hypereutrophic,
shallow, brackish lakes, a mesocosm experiment ad-
justed to low salinity (2 psu) and a high nutrient level
was conducted at contrasting densities of three-spined
sticklebacks. In an earlier paper (Jakobsen et al. 2003)
we reported the effects on the zooplankton commu-
nity; here, we describe changes in phytoplankton
biovolume, composition and size.

MATERIALS AND METHODS

Experimental set-up and design. The experiments
were carried out from 3 May to 20 September 2000 in
the slightly brackish (0.5 psu) Lake Kogleaks, located
in the northern part of the nature reserve Vejlerne,
Denmark. Eleven cylindrical, polyethylene enclosures
(surface area ≈ 1 m2) were fixed in and kept open to the
sediment at a water depth between 70 and 80 cm
(Jakobsen et al. 2003). 

Each enclosure was stocked with three-spined stick-
lebacks (average weight 1.7 g ± 0.3, average length
5.8 cm ± 0.4) in 6 different densities (0, 1, 2, 4, 8, 16 m–2).

Upon establishment, the salinity of the enclosures
was adjusted to 2 psu by adding a solution of NaCl,
MgSO4 and NaHCO3. The enclosures were then inoc-
ulated with additional sediments (200 ml) and water
samples (100 or 200 ml from each location) from brack-
ish and marine waters covering a salinity gradient from
1 to 22 psu. Total nitrogen and total phosphorus
concentrations were adjusted to a high level of 3.5 and
0.4 mg l–1, respectively, to avoid nutrient limitation in
the experiment (Jakobsen et al. 2003). Throughout the
sampling period salinity was adjusted and nutrients,
equivalent to the initial solutions, were added monthly
to the enclosures. The enclosures were kept free of
macrophytes (mainly Myriophyllum spicatum L. and
Lemna minor L.) by harvesting.

Sampling methods and processing of samples. Sam-
plings were conducted weekly from 16 May to 14 June
and then bi-weekly until 20 September. Samples for
chemical analyses and phytoplankton were collected
with a tube sampler (length = 1.85 m, depth = 7 cm).

For analysis of chemical and physical variables, see
Jakobsen et al. (2003). For identification of phyto-
plankton, a 50 ml sample was preserved with 1 ml
Lugol’s solution immediately after sampling. 

Phytoplankton was enumerated for 6 samplings be-
tween 7 June and 20 September. The counting was
carried out using an inverted microscope at 400× mag-
nification. Depending on the sample concentration, 5,
10 or 20 ml sedimentation chambers were used and the
samples were diluted if necessary. Algae identification
was conducted to genera or, if possible, to species
level. Cell volumes were calculated from linear mea-
surements using the appropriate geometric formulae
(Olrik 1991). Genera/species biovolume (mm3 ww l–1)
was calculated by multiplying average cell volume by
cell population density. Average greatest axial linear
dimension (GALD) was recorded, omitting the large
colonies of Cyanophyceae because of inaccuracy in
measurement. Phytoplankton diversity or abundance
was estimated as Shannon diversity (H ’ = –Σ pi log2 pi,
where pi is the relative contribution to the biovolume of
genera. Phytoplankton richness was recorded as num-
ber of genera present during the experimental period.
Fish density was recorded 4 times throughout the
experimental period, and adjusted if fish kill had
occurred. Based on these recordings a time-weighted
average of stickleback density was calculated for each
enclosure (0, 0, 1, 1, 1.3, 1.6, 2.9, 6.9, 7.6, 9.4, 10.2)
(Jakobsen et al. 2003). 

Statistical analyses. The effects of fish and zooplank-
ton on phytoplankton size and biovolume were as-
sessed by regression analyses. Time-weighed aver-
ages of phytoplankton, zooplankton and fish data for
each mesocosm were used. Dependent variables were
loge-transformed to stabilise variance. As data from
some dependent variables fall in 2 blocks (low: 0 to 3
fish m–2, high: 6 to 10 fish m–2 fish density) rather than
expressing a linear relationship, we also used Mann-
Whitney’s nonparametric U-test to evaluate differ-
ences between the 2 blocks. 

RESULTS

Total phytoplankton biovolume correlated positively
with fish density, increasing by 2 orders of magnitude
from 0–3 fish m–2 to 6–10 fish m–2 (Fig. 1A). Equally,
average phytoplankton GALD correlated positively, as
relatively large-sized phytoplankton (Cryptophyceae)
dominated at high fish densities, whereas smaller
phytoplankton (various species of Bacillariophyceae
and Chlorophyceae) dominated at low fish densities.
Average cladoceran size correlated negatively with
fish density (Fig. 1B) and average GALD of phyto-
plankton was negatively related to average cladoceran
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size (Fig. 1C). Phytoplankton diversity (Shannon
index), based on both biovolume and abundance, was
negatively related to fish density, whereas genera rich-
ness showed no clear relationship with fish density
(Fig. 1D).

The phytoplankton community consisted of many
different taxa (especially Bacillariophyceae and
Chlorophyceae) at low fish densities, whereas Cryp-
tomonas reflexa, Cryptomonas sp. and Gonium pec-
torale dominated above 3 to 6 sticklebacks m–2 (Fig. 2).
Hence, the biovolume of Cryptophyceae and Chloro-
phyceae differed between the 2 blocks (U = 0, p <
0.05), both correlating positively (R2 = 0.86, p < 0.05
and R2 = 0.96, p < 0.05, respectively) to fish density.
Biovolume of 3 other phytoplankton groups also dif-
fered between blocks, as Cyanophyceae (U = 2, p <
0.05) and Prochlorothrix (U = 1, p < 0.05) increased
with fish density, whereas Euglenophyceae (U = 2, p <
0.05) decreased. Biovolume of Bacillariophyceae (U =
8, ns), Dinophyceae (U = 6, ns) and unidentified flagel-
lates (U = 8, ns) showed no difference between blocks.

DISCUSSION

Our experiment showed a clear effect of sticklebacks
on phytoplankton community, abundance and size
structure in slightly brackish water. In accordance with
investigations from freshwater lakes (e.g. Andersson
et al. 1978, Søndergaard et al. 1997) increased fish
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Fig. 1. Phytoplankton, Gasterosteus aculeatus and cladoce-
rans. (A) Greatest axial linear dimension (GALD) (full regres-
sion line) and biovolume of phytoplankton (broken regression
line) versus stickleback densities in the enclosures. (B) Aver-
age cladoceran size versus stickleback densities in the enclo-
sures. (C) Average phytoplankton GALD versus average
cladoceran size. (For A–C, dependent variables are loge-
transformed.) (D) Genera richness and phytoplankton diver-
sity (H ’) based on biovolume (full regression line) and abun-
dance (broken regression line) versus stickleback densities in 
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density (here >3 to 6 sticklebacks m–2) led to increased
biovolume of phytoplankton. The observed disappear-
ance of large-bodied zooplankton (Daphnia) above 3 to
6 fish m–2 (Jakobsen et al. 2003) likely reduced zoo-
plankton grazing pressure and allowed phytoplankton
biovolume to increase.

Phytoplankton size (expressed as GALD) correlated
negatively with average cladoceran size. This contrasts
with several studies in freshwater lakes that indicate a
positive relationship between phytoplankton mean
size and cladoceran biomass and mean size (e.g. Burns
1968, Bergquist et al. 1985, Cottingham 1999), which is
explained by a shift towards large grazing-resistant
species at high grazing pressure. Yet, in enclosure
experiments conducted in shallow freshwater lakes,
small, fast-growing algae were found to predominate
at high grazing pressure (Schriver et al. 1995, Jeppe-
sen et al. 2002). A high growth rate can be an advan-
tage at high grazing pressure, as fast growth enables
the algal population to replace algae lost by grazing. 

In our experiment higher fish densities resulted in
lower phytoplankton diversity. The combination of low
grazing pressure and excess nitrogen and phosphorus
facilitated the dominance of a few small, fast-growing
species, as also seen in an enclosure experiment in
Lake Flakensee, Germany (Weithoff et al. 2000). How-
ever, the presence of Daphnia may counteract this
effect (Flöder & Sommer 1999), leaving, as in our
experiment, phytoplankton diversity at a high level at
fish densities below 4 to 6 m–2. That changes in top-
down control affect phytoplankton diversity was
equally found in a hypertrophic pond in Hungary,
where an increase in phytoplankton diversity occurred
after a fish kill incident (Borics et al. 2000). However,
others have found an increase in diversity of primary
producers following reduced grazing pressure in both
aquatic and terrestrial ecosystems (e.g. Schmitz 2003).
In contrast to the Shannon diversity, genera richness of
phytoplankton was not affected by fish density in our
experiment. In shallow lakes, however, enhanced
grazing leading to enhanced water clarity may facili-
tate growth, temporarily or permanently, of species
attached to substrates (sediment, plant surfaces or, as
in our experiment, enclosure walls). Accordingly, the
contribution of such benthic forms (e.g. Nitzschia, Nav-
icula, Amphora) to the biomass was relatively high at
low fish density (Fig. 2).

The phytoplankton community structure changed
from a diverse assembly, as described above, to domi-
nance by Cryptomonas spp. at fish densities above 3 to
6 m–2. This flagellate is often numerous in slightly brack-
ish areas, such as the Bothnian Bay (Alasaarela 1979).
Cryptomonas is generally highly nutritious for zoo-
plankton (Schindler 1971), but in our study their size
exceeded the upper food size of the dominant rotifers

(Keratella sp. and Brachionus sp., Jakobsen et al. 2003).
The colony forming Gonium pectorale and Pandorina
morum also responded positively to higher fish densities. 

A high grazing pressure by Daphnia on small or
readily edible algal taxa has often been shown to result
in dominance of less edible, particular gelatinous,
spiny or colonial forms (Gulati et al. 1982). In fresh-
water and slightly brackish lakes with high nutrient
levels, grazing resistant algae are sometimes repre-
sented by large, colonial cyanobacteria (Cyanophy-
ceae) (Elser & Goldman 1991, Moss 1994). However, in
our experiment Sphaerocystis schroteii was the only
grazing-resistant alga that became abundant in enclo-
sures with high grazing pressure and its dominance
was recorded on only one sampling date in the begin-
ning of August. The lack of dominance by large
cyanobacteria cannot be explained by absence from
the species pool, since Oscillatoria limnetica and Spir-
ulina major individuals were occasionally observed.
More likely, these species could not escape the intense
grazing pressure by Daphnia sp. It has been suggested
that as long as the initial density of large cyanobacteria
is low and Daphnia abundance high, Daphnia is able
to prevent cyanobacteria blooms (Gulati et al. 2001). 

In brackish lakes and lagoons, the abundance of
sticklebacks is commonly high, not least in eutrophic
lakes (Pont et al. 1991, Jeppesen et al. 1994). The
substantial changes in phytoplankton biovolume, com-
position and diversity around the interval of 3 to 6 stick-
lebacks m–2 recorded in our study provide experimen-
tal evidence for the empirically based conclusion of a
strong cascading top-down control of planktivorous fish
on phytoplankton in eutrophic brackish lakes (Jeppe-
sen et al. 1994, 1997b). However, the results also show
that in slightly brackish lakes phytoplankton can, de-
spite high nutrient levels, be grazed down to low con-
centrations if the fish population declines below a cer-
tain density; in our study below 3 to 6 sticklebacks m–2.
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