Expansion of coral communities within the Northern Gulf of Mexico via offshore oil and gas platforms

Paul W. Sammarco¹,²,* , Amy D. Atchison¹,², Gregory S. Boland³

¹Louisiana Universities Marine Consortium (LUMCON), 8124 Highway 56, Chauvin, Louisiana 70344, USA
²Department of Oceanography and Coastal Sciences, Louisiana State University A & M College, Baton Rouge, Louisiana 70803, USA
³US Department of the Interior, Minerals Management Service, 1201 Elmwood Park Boulevard, New Orleans, Louisiana 70123-2394, USA

Abstract: Approximately 4000 oil and gas platforms exist in the northern Gulf of Mexico. These platforms provide hard substratum that extends throughout the euphotic zone, in a region where such has been rare in recent geological time. Major exceptions to this are coral reefs of the Flower Garden Banks (FGB), ~200 km S–SE of Galveston, Texas, USA. We determined whether extensive scleractinian coral populations had colonized these platforms, quantified them, and determined their population and community characteristics. We also examined the relationship between these variables and distance from the FGB, platform age and depth. Surveys were performed on 13 oil or gas production platforms down to 36 m depth, encompassing an ellipse around the FGB. Corals occurred in abundance on most of the platforms. We found 11 species, comprising 8 hermatypic scleractinians, 2 ahermatypic scleractinians and 1 hydrozoan coral. The most abundant corals were Madracis decactis, Diploria strigosa and Tubastrea coccinea. Distance from the FGB was not related to the coral community variables measured, including total coral abundances of the dominant 3 species in shallow water (<14 m), deep water (14 to 36 m), or both depths combined. Total coral abundance increased significantly with increasing platform age, and the community was best developed on platforms >12 to 15 yr old. Abundance of M. decactis increased significantly with increasing platform age in deeper water and both depths combined, as did coral species diversity (S). This was not the case with D. strigosa, indicating that it may not be associated with any particular successional sere. Neither was T. coccinea abundance associated with platform age, except in shallow water, where it decreased in abundance with increasing age, indicating that this species may be an opportunistic pioneer species. All corals combined exhibited a significantly non-uniform depth distribution, with total coral abundance peaking at ~20 and 28 m depths. M. decactis exhibited a similar bimodal depth distribution, with a disproportionately high peak at depths >27 m. D. strigosa exhibited peaks at ~10 and 23 m depth and was not found at depths >27 m. T. coccinea exhibited a near-normal distribution, with a mode at ~17 m depth. Platforms have facilitated the expansion of coral populations in the GOM. Such platforms possess an intrinsic environmental value through the presence of coral populations, and this may influence future decisions regarding their removal.

Key Words: Coral · Platform · Oil · Diversity · Reef · Flower Garden Banks · Artificial

INTRODUCTION

Approximately 40,000 oil and gas wells have been drilled in the northern Gulf of Mexico (GOM) since the 1940s (Francois 1993). At present, ~4000 structures are in operation there (Francois 1993, Knott 1995, Dau- terive 2000, our Fig. 1). These platforms extend throughout the euphotic zone as rigidly attached struc-
tures (as opposed to floating structures) and act as hard substratum upon which many reef organisms can settle and grow (Gallaway & Lewbel 1981, Driessen 1989, Bright et al. 1991, Adams 1996, Boland 2002, K. Deslarzes pers. comm.). The northern GOM is a region in which very little hard substratum now exists, nor has existed in recent geological time (Curray 1965a,b, Blum et al. 2001, see also Frost 1977, Schroeder et al. 1995 and Blum et al. 1998). The Flower Garden Banks (FGB), which rise to within 18 m of the surface, are the most remarkable exceptions in the Gulf and support thriving coral populations (Rezak et al. 1985, Gittings 1992, 1998, Bright et al. 1993).

There are 35 named banks on the northern shelf of the northwestern GOM, including the FGB, which developed on top of 2 salt diapirs (Gross & Gross 1995) at the edge of the continental shelf. Those banks that occur offshore in ‘blue water’ (e.g. Rankin-1, Rankin-2, Bright, Geyer, Elvers, Claypile, etc.; Rezak et al. 1985, Lugo-Fernandez et al. 2001, G. Boland pers. obs.), which might be able to support substantial coral reefs, are either too deep or lack other appropriate environmental conditions to do so. A number of banks do possess limited populations of reef-building corals, but these are not sufficiently developed to be considered true coral reefs, i.e. reefs built entirely of calcium-carbonate, particularly secreted by hermatypic corals.

Examples include Stetson, Bright, Sonnier and MacNeil Banks, the last of which has recently been shown to support a sizeable coral community at the depth limits of these organisms (Schmahl et al. 2003). The FGB represent the only banks that possess thriving coral reefs in the northern Gulf (Rezak et al. 1985, Sammarco et al. 2002, Sammarco & Atchison 2003), and these are considered to be among the most isolated coral reefs in the western Atlantic (Rezak et al. 1985, Snell et al. 1998).

The GOM has experienced several sea-level changes in recent geological history (Curray 1965a,b, Frost 1977, Schroeder et al. 1995, Blum et al. 1998, 2001). During periods with sea levels 30 m below the present sea level, deeper banks would have been at shallow enough depths to support coral reefs. Provided that seawater temperatures were high enough, it is likely that the northern Gulf of Mexico supported dozens of coral reefs during this period, judging by the distribution of these banks at the edge of the continental shelf (Rezak et al. 1985). The relatively short distances between them most probably allowed exchange of coral larvae relatively easily via the ‘island model’ of gene flow (Futuyma 1998). However, as sea level rose over the next 6000 to 10 000 yr, the reefs were drowned, and the FGB now represent the only true coral reefs in the northern Gulf of Mexico. The nearest shallow reefs are those off the northern coast of Yucatan peninsula.
mechanisms have been well-documented (Elton 1958, and marine, via ‘leap-frogging’ or ‘stepping stone’ performed. Expansion of organisms, both terrestrial and marine, via ‘leap-frogging’ or ‘stepping stone’ mechanisms have been well-documented (Elton 1958, Futuyma 1998). In the case of reef fish, such distribution expansions have been enabled by anthropogenic activity by introducing new suitable habitats, such as oil and gas platforms (Shinn 1973, Winfield 1973, Sonnier et al. 1976, Boland et al. 1983, Shinn & Wicklund 1989, Patte-gill et al. 1997, Rooker et al. 1997, Childs 1998, Love et al. 2000, but see Schroeder et al. 2000). At a time when coral reefs are experiencing a severe global decline in health and mass coral mortalities due to bleaching, poor fishing techniques, nutrient enrichment, etc. (Sammarco 1996, Souter & Linden 2000, Hughes et al. 2003, McClanahan et al. in press), it is important to determine whether systems exist in which coral populations are still expanding their distributions.

According to federal legislation, all oil and gas platforms introduced into US waters must be removed within 1 yr of termination of a lease within a lease block (usually ~3 × 3 nautical miles; Minerals Management Service [MMS] Regulation 30CFR250.1718; see www.mms.gov). Some platforms are used by the states bordering the GOM in their ‘Rigs to Reefs’ programs (e.g. Louisiana, Texas, Alabama, Florida; see Dauterive 2000, www.tpwd.state.tx.us/fish/reef/artreef.htm, www.gomr.mms.gov/homepg/regulate/ environg/riards-to-reefs/information.html). These programs are administered in cooperation with the US Department of the Interior, Minerals Management Service. Within these programs, the platforms are permitted to remain either on site or are brought to another site and used as artificial reefs. In addition, scleractinian corals are protected from ‘harvest and take’ by federal legislation (Magnuson-Stevens Fisheries Conservation Management Act 1975, amended October 11, 1996; Public Law 94-265) and from trade via international treaty. These laws were devised prior to any knowledge of coral populations being present on the platforms. If corals are present, this implies that the structures may have additional environmental value and, if not removed, may contribute to the benefit of the environment as artificial reefs. One of our aims was to determine (for the first time) the extent to which corals colonize such platforms prior to their removal or designation as artificial reefs.

Herein we investigate several questions regarding these platforms: (1) Being situated in subtropical waters, do they harbor any coral populations? (2) If so, which species? (3) How does coral density and species diversity relate to platform age? (4) How do these variables relate to distance or bearing of a platform from the FGB (i.e. is there any indication that the FGB may be a possible source of larvae for the platform)? (5) How does density and species distribution relate to depth? (6) What is the average size of colonies on the platforms? (7) How does colony size relate to platform age and distance from the FGB?
MATERIALS AND METHODS

To address these questions, we initiated a set of field surveys and experiments, followed by laboratory analyses and sample processing. To determine whether platforms support substantial coral communities, we chartered a dive vessel (MV, ‘Fling’, Freeport, Texas) and surveyed 13 oil and gas platforms (Table 1) over a period of 2 yr. Surveys were conducted with teams of SCUBA divers during the summer and fall of 2001 and the 2002. The sample platforms fell within a narrow ellipse ranging from 10 to 15 km west of the FGB to 50 km east of the FGB and 10 to 15 km north (Fig. 2). Divers examined the platform jacket from the surface down to a depth of 36 m. Data were collected on the following variables: (1) numbers of scleractinian and hydrozoan corals; (2) depth of occurrence; and (3) species identification.

Data were standardized by approximate area surveyed. Architectural structural drawings of the plat-
form jackets were obtained from the oil and gas companies concerned. Total surface area was estimated for each platform along with the surface area for each 3 m interval of depth, in order to compensate for increased area added by horizontal support structures which occurred at 10 to 15 m and 24 to 27 m.

Data on coral colony size was also collected. Due to time restrictions at depth, however, only a limited amount of data could be collected, and only the most abundant species received attention. Size was estimated by measuring length of the longest axis of the colony and widest width (see Sammarco 1980, 1982). Area was estimated by calculating elliptical area.

Data were also gathered about the platforms themselves. Date of installation was determined from MMS records (Table 1). Distance of the platforms from the nearest reef perimeter, along with their bearing from the FGB, was determined via nautical charts, also provided by MMS.

Standard parametric univariate statistical analyses were performed on the data. Data were transformed via square-root ($y + 0.5$) where necessary for purposes of normalization (Sokal & Rohlf 1981). Kolmogorov-Smirnov frequency tests of independence were performed on the coral depth distribution data to test for variation from a uniform distribution. A multivariate pattern-seeking analysis entitled PATN (Belbin 1995) was performed on coral community data derived from experimental platforms, using square-root transformations where necessary. This analysis used the Bray-Curtis metric (Bray & Curtis 1957) and classified the samples by the progressive fusion strategy variously known as the ‘error sum of squares’ (Ward 1963) or ‘incremental sum of squares’ (Burr 1970) technique. Details of statistical tests are presented in the figure and table legends. Only significant results are discussed.

RESULTS

The diver surveys revealed a total of 11 species of corals on the platform jackets, occurring between 0 and 36 m depth. Of these, 8 were hermatypic scleractinians, 2 were ahermatypic scleractinian corals, and 1 was a hydrozoan (Table 2). The dominant hermatypic scleractinian corals were *Madracis decactis* and *Diploria strigosa.*

Effect of distance from Flower Garden Banks (FGB) on corals

A number of correlation and regression analyses—both parametric and non-parametric—were performed on the adult coral data versus distance from the FGB. The independent variables regarding the adult coral populations were as follows: (1) total coral abundance per platform; (2) *Madracis decactis* abundance per platform; (3) *Diploria strigosa* abundance per platform; (4) coral species diversity per platform (H', J' and S; Pielou, 1969, 1975); and (5) abundance of *Tubastrea coccinea* per platform. Each of these variables was analyzed with respect to distance to nearest FGB reef perimeter. In all cases, there was no significant

Table 2. Coral species observed on oil and gas platforms in Northern Gulf of Mexico. Authority: original description; reproduction times: data are for whole Caribbean, and show months (e.g. 1, 3 = January, March). Sources were: 1: Hagman et al. (1998); 2: Vermeij et al. (2003); 3: Steiner (1995); 4: Bassim & Sammarco (2003); 5: Bassim et al. (2002); 6: Acosta & Zea (1997); 7: Gittings et al. (1994); 8: Soong (1993); 9: Gittings et al. (1992); 10: Szmant (1991); 11: Wyers et al. (1989); 12: Gleason et al. (1999); 13: McGuire (1998); 14: McGuire (1995); 15: Chornesky & Peters (1987); 16: Ayre & Resing (1986); 17: Hebbinghaus (2001); 18: Soong & Cho (1998)

<table>
<thead>
<tr>
<th>Species</th>
<th>Authority</th>
<th>Reproduction Mode</th>
<th>Reproduction Times</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scleractinia (hermatypic)</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Colpophyllia natans</td>
<td>Houttuyn, 1772</td>
<td>Spawner</td>
<td>8, 9</td>
<td>1, 3</td>
</tr>
<tr>
<td>Diploria strigosa</td>
<td>Dana, 1846</td>
<td>Spawner</td>
<td>8, 9</td>
<td>1, 3, 4, 5, 8, 9, 11</td>
</tr>
<tr>
<td>Madracis decactis</td>
<td>Lyman, 1859</td>
<td>Brooder</td>
<td>3–12</td>
<td>2</td>
</tr>
<tr>
<td>Madracis formosa</td>
<td>Wells, 1973</td>
<td>Brooder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montastrea cavernosa</td>
<td>Linnaeus, 1767</td>
<td>Spawner</td>
<td>7, 8, 9, 10</td>
<td>1, 3, 6, 7, 8, 9, 10, 11</td>
</tr>
<tr>
<td>Porites astreoides</td>
<td>Lamarck, 1816</td>
<td>Brooder</td>
<td>6–9, 1–12</td>
<td>8, 12, 13, 14, 15</td>
</tr>
<tr>
<td>Stephanocoenia intersepta</td>
<td>Lamarck, 1816</td>
<td>Spawner</td>
<td>8, 9</td>
<td>1</td>
</tr>
<tr>
<td>Stephanocoenia michelini</td>
<td>Edwards & Haime, 1848</td>
<td>Spawner</td>
<td>7, 8</td>
<td>7</td>
</tr>
<tr>
<td>Scleractinia (ahermatypic)</td>
<td></td>
<td></td>
<td></td>
<td>16, 17</td>
</tr>
<tr>
<td>Phyllangia americana</td>
<td>Edwards & Haime, 1849</td>
<td>Brooder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubastrea coccinea</td>
<td>Lesson, 1829</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrozoa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Millepora alcicornis</td>
<td>Linnaeus, 1758</td>
<td></td>
<td></td>
<td>(see 18)</td>
</tr>
</tbody>
</table>
The only case in which there was a tendency towards a significant trend was in the abundance of *T. coccinea*, which appeared to decrease with increasing distance from the FGB. This trend was not significant, however, as shown by both parametric (regression analysis) and non-parametric (Kendall's rank correlation analysis) tests.

Abundance of hermatypic corals

Abundance of shallow hermatypic corals (≤14 m depth) increased significantly with increasing age of the platforms, as indicated by linear regression analy-

Fig. 3. Hermatypic corals. Relationship between abundance in (a) shallow water (0 to 14 m) (b) deeper water (mean <14 to 27 m; max. 36 m) and (c) both combined, on platforms versus platform age. Data represent total number of corals standardized by area (no. 1000 m$^{-2}$) on each platform. For comparison purposes, data were scaled down to area of smallest platform considered (2450 m2); thus, total coral abundance is probably conservative. (a) Significant positive regression (least-squares linear regression analysis. \(y = 0.035x + 0.553, p < 0.05 \). Pearson's product-moment correlation coefficient: \(r = 0.478, p > 0.05 \), not significant; Kendall's rank correlation coefficient: \(t = 0.340, p = 0.05 \)). (b) Significant positive relationship (regression, \(Y = 0.083x + 0.403, p < 0.01; \) correlation, \(r = 0.756, p < 0.01 \)). (c) Significant positive relationship (regression, \(Y = 0.100x + 0.344, p < 0.01; \) correlation, \(r = 0.740, p < 0.01 \))

Fig. 4. *Madracis decactis*. Relationship between total abundance on platforms in (a) shallow water (0 to 14 m) (b) deeper water and (c) both combined versus platform age; further details as for Fig. 3. (a) No significant relationship found (p > 0.05, least-squares linear regression analysis; Pearson's product-moment correlation coefficient: \(r = 0.335, p > 0.05 \); Kendall’s Rank correlation coefficient, \(t = 0.2910, p > 0.05 \)). (b) Significant positive relationship (regression, \(Y = 0.069x + 0.332, p = 0.01; \) correlation, \(r = 0.711, p < 0.01 \)). (c) Significant positive relationship (regression: \(y = 0.076x + 0.29, p = 0.01; \) correlation: \(r = 0.693, p < 0.01 \))
sis and non-parametric correlation analysis (Fig. 3a). This pattern of increasing abundance as a function of increasing platform age was also significant for corals in deeper water (>14 to 36 m), as indicated by both linear regression and correlation analyses (Fig. 3b). The pattern was as strong or stronger when data from both depths were combined (Fig. 3c). A clear relationship was a marked increase in coral abundance after ~12 to 15 yr; prior to this, coral growth visible to the naked eye was nominal or absent.

Madracis decactis, the most abundant coral found on the platforms, showed no significant relationship between abundance and platform age in shallow water (Fig. 4a). However, a clear positive relationship was found between these variables in deeper water (Fig. 4b), and for both sets of depths combined (Fig. 4c).

Diploria strigosa was also one of the most abundant species of corals found on the platforms. In this species, however, no significant relationship was found between abundance and platform age in shallow water, deeper depths, or for both sets of depths combined (p > 0.05, least-squares linear regression analyses, Pearson’s product-moment correlation analyses, and Kendall’s rank correlation analyses).

A significant relationship was found between coral abundance and platform age in *Tubastrea coccinea* in shallow water but, unlike *Madracis decactis*, this correlation was negative (correlation, r = -0.544, p = 0.05; Fig. 5). No similar significant relationship was found at deeper depths or for all depths combined (p > 0.05, linear regression analyses, correlation analysis, Kendall’s rank correlation analysis).

Coral species diversity

A highly significant relationship was found between coral species diversity, measured simply by number of species (S), and platform age. This was pronounced in shallow water (Fig. 6a), even more so in deep water (Fig. 6b), and was highly significant when data from both sets of depths were combined (Fig. 6c).

A similar significant pattern was found for all corals when H' (species diversity; $H' = \sum p_i \log p_i$, Shannon-Wiener index, Shannon & Weaver 1949, Pielou, 1969).
1975; our Fig. 7) and J' (species equitability; $J' = H'/\log S$; Fig. 7b) were used as species diversity measures.

Depth distribution

None of the corals considered here were distributed uniformly as a function of depth, regardless of substrate availability, even after standardization for available area (which varied greatly with depth through the differential presence of horizontal support structures). Total coral abundance exhibited a bimodal distribution, with peaks at depths of ~20 and 28 m, and with few corals at 0 to 6 m (Fig. 8a). The abundance of Madracis decactis peaked at the same depths (Fig. 8b). Unlike M. decactis, Diploria strigosa exhibited peaks in abundance at ~10 and 23 m (Fig. 9). Tubastrea coccinea, unlike either of the other 2 species, exhibited a single peak in abundance at 12 to 21 m depth (Fig. 10).

Average coral abundance was compared between depth categories above and below 27 m. Average abundances were standardized by number of depth categories above and below that level (i.e. 9 vs. 2). Total coral abundance showed no significant difference above vs. below 27 m depth. The same was true for Madracis decactis. No Diploria strigosa were found below 27 m depth on any of the platforms surveyed. Tubastrea coccinea occurred in much greater numbers at depths shallower than <27 m; the difference was highly significant.

![Graph](image-url)

Fig. 7. Hermatypic corals. Relationship between (a) coral species H' and (b) equitability J' on platforms versus platform age. (a) Significant positive relationship found (least-squares linear regression analysis: $y = 0.021x - 0.109$, $p < 0.05$; correlation: $r = 0.707$, $p < 0.01$). (b) Significant positive relationship (regression: $y = 0.028x - 0.068$, $p < 0.05$; correlation: $r = 0.655$, $p < 0.05$)

![Graph](image-url)

Fig. 8. Hermatypic corals. (a) Depth distribution of (a) all corals on platforms (0 to 36 m) and (b) Madracis decactis. (a) Significantly different from uniform distribution ($p < 0.01$, Kolmogorov-Smirnov frequency test); no significant difference in average total coral abundance above versus below 27 m depth ($p > 0.05$, Kolmogorov-Smirnov frequency analysis). (b) Significantly different from uniform distribution ($p < 0.01$, Kolmogorov-Smirnov frequency test); no significant difference in average M. decactis abundance above versus below 27 m depth ($p > 0.05$, Kolmogorov-Smirnov frequency analysis)
Pattern-seeking analysis of adult coral communities

A multivariate analysis of all of the coral community data performed simultaneously on all platforms revealed a relatively simple pattern of grouping among platforms. The platforms ranged from 2 to 26 yr in age. The pattern-seeking analysis identified a major split in the similarity index between the communities at fusion values below 1.79 (Fig. 11). It placed the platforms into 2 age groups: (1) A large group of platforms with coral communities between 14 and 26 yr old (HI-A-382, HI-A-370, HI-A-330, HI-A-571, WC-630, HI-A-568, WC-618, HI-A-376, WC-643, HI-A-349), and (2) a second group that was smaller in number and consisted of platforms in the lower age range of 0 to 13 yr (HI-A-385, HI-A-368, and EC-317).

Coral colony size

A sufficient number of samples for colony size was available only for Madracis decactis (see ‘Materials and methods’); for other species, data from older platforms (14 to 26 yr of age) were used. There were significant differences between mean colony size on the different platforms, although no particular pattern emerged (Table 3). In addition, a variety of a posteriori tests revealed no significant differences between platforms. In addition, colony size did not vary significantly with platform age or distance from the FGB.

DISCUSSION

Of the 11 species found, 9 are commonly found on reefs of the Caribbean, Gulf of Mexico and Florida Keys (Wells 1973, Humann & DeLoach 2002). Most occur on the FGB (Bright et al. 1991, Gittings 1992).
The other 2 species (*Millepora alcicornis* and *P. astreoides*) are normally found in early stages of succession on Caribbean reefs (represented by recruits; Sammarco 1980, 1982). These 2 species are also characteristic of disturbed communities (Lirman & Fong 1996, Edmunds 1999, Aronson & Precht 2001). *Porites astreoides* was rare on the platforms. *Agaricia* spp., another common pioneer species (characteristic of early successional stages, Sammarco 1997, Smith & Smith 1999) was absent from the platforms. The low abundances or absence of these pioneer species indicated that the adult coral community on the platforms was more representative of later, more mature stages of succession, i.e. not that of a disturbed habitat (see McNaughton & Wolf 1979, Miller & Ricklefs 1999).

This phenomenon could be caused by several factors, such as (1) successional events associated with this unique platform environment (e.g. availability of hard substratum without sedimentation stress; (2) the higher probability of success of later successional stages of corals during competition for space with associated epibiota on the platforms (Sammarco 1997, Smith & Smith 1999) was absent from the platforms. The low abundances or absence of these pioneer species indicated that the adult coral community on the platforms was more representative of later, more mature stages of succession, i.e. not that of a disturbed habitat (see McNaughton & Wolf 1979, Miller & Ricklefs 1999).

Although the presence of the platforms may have facilitated the spread of this invasive species, because of this species’ innate high capacity for effective dispersal, it is unlikely that they are solely responsible for it, or that their absence would have prevented it. Since *T. coccinea* is not present on the FGB, it is clearly colonizing this region from elsewhere. *Acropora palmata* was also recently observed to colonize the FGB (E. Hickerson, pers. comm.). Although the presence of the platforms may have accelerated the spread of this invasive species, because of this species’ innate high capacity for effective dispersal, it is unlikely that they are solely responsible for it, or that their absence would have prevented it. Since *T. coccinea* is not present on the FGB, it is clearly colonizing this region from elsewhere. *Acropora palmata* was also recently observed to colonize the FGB (E. Hickerson, pers. comm.) and its presence there is believed to be part of a natural range extension.

Of the 11 corals found, 5 were spawners, 4 were brooders (see Table 2), and the mode of reproduction is not known for *Phyllangia americana*, *Millepora alcicornis* is presumed to release medusae, like its congeners (Soong & Cho 1998). The most abundant coral, *Madracis decactis*, was a brooder. The second

Table 3. *Madracis decactis*. Colony size on oil and gas platforms in northern Gulf of Mexico near Flower Garden Banks. Colony size estimated as elliptical area (see ‘Materials and methods’). Data are raw mean, mean of log y-transformed data, upper and lower confidence limits for transformed mean, standard deviation for transformed mean (s_t) and sample size (n). Platform age and distance of platform from FGB are also shown. There was a general significant difference between means ($p < 0.01$, 1-way ANOVA), which was not revealed as significant by a posteriori tests ($p > 0.05$; SS-TP, T', T-K, GT2, and Games & Howell tests). There was no significant relationship between colony size and platform age ($p > 0.05$, least-squares linear regression analysis), nor, between colony size and distance from FGB ($p > 0.05$, linear regression analysis).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Y colony size (cm2)</td>
<td>873.6</td>
<td>1813.8</td>
<td>2396.1</td>
<td>3146.8</td>
<td>3369.2</td>
<td>3770.1</td>
</tr>
<tr>
<td>Y_t</td>
<td>2.72</td>
<td>3.19</td>
<td>3.13</td>
<td>3.40</td>
<td>3.16</td>
<td>3.45</td>
</tr>
<tr>
<td>95 % CL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower</td>
<td>2.18</td>
<td>2.07</td>
<td>2.61</td>
<td>3.21</td>
<td>2.52</td>
<td>3.16</td>
</tr>
<tr>
<td>Upper</td>
<td>3.25</td>
<td>4.31</td>
<td>3.66</td>
<td>3.59</td>
<td>3.80</td>
<td>3.74</td>
</tr>
<tr>
<td>s_t</td>
<td>0.531</td>
<td>0.314</td>
<td>0.466</td>
<td>0.314</td>
<td>0.804</td>
<td>0.428</td>
</tr>
<tr>
<td>n</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>17</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Platform age (yr)</td>
<td>26</td>
<td>20</td>
<td>26</td>
<td>23</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>Distance from FGB (km)</td>
<td>48.7</td>
<td>2.0</td>
<td>14.1</td>
<td>15.0</td>
<td>8.0</td>
<td>24.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Y colony size (cm2)</td>
<td>873.6</td>
<td>1813.8</td>
<td>2396.1</td>
<td>3146.8</td>
<td>3369.2</td>
<td>3770.1</td>
</tr>
<tr>
<td>Y_t</td>
<td>2.72</td>
<td>3.19</td>
<td>3.13</td>
<td>3.40</td>
<td>3.16</td>
<td>3.45</td>
</tr>
<tr>
<td>95 % CL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower</td>
<td>2.18</td>
<td>2.07</td>
<td>2.61</td>
<td>3.21</td>
<td>2.52</td>
<td>3.16</td>
</tr>
<tr>
<td>Upper</td>
<td>3.25</td>
<td>4.31</td>
<td>3.66</td>
<td>3.59</td>
<td>3.80</td>
<td>3.74</td>
</tr>
<tr>
<td>s_t</td>
<td>0.531</td>
<td>0.314</td>
<td>0.466</td>
<td>0.314</td>
<td>0.804</td>
<td>0.428</td>
</tr>
<tr>
<td>n</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>17</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Platform age (yr)</td>
<td>26</td>
<td>20</td>
<td>26</td>
<td>23</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>Distance from FGB (km)</td>
<td>48.7</td>
<td>2.0</td>
<td>14.1</td>
<td>15.0</td>
<td>8.0</td>
<td>24.5</td>
</tr>
</tbody>
</table>
most abundant, Diploria strigosa, was a spawner. The Montastraea, also a mass spawner and abundant on the FGB, was also present on the platforms. The platforms were not dominated by either brooders or broadcast spawners. There was also no relationship between coral abundance and distance from the FGB—a key potential source of larvae. From these data, there does not appear to be any advantage for a species to use one mode of reproduction in preference to another. Both brooders and spawners are dispersed equally well in this region of the Gulf.

It was initially surprising to find that no significant relationship was found between coral abundance and distance from the FGB. One would expect that, because the FGB are the only 2 well-developed reefs in the northern Gulf of Mexico, a point-source distance effect might be evident, and platforms more remote from the FGB would possess more limited coral populations. This was not confirmed; however, variance in coral abundance was high, and no trends were present in the data distance from the FGB.

There are 4 possible explanations for this: (1) Our sample size (13 platforms) may not have been sufficient to reveal a significant effect. Increasing the number of platforms sampled might raise the ‘power of the test’ (Sokal & Rohlf 1981). This would involve not only sampling more platforms within the current study area, but also expanding the study area by ≥3 times the radius of the current area (≥150 to 200 km). (2) The distances from the FGB may be sufficient to allow coral larvae released there to become evenly diffused and mixed, so that recruitment to the various platforms is relatively even. Using preliminary data derived from the coral settlement portion of this study this hypothesis will be examined in greater detail elsewhere (P. Sammarco et al. unpubl.). (3) The FGB may not be the point-source of larvae for these platforms. For example, Stetson Bank possesses a coral community less developed than the FGB and is (only) 60 km away. In addition, recent observations by Schmahl et al. (2003) confirmed coral development on some nearby deeper banks, including MacNeil Bank, which rise from 130 m to a minimum depth of 43 m. Larvae derived from this and other banks could be confounding any distance effect. Data currently being processed regarding the genetic affinity between coral populations of Madracis decactis, Diploria strigosa, and Montastrea cavernosa on the platforms versus those on the FGB (A. Atchison unpubl., Atchison et al. unpubl.) should help shed light on this question. (4) Platform age is significantly confounding any distance effect which may be present. Nonetheless, data collected thus far indicate that distance from the FGB is not associated with adult coral community structure on oil and gas platforms within a radius of ≤50 km.

Expanding surveys to a radius of ≥200 to 300 km might reveal a distance effect, based on probable larval survival time and diffusion effects (Bassim & Sammarco 2003). Such surveys would also define the geographic limits of waters suitable (temperature, salinity, turbidity, etc.) to support coral settlement and survival.

The fact that many coral community variables were positively associated with platform age indicates that, as the platform grows older, so does development and complexity of the coral community; coral abundance and species diversity are increasing through natural successional processes. Colony size, as indicated by Madracis decactis, is also substantial on older platforms. The trends in coral community development with increasing age were supported by both the univariate and multivariate PATN. This is important, because platforms are removed from service shortly after production has ceased, whereas our data indicate that the environmental value of the platforms in service will increase with time. This age-value relationship may have implications for decisions regarding the decommissioning of such platforms.

The positive platform-age/coral-development association appears to be linear in nature, but a close examination of the data indicates that there is little development visible to the naked eye during the first 12 to 15 yr of a platform’s life—also confirmed by PATN. After this time, community development is steady. There are 3 possible reasons for this. (1) Madracis decactis a dominant coral on the platforms and some other late successional species may not be adapted to compete well with early successional species of the associated epibiota (e.g. certain sponges, bryozoans, hydrozoans, tunicates, and algae) but may be better adapted to compete with later successional species. That is, they may reach the platform in a continuous flow over the first 15 yr or so, but those spat that settle on the platforms may not necessarily survive under early successional conditions. This would constitute a post-settlement control. (2) The early successional species of epibiota may simply provide the wrong cues for larval settlement, and the planulae thus respond to them with a negative preference for settlement. This would constitute a pre-settlement control. (3) The larvae of these species may simply not have encountered the platforms until a later age in the life of the platform; we believe that this is unlikely, however, since so many species exhibit the same distributional pattern.

It is also possible that physical characteristics of the platforms may have affected coral recruitment during the first 12 to 15 yr after deployment. Anti-corrosion paints are sometimes used on the platforms, along with large sacrificial zinc anodes and induced cathodic currents on some of the newer platforms. (High densities
of *Tubastraea coccinea*, however, were observed directly on the anodes.) When production wells are being drilled, the upper levels of the platforms (≤6 m) may have been exposed to drilling muds and produced waters/brines.

The fact that *Diploria strigosa* abundance showed no relationship with platform age indicated that it survives equally well as a pioneer or late successional species. Abundance of *Tubastraea coccinea* in shallow water significantly decreased with increasing platform age. This implies that, of all of the corals observed in this study, *T. coccinea* resembles a pioneer species more than any other. It is possible that, in the long term, its dominance in the community might decrease. Abundance of *Madracis decactis* did not show any relationship to platform age in shallow water, but was clearly positively associated with platform age at deeper depths and for both sets of depths combined. It is possible that *D. strigosa*, *T. coccinea*, and *M. decactis* are capable of colonizing a platform, particularly in shallow water, at any platform age, and of easily outcompeting the associated sessile epibionts for space.

Coral diversity clearly increased with increasing platform age; this is known to occur in many communities, including coral reefs (Yu & Zou 1996, Miller & Barimo 1999), particularly during the early and intermediate stages of succession (Odum 1969, Mellinger & McNaughton 1975).

There was clearly differential settlement and/or survival of corals as a function of depth, as is known to occur in the Indo-Pacific (Sammarco 1994). Depth distributions observed in our study differed significantly; different species exhibited different depth-specific patterns of settlement and/or survival between 0 and 33 m. Our type of study facilitates the separation of depth effects. In normal studies of coral depth-distribution, transects are performed over wide areas of reef with varying bottom types in order to cover the entire depth range over a gently sloping forereef. In our study, rather than the substrate having an average slope of 1:10, it has a slope that is almost vertical (e.g. 1:0.1); thus, depth distributions are readily discernible through vertical surveys. Platforms also have additional hard substratum created by diagonal and horizontal support structures. The depths of these structures are fairly consistent among platforms (at ~11 to 14 m, 26 to 27 m, and below). Rezak et al. (1985) reported broad biotic zonation as a function of depth on the FGB. Here, we have demonstrated species-specificity in coral depth-distribution on the platforms at a higher degree of resolution. Any bias in the depth-distribution data associated with these structures was eliminated by standardizing coral abundance by area.

When platforms become part of the ‘Rigs-to-Reefs’ program, they are sometimes ‘cut and toppled’ at a depth of ≥26 m to leave sufficient depth for navigation by larger vessels. The top portion may be deposited on the bottom or removed and brought ashore. Since a relatively larger proportion of *Madracis decactis* colonies occur below 27 m depth, it is well adapted for deeper reefs and would probably be retained on a ‘toppled’ platform. However, *Diploria strigosa*, another common Caribbean coral, had the highest proportion of its populations at ~10 m and no colonies below 27 m. Thus, most if not all colonies would be removed after ‘topping’ of a platform. *Tubastraea coccinea*, with its near-normal depth distribution, exhibited a mode at ~16.5 m, differing from the other 2 species. It had significantly higher representation in waters <27 m depth, indicating that, again, abundance of this species would be reduced on ‘toppled’ platforms, particularly in the short-term. Deeper surveys are required to determine the maximum depth of these corals and the detailed character of their distributions.

The general homogeneity of *Madracis decactis* colony size on older platforms reinforces the finding that the population may reach a mature stage of development after ~15 yr. Nonetheless, the sample sizes were probably too small to confirm this. Once again, a wider geographic survey may make it possible to detect possible relationships between colony size and platform age or distance from the FGB.

The oil and gas platforms in the Gulf of Mexico that possess coral populations clearly appear to have a positive environmental value. The corals themselves, protected by federal and international law on natural reefs, have an intrinsic value, suggesting that the extent of coral colonization on a structure should be considered prior to decommissioning. In addition, the fact that platforms in offshore environments capable of maintaining coral growth support coral populations in areas where there were none prior to the mid-1900s implies that they may play some role in the broader ecology of coral community dynamics within the Gulf of Mexico as a whole.

Acknowledgements. Many people and organizations assisted us in the execution of this study. For their assistance, we thank the following, without whom this project could not have been completed: US-DOI-MMS: S. Childs, L. Dauterive, T. Dempre (diving); LSU-CMI: L. Rouse (administration); Anadarko Petroleum; Apache Oil; Coastal Oil and Gas; Devon Oil; Dominion Exploration and Production; El Paso Energy; Forcenergy/Forest Oil; Kerr-McGee Oil and Gas; Merit Energy; Newfield Exploration; Noble Energy; UNOCAL; Samedan Oil; Chevron-Texaco Exploration and Production; and W&T Offshore; LSU-Oceanography: K. Wheelock, D. Woodall (diving); Gulf Diving (ship charter): K. Bush, J. Byron, P. Combs, L. DeWeese, J. Dibble, D. Fanning, K. Foster, J. Heiser, Jason, S. Kerr, T. Kilpatrick, R. Widaman (at-

Adams CL (1996) Species composition, abundance and depth zonation of sponges (Phylum Porifera) on an outer continental shelf gas production platform, northwestern Gulf of Mexico. Final report and MSc thesis, Texas A&M University, Center for Coastal Studies, Corpus Christi, TX

Atkinson AD (2003) Drilling platforms as stepping stones for expansion of coral communities: a molecular genetics approach. Abstract Graduate Student Symposium, University South Alabama, Dauphin Island Sea Laboratory, Dauphin Island, AL. Department of Biological Sciences, University of South Alabama

Belbin L (1995) PATN: pattern analysis package. CSIRO, Sustainable Ecosystems, Canberra

Boland GS, Gallaway BJ, Baler JS, Lewbel GS (1983) Ecological effects on energy development on reef fish of the Flower Garden Banks. NOAA National Marine Fisheries, Galveston, TX (Contract No. NA80-GA-C-00057)

Childs J (1998) Nocturnal mooring and parking behavior of three monacanthids (filefishes) at an offshore production platform in the northwestern Gulf of Mexico. Gulf Mex Sci 16:228

Love MS, Caselle JE, Snook L (2000) Fish assemblages around seven oil platforms in the Santa Barbara Channel area. Fish Bull Fish Wildl Serv US 98:96–117

Sammarco PW (1994) Larval dispersal and recruitment pro-
cesses in Great Barrier Reef corals: analysis and synthesis. In:
Sammarco PW, Heron ML (eds) The bio-physics of marine larval dispersal. American Geophysical Union,
Washington, DC, p 35–72

Sammarco P W (1996) Comments on coral reef regeneration,
biorerosion, biogeography, and chemical ecology: future

Sammarco PW, Andrews JC (1988) Localized dispersal and
recruitment in Great Barrier Reef corals: the helix experi-
ience. Science 239:1422–1424

Sammarco PW, Andrews JC (1989) The helix experiment: dif-
ferential local recruitment patterns in Great Barrier Reef
corals. Limnol Oceanogr 34:898–914

Sammarco PW, Atchison A (2003) Coral communities and
recruitment on offshore drilling platforms in the northern
Gulf of Mexico: summary. US Department of the Interior,
Minerals Management Service Information Transfer
Meeting, Kenner, LA. Minerals Management Service,
New Orleans, LA, p 6–7

Sammarco, PW, Brazeau DA (2001) Genetic affinity between
corals, including spat, at three tropical W Atlantic sites:
Where do the larvae go? Proc 30th Sci Meet Assoc Mar
Lab Caribb (AMLCC), La Parquera, Puerto Rico. Dept
Marine Science, University of Puerto Rico, Mayaguez, p 31

Sammarco PW, Heron ML (eds) (1994) The bio-physics of
marine larval dispersal. American Geophysical Union,
Washington, DC, p 352

Sammarco PW, Atchison A, Boland GL (2002) Drilling plat-
forms as environmental assets: developing an assessment
protocol using adult and juvenile corals. US Dept Interior,
Minerals Management Service Information Transfer
Meeting, Kenner, LA. Minerals Management Service,
New Orleans, LA, p 183–200

Schmahl GP, Hickerson EL, Weaver DC (2003) Biodiversity
associated with topographic features in the northwestern
Gulf of Mexico. Proc US Dept Interior, Minerals Manage-
ment Service Information Transfer Meeting, Gulf of
Mexico OCS Region, Kenner, LA, Minerals Management
Service, New Orleans, LA, p 84–88

Schroeder DM, Ammann AJ, Harding JA, MacDonald LA,
Golden WT (2000) Relative habitat value of oil and gas
production platforms and natural reefs to shallow water
fish assemblages in the Santa Maria Basin and Santa Bar-
bara Channel, California. In: Browne DR, Mitchell KL,
Chaney HW (eds) Proc 5th California Islands Symp, US
Department of the Interior, Minerals Management Service,
Pacific OCS Region, Camarillo, CA, p 493–498

Schroeder WW, Shultz AW, Pilkey OH (1995) Late Quater-
inary oyster shells and sea-level history, inner shelf, north-

Shannon CE, Weaver W (1949) The mathematical theory of
communication. University of Illinois Press, Urbana, IL

Shinn EA (1974) Oil structures as artificial reefs. In: Coluniga
L, Stone R (eds) Proceedings of Artificial Reef Confer-
ence(TAMU-56-74-103). Texas A & M University, Bryan,
TX, p 91–96

Shinn EA, Wicklund RI (1989) Artificial reef observations
from a manned submersible off Southeast Florida. Bull
Mar Sci 44:1041–1050

Addison-Wesley, Reading, MA

Snell T, Foltz DW, Sammarco PW (1998) Variation in morphol-
ogy vs conservation of a mitochondrial gene in Montastrea
cavernosa (Cnidaria, Scleractinia). Gulf Mex Sci 16:188–195

Sokal RR, Rohlf FJ (1981) Biometry. The principles and prac-
tice of statics in biological research, 2nd edn. WH Free-
man & Co, New York

Sonnier F, Teering J, Hoese HD (1976) Observations on the
offshore reef and platform fish fauna of Louisiana. Copeia
1:105–111

Soong K (1993) Colony size as a species character in massive
reef corals. Coral Reefs 12:77–83

Soong K, Cho LC (1998) Synchronized release of medusae
from three species of hydrozoan fire corals. Coral Reefs 17:
145–154

Souter DW, Linden O (2000) The health and future of coral
reef ecosystems. Ocean Coast Manag 43:657–688

Steiner SCC (1995) Spawning in scleractinian corals from SW

Sturges W, Blama JP (1976) A western boundary current in
the Gulf of Mexico. Science 92:367–369

Szmant AM (1991) Sexual reproduction by the Caribbean reef

Vermeij MJA, Sampayo E, Broeker K, Bak RPM (2003) Varia-
tion in planulae release of closely related coral species.
Mar Ecol Prog Ser 247:75–84

Vidal Lorandi FV, Vidal Lorandi VMV, Rodriguez Espinoza
PF, Sambrano Salgado L, Portilla Casilla J, Rendon
Villalobos JR, de la Cruz BJ (1999) Gulf of Mexico circula-

Ward JH (1963) Hierarchical grouping to optimize an objec-
tive function. J Am Stat Assoc 58:236–244

Wells JW (1973) New and old scleractinian corals from
Jamaica. Coral Reef Project — papers in memory of Dr.

Winfield T (1973) A fish story you can believe. In: Man-made
fresh for fish, Shell News (Reprint) 17:1-463-6-73, 2–5

Wyers SC, Barnes HS, Smith SR (1991) Spawning of
hermatypic corals in Bermuda: a pilot study. Hydrobiolo-
gia 216–217:109–116

diversity in hermatypic coral community on Luhuitou

Proofs received from author(s): September 30, 2004

Submitted: October 8, 2003; Accepted: May 8, 2004

Editorial responsibility: Charles Birkeland (Contributing Editor),
Honolulu, Hawaii, USA