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INTRODUCTION

River discharge into the coastal ocean creates thin
buoyant lenses of fresher water over dense oceanic
waters (Bowman & Iverson 1978, Bowman 1988). When
river outflow volume is sufficiently large in comparison
to tidal volume, a clear frontal boundary is formed
between the river plume and adjacent marine waters
(Garvine & Monk 1974). Convergent flows at these
frontal boundaries have the potential to concentrate

neustonic and planktonic organisms, including larval
fishes (Le Févre 1986, Grimes & Finucane 1991, Gov-
oni & Grimes 1992, Olson et al. 1994). Unlike many
other oceanographic mechanisms that concentrate
planktonic organisms, frontal boundaries are recurrent
and spatially predictable, and thus may provide a
predictable food source for plankton-feeding fishes.

Biological enrichment or concentration at a variety of
oceanographic fronts has been observed in a wide range
of organisms, including phytoplankton (Franks 1992,
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Uye et al. 1992, MacGregor & Houde 1996), copepods
(Mackas & Louttit 1988, Russell et al. 1999), larval de-
capods (Zeldis & Jillett 1982, Epifanio 1987, Eggleston et
al. 1998) and larval fishes (Grimes & Finucane 1991,
Govoni & Grimes 1992). Frontal zones have also been
found to impact plankton community structure and com-
position (Grimes & Finucane 1991, Shanks et al. 2000,
2002, 2003, Chiba et al. 2001, Munk et al. 2003).

The enhanced densities or biomass of organisms in
frontal regions has been attributed to increased pri-
mary and secondary productivity (Uye et al. 1992) as
well as physical concentrating mechanisms (Epifanio
1987, Govoni & Grimes 1992). Franks (1992) demon-
strated that surface-oriented organisms should become
highly concentrated in frontal zones relative to nearby
regions. His model predicts that concentration in con-
vergence zones is expected for organisms that have
some mechanism of maintaining their position at the
surface, either from depth-directed swimming or due
to positive buoyancy. However, in the absence of sur-
face-directed behavior, concentration will not take
place. Concentration in convergence zones could be
beneficial to planktonic organisms by providing reten-
tion and landward transportation mechanisms for
larval stages (Shanks & Wright 1987, Eggleston et al.
1998). Increased plankton biomass could
also provide regions of higher food avail-
ability for fishes such as juvenile salmon,
and for birds that are surface-oriented
visual predators.

The coastal ocean off of Oregon and
Washington is heavily influenced by
Columbia River freshwater discharge
(Hickey & Banas 2003). The Columbia
River is the predominant river in the Pacific
Northwest, supports the largest runs of
Pacific salmon (Oncorhynchus spp.) in the
continental United States, and carries the
6th largest volume of runoff in North
America. Columbia River average annual
runoff is second in the United states at
approximately 244 billion m3 (Federal
Columbia River Power System 2001; avail-
able at: http://www.bpa.gov/power/pg/
columbia_river_inside_story.pdf). This out-
flow results in a well-defined front at the
leading edge of the brackish plume (Pearcy
& Keene 1974).

To test the hypothesis that plume fronts
concentrate prey and are used as feeding
habitats by juvenile salmon, we conducted
a detailed physical and biological study of
the fronts created at the leading edge of the
Columbia River plume and the adjacent
plume and oceanic waters in late May of

2001 and 2002 during the period of peak juvenile
salmon entry into the coastal ocean. We contrasted the
physical and biological characteristics of 3 habitats:
(1) the front at the leading edge of the Columbia River
plume; (2) adjacent locations in the higher-salinity,
coastal shelf waters; and (3) the low-salinity plume
(hereafter referred to as front, ocean and plume,
respectively). We describe and compare the physical
structure of these habitats, and test for differences
among them in abundance, biomass, and community
structure of plankton and neuston. In a companion
paper (De Robertis et al. 2005, this volume), we de-
scribe the abundance and diet of juvenile salmon
among these habitats.

MATERIALS AND METHODS

Field collection and physical data. We conducted
hydrographic and plankton sampling of Columbia
River plume frontal zones off the coasts of Oregon and
Washington, USA, during daylight hours from the FV
‘Frosti’ on May 23 to 27, 2001 and May 23 to 29, 2002.
Our sampling was designed to contrast the fronts
with the adjacent habitats inside (plume) and outside
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Fig. 1. (a) Front at leading edge of Columbia River plume, showing ocean,
front and plume habitats (Photo courtesy of S. A. Hinton, NOAA Fisheries,
Hammond, Oregon); (b) neuston-net fishing in front habitat; (c) bird aggre-

gation at front habitat
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(ocean) the front. To provide statistical control for spa-
tial and temporal variability, the sampling was con-
ducted in a blocked design, whereby each triplicate
(sampling block) consisted of samples taken consecu-
tively at ocean, front and plume stations.

Sampling stations were selected using a combination
of visual observations and a flow-through CTD (con-
ductivity, temperature, depth; Sea-Bird SBE19plus).
Initially we attempted to randomize the order in which
the ocean, front and plume habitats were sampled, but
because we were unable to consistently locate the
front in a reasonable amount of time, the front station
was always sampled first. The surface expression of
the front was clearly visible (Fig. 1), with distinct differ-
ences in water color and clarity, and often accompa-
nied by accumulations of foam, flotsam and jetsam.
Therefore, the front was located by visual observation,
measurements of real-time flow-through surface salin-
ities from the research vessel, and (in 2001) with the
aid of an accompanying vessel (RV ‘Sea Otter’) and a
US Coast Guard helicopter. The ocean and plume
stations were then sampled in random order within
a sampling block. These stations were selected by
steaming perpendicularly away from the front until no
large changes in surface salinity were observed.

The period from November 2000 to May 2001 was
the second driest on record (1895 to 2002) in the Pacific
Northwest compared to the 65th driest during the
same period in 2001 and 2002 (see http://www.ncdc.
noaa.gov). Consequently, snow melt and outflow from
the Columbia River in May 2001 was almost half that in
May 2002, whereas May 2002 outflow was close to the
long-term average (Fig. 2). Because of the higher river
flows in 2002, the ocean stations were located further
from the river mouth and from the front (ocean-front
distance: 2001, x– = 7.8 km; 2002, x– = 13.0 km) and
plume (ocean-plume distance: 2001, x– = 10.5 km; 2002,
x– = 20.4 km) in 2002 (Fig. 3). A total of 17 sampling
blocks were completed, 8 in 2001, and 9 in 2002.

The physical characteristics of the water column at
each station were measured with a CTD (Sea-Bird
19plus) profiler that was lowered to within 5 m of the
bottom, or to a maximum of 100 m. Water transparency
was measured with a Secchi disc, and chlorophyll and
nutrient samples were collected at 3 m depth using a
Niskin bottle. Water samples were immediately fil-
tered on pre-combusted Whatman™ GF/F filters and
stored in centrifuge tubes for subsequent chlorophyll
pigment analysis. The filtrate was saved for nutrient
analysis and, along with the filters, kept frozen
(–20°C) in the dark until processed on shore. On shore,
pigments were extracted in 90% HPLC grade acetone
in deionized water for at least 12 h in a dark freezer
before measuring sample fluorescence with a fluoro-
meter (Turner Designs, 10-AU). Chlorophyll a was cal-
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Fig. 2. Outflow at Bonneville dam (168 km upstream of river
mouth) in thousands of ft3 s–1 (1000 ft3 = 28.3 m3) showing
10 yr average, and May 2001 and 2002. Data from the
U.S. Army Corps of Engineers, Water Management Division 

(details at: www.nwd-wc.usace.army.mil/report.htm)

Fig. 3. Sampling locations off mouth of Columbia River in
ocean, front and plume habitats in 2001 and 2002. Dashed 

line: 180 m depth contour
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culated from these fluorescence measurements. The
concentration of phosphate (PO4), silicate (Si[OH]4),
nitrate (NO3), nitrite (NO2), and ammonium (NH4) was
determined in nutrient samples by the University of
Washington (Seattle) Marine Chemistry Laboratory
using standard methods adapted for an autoanalyzer
(UNESCO 1994).

Water-column zooplankton were collected with a
plankton net, and zooplankton in the upper 30 cm of the
water column (neuston) were collected with a Manta
neuston net (Brown & Cheng 1981). The plankton net
was either a 1 m diameter ring net (2001) or a 0.60 m
bongo net (2002). Both were fitted with 335 µm mesh and
fished by letting out 60 m of cable and retrieving it
immediately at 30 m min–1 while the vessel was under-
way at 2 knots. The angle of the wire was maintained so
that this net fished to a maximum depth of 20 to 30 m.
The 0.97 × 0.3 m, 335 µm mesh neuston net was towed
60 m behind the vessel at the surface, but out of the
wake, for 5 min while the vessel traveled at 2 knots. A
calibrated flowmeter (General Oceanics) located inside
the mouth of each net was used to estimate the amount
of water filtered in each sample. Samples were imme-
diately preserved in a 5% buffered formalin/seawater
solution and returned to the laboratory for analysis.

Laboratory procedure. In the laboratory, plankton
samples were rinsed, and all organisms over an aver-
age length of 2.5 mm counted. In addition to these
larger organisms, all developmental stages of amphi-
pods, barnacles, chaetognaths, crabs, cumaceans,
euphausiids, fishes, isopods, mysiids, pteropods and
shrimp were enumerated. These taxa were selected to
correspond with known prey organisms of juvenile
Chinook, coho, and chum salmon in this area (Brodeur
1989, 1991, Schabetsberger et al. 2003, De Robertis et
al. 2005), and all are effectively retained by 335 µm
mesh. The entire sample was initially scanned for large
rare organisms using a light table. Next, the sample
was split using a Folsom splitter, and large, more com-
mon organisms were removed using a light table.
Finally, a subsample of the split was taken using a
Hensen stempel pipette (5 to 20 ml) to count smaller
organisms. A dissecting microscope was used to iden-
tify all organisms to the lowest possible taxonomic
level and developmental stage. After extrapolating catch
sizes from subsample counts, the data were normal-
ized using flowmeter data to produce density estimates
of organisms m–3. Biomass of a given species was cal-
culated by multiplying the number m–3 by the carbon
weight of individuals of a given developmental stage.
Estimates of zooplankton carbon content were derived
from literature values (Strong & Daborn 1979, Willams
& Robins 1979, Peterson 1980, Kafanov & Fedotov 1982,
Ross 1982a,b, Uye 1982, Sample et al. 1984, Vidal &
Smith 1986, Anger 1989, Ikeda & Skjoldal 1989, Sum-

mers 1993, Sulkin & McKeen 1994, Ouellet et al. 1995)
or from our own estimates of dry weight.

Data reduction and statistical methods. For all analy-
ses, plankton were combined into the following groups:
pteropods, large copepods, barnacle cyprid larvae,
isopods, gammarid amphipods, hyperiid amphipods,
euphausiid calyptopes, euphausiid furciliae, other
decapods (crab zoea and shrimp larvae), Cancer mag-
ister (Dungeness crab) megalopae, other crab mega-
lopae, insects, chaetognaths, Engraulis mordax (north-
ern anchovy) eggs, Citharichthys spp. (unidentified
sanddab spp.) eggs, and fish larvae.

We analyzed differences in plankton abundance,
biomass, and physical features with respect to the
plume, front, and ocean habitats using generalized
linear models (McCullugh & Nelder 1989). In all cases,
we blocked the statistical analysis by habitat to reflect
the experimental design, and set α to 0.05.

For the physical data, we assumed a normal error
structure based on examination of normal probability
plots. The underlying data for the plankton samples
were counts characterized by frequent zero counts.
Thus we used count-based error structures for the
plankton analysis. Although the counts were con-
verted to densities based on volume of water sampled,
count-based models were still appropriate because
volume sampled represents exposure time to the
underlying distribution (Lawless 1987). The 2 alterna-
tive models we considered were a Poisson model,
which assumes that the mean is equal to the variance,
and the negative binomial model, which is applicable
to ‘over-dispersed’ data where the variance is larger
than the mean (Welch & Ishida 1993, Power & Moser
1999). To chose between these 2 models, we per-
formed an analysis of deviance (ANODEV) to deter-
mine whether the more complex negative binomial
model was warranted.

If we found significant habitat effects in any of the in-
dependent variables, we performed multiple compar-
isons using Tukey’s HSD test (Zar 1984) to determine
how they varied among ocean, front, and plume habi-
tats. The Tukey test compared habitats pairwise, taking
into account block effects, to determine whether each
pair was similar or different with respect to the inde-
pendent variable tested. We used the S-Plus statistical
software package (MathSoft 2000) for these analyses.
For cases where there were too many zeros to run a
parametric test, a Friedman test followed by Tukey tests
was conducted to determine whether the independent
variable tested differed between habitats.

A sequential multivariate statistical approach was
used to determine if zooplankton community structure
was consistently different among the 3 habitats. Plank-
ton data were log (x + 1)-transformed for the multi-
variate analyses. Non-metric multidimensional scaling
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(NMDS) (Kruskal 1964, Mather 1976) was used to ordi-
nate sample units (stations) in species space, to identify
stations with similar zooplankton communities, and to
relate zooplankton communities to environmental vari-
ables. Ordinations were conducted using PC-ORD
Version 4.27 software (McCune & Mefford 1999). The
closer 2 stations are in species space, the closer the
species composition of the stations (McCune & Grace
2002). Runs were made using the Sørensen distance
measure (Bray & Curtis 1957). Plots and output of in-
stability and stress were examined to find the number
of ordination axes at which the reduction in stress
gained by adding another axis was inconsequentially
small (Mather 1976). Stress is a measure of the lack of
fit of the ordination, represented by a few dimensions
(axes), to the original station data in multidimensional
species space; the lower the stress, the better the fit of
the ordination. To minimize the chance of finding a
local minimum in stress, Monte Carlo randomizations
were run with 4 axes, 150 iterations, 10 runs of real
data and 30 randomized runs. All ordinations were
presented graphically with the dominant 2 axes for
ease of visual interpretation. The orientations were
rigidly rotated to maximize the correlation of the first
axis with the environmental variable stability (the den-
sity gradient between 20 m and 1 m [Δσt /ΔZ]) so that
the ordinations were in a similar orientation and could
be more easily compared.

The non-parametric blocked multi-response permu-
tation procedure (MRPP) was used to test the null
hypothesis of no difference in zooplankton commu-
nity composition among habitats. This test is analo-
gous to a randomized block ANOVA (McCune &
Grace 2002), but does not require distributional
assumptions such as normality and homogeneity of
variances. This test generates a p-value to evaluate
the likelihood that an observed difference occurred
by chance. Zooplankton samples were grouped by
habitat and were then blocked by station for each net
type and both years. The Euclidean distance measure
was employed in all cases to allow for median align-
ment in blocked tests (which cannot be done with the
Sørensen distance measure), and to maintain consis-
tency among tests.

When MRPP revealed statistically significant differ-
ences in zooplankton community structure among
habitats, indicator species analysis (ISA) (Dufrene &
Legendre 1997) was used to identify species groups
that served as good indicators of the different habitats.
The indicator value of a given species group is based
on relative abundance of the species and frequency of
occurrence of the species group in that habitat. The
highest indicator value of each species is tested for
statistical significance using a Monte Carlo randomiza-
tion technique.

RESULTS

Frontal features

The plume formed a shallow (2 to 10 m) lens of
warmer, lower salinity water overlying the colder and
more saline waters of the Oregon and Washington
shelf (Fig. 4). The horizontal interface of the low-
salinity waters of the Columbia River plume and
oceanic waters resulted in a highly visible surface front
that was characterized by sharp color discontinuities
and high surface energy (waves) and was often accom-
panied by foam and flotsam and aggregations of
seabirds (Fig. 1c). The surface manifestation of the
front was approximately 1 to 2 m wide. Fronts were
extremely dynamic, forming shortly after higher high
water and propagating out from the mouth of the
Columbia River during ebb tide. The fronts were suffi-
ciently visible to sample for 10 to 14 h after higher high
tide, after which the reversal of the tides relaxed
currents and the fronts dissipated.
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Station depth and distance

There was no significant difference in station depth
(m) among habitats in 2001; however in 2002, the
ocean stations were significantly deeper than the front
and plume stations (p < 0.005, Table 1). There was no
significant difference in station depth for any habitat
between years.

In both years the ocean station was significantly fur-
ther from the mouth of the Columbia River (measured
radially in km from the North Jetty) than the front and
plume habitats (p < 0.05, Table 1). In addition, both the
ocean and front habitats were significantly further off-
shore in 2002 than in 2001 (p < 0.05). This is consistent
with more river outflow in 2002 than in 2001.

Temperature, salinity and density

The overall range in physical variables at 3 m depth
for all stations sampled was greater in 2002 than in
2001. There was no significant difference in the mean
temperature among habitats in 2001 (Table 1), but the
plume was significantly warmer than the ocean and
front habitats in 2002 (p < 0.05). Both the front and
plume habitats were significantly warmer in 2002 than
in 2001 (p < 0.005), but there was no significant differ-
ence in ocean habitat temperature between years.

In both years, mean salinity and density at 3 m depth
were higher in the ocean habitat than the plume habi-
tat, and were intermediate or equal between the front
habitat and the plume (Table 1). The mean salinity of
the front was more similar to that of the plume in 2001
and to the ocean habitat in 2002. Mean salinity of the
plume at 3 m was 2.9 lower than in the ocean in 2001
and 9.2 lower than in the ocean in 2002 (Fig. 4). In 2001
the ocean habitat, and in 2002 both the ocean and front
habitats, had significantly higher salinities than the
plume habitats (p < 0.005). The ocean and front habi-
tats were significantly more saline and dense in 2002
than in 2001 (p < 0.05), while the plume habitat was
significantly less saline and dense in 2002 than in 2001
(p < 0.005). These measures were all consistent with
higher river outflow in 2002 than in 2001.

Water-column stability was significantly higher in
the plume than in the ocean habitat in both years
(Table 1). Stability was also significantly higher at
plume stations in 2002 than in 2001 (p < 0.001), indicat-
ing a greater degree of stratification in 2002.

Pigments and nutrients

There was no significant difference among the 3
habitats in mean chlorophyll a concentrations in either
year (Table 1). Chlorophyll a concentrations in the
plume were significantly higher in 2002 than in 2001
(p < 0.001), but were not significantly different be-
tween years in the ocean or front habitats.

All nutrients measured (PO4, Si[OH]4, NO3, NO2,
NH4) were significantly (p < 0.05, Table 1) higher in the
plume than in the ocean, with the exception of PO4 in
2002 and NO2 in 2001. There were significant differ-
ences in nutrients between the 2 years in all habitats,
with the exception of NO3 in the plume. In all cases,
except for Si(OH)4 in the plume (significantly higher in
2002 than 2001, p < 0.05), all nutrients were signifi-
cantly higher in all habitats in 2001 than in 2002
(p < 0.05). The average Bakun upwelling index (avail-
able at: www.pfeg.noaa.gov) indicated a period of mild
upwelling (67) during our May 2001 sampling and a
downwelling event (–28) during our May 2002 study.
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Variable Year
Habitat

Station depth (m)
2001

Ocean

89.8

Front

78.4

Plume

75.2

p

Distance from N. Jetty 
(km)

Temperature at 3 m 
depth (°C)

2002

2001

91.1

21.6

2002

2001

35.4

12.1

66.7

17.9

58.0

16.4

24.3

12.0

16.5

11.9

**

*

**

Salinity at 3 m depth

Density at 3 m depth 
(σt)

2002

2001

12.1

 31.0

2002

2001

31.6

23.4

Stability for 20 m to 
1 m depth (Δσt/ΔZ)

Chlorophyll a at 3 m 
depth (µg l–1)

2002

2001

23.9

0.1

2002

2001

0.1

1.9

12.6

28.0

12.7

27.8

30.0

21.2

22.4

21.0

*

**

**

**

22.6

0.2

16.7

0.3

0.2

1.9

0.5

2.4

**

**

**

Secchi depth (m)

PO4 (µM)

2002

2001

3.4

8.4

2002

2001

5.7

0.2

Si(OH)4 (µM)

NO3 (µM)

2002

2001

0.1

9.7

2002

2001

3.5

0.8

2.5

5.5

4.3

3.8

5.0

0.3

3.2

0.4

**

**

**

0.1

30.3

0.2

32.9

14.3

3.8

54.7

4.6

**

**

**

NO2 (µM)

NH4 (µM)

2002

2001

0.1

0.1

2002

2001

0.05

0.3

2002 0.2

0.4

0.1

3.3

0.2

0.04

0.9

0.08

0.9

**

**

**

0.2 0.05 *

Table 1. Generalized linear model analysis of physical and bi-
ological characteristics of ocean, front and plume habitats.
Shading demarcates significant differences between habitats
identified by post-hoc tests. Values in each cell represent
mean observation for that habitat. *p < 0.05; **p < 0.005;
(j) higher; (j) intermediate; (j) lower; (h) no difference
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Silicate and nitrate have been used as measures of
the relative influence of the Columbia River plume and
upwelling (Hill & Wheeler 2002). Silicate is known to
be high in the Columbia River plume, and in both
years average silicate concentration was significantly
higher in the plume than in the ocean habitats,
whereas the front habitat was intermediate (Table 1,

Fig. 5). Silicate was higher in the plume in 2002, the
year with higher river outflow. Nitrate was relatively
low in all habitats in both years, but showed the same
trend as silicate, with higher concentrations in the
plume than in the ocean habitat, while the front habitat
was intermediate. Nutrient characteristics of the front
habitat resembled more the plume habitat in 2001, and
more the ocean habitat in 2002 (Table 1, Fig. 5).

Plankton and neuston density and biomass

The total density of taxa examined was not signifi-
cantly higher in either the plankton or neuston nets for
the front habitat versus the ocean or plume in either
2001 or 2002 (Fig. 6). Total densities were higher in the
front habitat in 6 of the 17 station blocks in the plank-
ton net, and in 9 of 17 station blocks in the neuston net.
Higher plankton densities in the ocean or plume
habitats were often attributable to the presence of
euphausiid calyptopis larvae (Thysanoessa spinifera or
Euphausia pacifica), which were often extremely
abundant, especially in the ocean habitat (Table 2).

Although collectively the total density of enumer-
ated taxa was not higher in the frontal habitat, many
individual taxa were significantly more abundant in
frontal than in plume and oceanic waters (Table 2).

These taxa, some of which are important prey of
juvenile salmonids (De Robertis et al. 2005),
were Cancer magister megalopae, insects,
Citharichthys spp. and Engraulis mordax eggs,
gammarid amphipods, barnacle cyprid larvae,
copepods, and fish larvae. In addition, taxa
which were more abundant in the frontal habitat
were also more abundant in the upper 0.3 m
(neuston) versus the upper 20 to 30 m sampled
by the plankton nets (Table 2).

The total biomass of zooplankton was signifi-
cantly higher in the front than in the ocean or
plume habitats for plankton net samples in 2002
and for neuston net samples in both years
(p < 0.005, Fig. 7). Total zooplankton biomass
was higher in the front habitat for 11 of 17 sta-
tion blocks in the plankton net, and for all 17 sta-
tion blocks in the neuston net. The average zoo-
plankton biomass in the front habitat was 4
times higher than in the other habitats (average
of ocean and plume habitats) in the 2001
neuston and 2002 plankton samples and 47
times higher in the 2002 neuston. Taxa that were
more abundant in the neuston compared to the
plankton were much more likely to be concen-
trated at fronts (Fig. 8, Spearman’s rank correla-
tion: 2001, RS = 0.83, p < 0.001; 2002, RS = 0.79, p <
0.001). The majority of higher biomass in the

25

2001

2002

Nitrate (μM)
0 1 2 3 4 5 6

0

10

20

30

40

50

60

Front
Ocean

Plume

2001

2002

Nitrate (μM)
0 1 2 3 4 5 6

S
ili

ca
te

 (µ
M

)

0

10

20

30

50

60

Front
Ocean

Plume
Front
Ocean

Plume
Front
Ocean

Plume

Fig. 5. Mean (±1 SE) nitrate versus silicate in ocean, front and 
plume habitats in 2001 and 2002

2001 2002

Neuston

Plankton

Ocean Front Plume

1000

2000

3000

4000

5000
ns

1000

2000

3000

4000

5000
ns

1000

2000

3000

4000

5000
8000

12000

ns

Ocean Front Plume

1000

2000

3000

4000

5000

D
en

si
ty

 (n
um

b
er

 m
–3

)

ns

0

Ocean Front Plume
0

Ocean Front Plume
0

0

Fig. 6. Density of enumerated taxa in ocean, front and plume habitats
in neuston and plankton. Box plots demarcate 10th, 25th, 50th, 75th
and 90th percentiles. ns: no significant difference among habitats



Mar Ecol Prog Ser 299: 19–31, 2005

vicinity of fronts can be attributed to Cancer magister
megalopae, which are relatively large, and buoyant
fish eggs (Citharichthys spp. and Engraulis mordax),
which were extremely abundant (Table 2).

Community analysis

Non-metric multidimensional scaling (NMDS) re-
vealed differences in the community structure among
habitats. The stress values for these ordinations were

between 8 and 15%, which is in the ‘good-to-fair’ crite-
rion range (McCune & Grace 2002). NMDS ordinations
revealed that the zooplankton community composition
was different among habitats for the neuston, but
much less so for the plankton (Fig. 9). Differences in
zooplankton community structure as a function of
habitat were observed in both years in the neuston.
However, in 2002 (Fig. 9b) the zooplankton community
composition was much more distinct among habitats
(less overlap) than in 2001 (Fig. 9a). MRPP analysis
indicated that plankton and neuston community com-
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Table 2. Generalized linear model analysis of density (number 1000 m–3) of taxa in neuston, meter (2001) and bongo (2002) nets in
ocean, front and plume habitats; data presented as in Table 1. When there were too many zeros to run a parametric test, a Fried-
man test was conducted, where *^ indicates Friedman p < 0.05; tz: too many zero values for statistical analysis; ns: not significant. 
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position was significantly different among habitats
for both years (p < 0.05).

Indicator species analysis (ISA) also supported the
conclusions of the generalized linear model analyses

(GLM). In 87.5% of cases, the same species
were associated with the same habitat using
both methods, so although the statistical results
were slightly different, the results were consis-
tent; therefore, complete results of the ISA will
not be presented here. In only 8 of 64 cases did
the ISA results differ from the GLM. The addi-
tional species that ISA added as indicators of
certain habitats were consistent with the trends
observed in the GLM analyses, although the
results were not statistically significant (Table
2). The consistency between these 2 different
methods gives us confidence in the identified
differences in plankton abundance among the
ocean, front and plume habitats.

DISCUSSION

Our study revealed that the well-defined
fronts that form at the leading edge of the
Columbia River plume result in a strong
demarcation of plankton communities. This
was due largely to the concentration of
surface-oriented species along the front, par-
ticularly Dungeness crab megalopae Cancer
magister and the buoyant eggs of northern
anchovy and sanddab (Engraulis mordax and

Citharichthys spp.). The existence of large numbers
of insects, dominated by live lady bugs (family Coc-
cinellidae) in the front suggests that the formation
of the front may be a relatively rapid phenomenon.
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The ocean, front and plume habitats were physically
distinct, with large contrasts between the lower-salinity
plume, which was shallow and highly stratified, and
the higher-salinity ocean habitat. The frontal habitats
were ephemeral, but recurrent on a tidal cycle, and
were also visually distinct, demonstrating marked dif-
ferences in water color and clarity, accumulation of
foam and flotsam, high-energy waves and increased
bird activity. Despite the fact that fronts were short-
lived, the differences were consistent and they did
demarcate very distinct physical conditions (i.e. habi-
tats). Pigments and nutrients were not significantly
higher in the fronts than in the ocean or plume habitat.
Therefore, it is not likely that these fronts are regions
of higher production, which is not surprising given the
ephemeral nature of the frontal habitats.

Increased zooplankton biomass in the frontal zones
is a result of physical convergence concentrating sur-
face-oriented organisms, rather than changes in birth
or mortality rates leading to higher production. Al-

though we did not measure convergence rates or zoo-
plankton demography, the fronts persisted for time-
scales (hours) that are much shorter than the genera-
tion times of the zooplankton (on the order of months)
and the observed increases in biomass at fronts are
thus attributable to concentration rather than popula-
tion growth. Density of all zooplankton combined was
not higher at the fronts, but density and biomass of
surface-oriented zooplankton taxa were elevated in
frontal zones. This explains the differences in zoo-
plankton community structure: if all zooplankton were
concentrated at fronts at the same rate, then the abun-
dance of zooplankton would be consistently higher
at fronts compared to ocean and plume habitats, but
community structure would remain the same.

Total zooplankton biomass was elevated at fronts
compared to adjacent ocean and plume habitats, and
densities and biomass of surface-oriented taxa were 4
to 47 times higher at fronts and in the neuston than in
the adjacent ocean and plume waters. Taxa that were
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more abundant in the neuston versus in the water col-
umn (plankton) were also more abundant in the front
compared to the ocean and plume habitats (Fig. 8).
This differential distribution of taxa among habitats led
to the differences observed in zooplankton community
structure among the ocean, front and plume habitats.
Differences in the front habitat zooplankton commu-
nity structure can primarily be attributed to the
increased concentration of surface-oriented taxa.
These differences at the front were even more pro-
nounced in the neuston, which lends further support to
the hypothesis that these organisms are concentrated
due to near-surface convergence. These findings of
higher concentrations at fronts of neustonic organisms
are consistent with Franks’ (1992) model prediction,
and from first principles that organisms maintaining
near-surface distributions, either through active swim-
ming behavior or buoyancy, will become concentrated
by convergent flows at fronts.

We also observed a difference between years, with
higher river outflow and downwelling conditions in
2002, versus low river outflow and upwelling condi-
tions in 2001. Differences in the total zooplankton den-
sity and biomass among habitats were more pro-
nounced in 2002 than in 2001. Biomass at fronts was
higher than at ocean and plume habitats in 2002 in
both the neuston and the plankton. The differences in
zooplankton community structure were also more pro-
nounced in 2002 than in 2001. The distances among
the habitats were much greater in the community
analysis in 2002, especially in the neuston. One might
hypothesize that the differences seen in zooplankton
distribution were partially a result of these differences
in the physical environment. Although we found sub-
stantial differences in community composition and
overall biomass between the 2 years, it is difficult to
ascribe these differences to any particular factor with
just 2 yr of data. However this does suggest strong
inter-annual variability in both physical and biological
conditions in the Columbia River plume and front, and
this could have implications for fish populations that
utilize these areas.

In the García Berdeal et al. (2002) model of the
Columbia River plume, when ambient ocean currents
are southward and winds are southerly and down-
welling-favorable, the plume is advected toward the
shore and slightly to the north. Under these conditions,
a higher density gradient at the edge of the plume is
seen; this was also reported by Fong & Geyer (2001). If
a higher gradient were coupled with high river out-
flows, such as those present during 2002, this could
translate into greater convergence at the plume mar-
gins. In contrast, when ambient ocean currents are
southward and there are upwelling-favorable winds
(from the north), the model predicts that the plume is

more spread out offshore, and progresses southward
from a location straight off the river mouth. Under
these conditions the model predicts a lower density
gradient at the plume edge. If this lower gradient were
coupled with lower river outflows, such as those during
2001, one might expect less convergent flow toward
the plume margin. The model predictions of higher
convergence associated with conditions like those
experienced during May 2002 are consistent with our
findings of a higher concentration of surface-oriented
taxa in 2002 than in 2001.

The taxa that were concentrated at fronts during this
study are all organisms that juvenile salmon have been
found to consume (Brodeur 1989, 1991, Schabets-
berger et al. 2003, De Robertis et al. 2005). Juvenile
salmon are often surface-oriented feeders (Brodeur
1989), and given that many Columbia River basin
salmon enter the ocean when river flow is high and
frontal formation is intensified, there is a potential for
salmon to take advantage of high prey density at
frontal features. However, as reported in De Robertis
et al. (2005), while there is some indication of front-
and plume-related influence on the distribution of
juvenile salmonids, there is no indication that juvenile
salmonids are found consistently in higher densities at
fronts and no evidence that juvenile salmon are pri-
marily consuming taxa that are disproportionately con-
centrated at the fronts. Although, as demonstrated by
our analysis of plankton communities, potential prey
taxa were consistently elevated at fronts in both years
of the study, it is likely that the transience of these
features prevents the juvenile salmonids from fully
utilizing this resource (De Robertis et al. 2005).

While the potential of a recurrent, rich food resource
in frontal habitats exists, juvenile salmonids do not
seem to be utilizing fronts as feeding grounds; however
it could be that smaller planktivorous fishes benefit
from localized prey aggregation. For example, northern
anchovy spawn in the Columbia River plume region,
and their buoyant eggs are concentrated in fronts.
When the larvae hatch, they too may be accumulated at
the fronts, and the higher zooplankton biomass in these
habitats may provide them with concentrated prey re-
sources at a critical time in their life history.

In summary, we found that zooplankton and larval
fishes, which were surface-oriented either through
active behavior or passive buoyancy, were concen-
trated at convergent fronts at the leading edge of the
Columbia River plume. This in turn led to differences
in zooplankton community structure and composition
among the ocean, front and plume habitats. These
local changes in the abundance and composition of
planktonic communities have the potential to result in
large changes in the amount and type of prey available
to pelagic predators.
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