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INTRODUCTION

Meaningful stewardship of coral reef tracts requires
new capabilities for the rigorous, broad spatial evalua-
tion of these ecosystems, and for the advanced pre-
diction of their alteration due to anthropogenic stress
combined with change in the global environment
(Hatcher 1997). Holistic and quantitative methods that
enable timely and geographically detailed appraisals
of pollution effects or generalized endemic stress on
coral reefs are not available at present (Grigg & Dollar
1990, Wilkinson 1992). Existing monitoring methods
based on population inventories, sclerochronology, or
reproductive biology are of great value, but are geo-

graphically constrained, and may provide inconsistent
results due to sampling bias (Brown 1988). Synoptic
techniques that can be implemented with efficiency
are required to discern incipient sub-lethal effects that
may cause long-term increases in coral mortality
(Brown 1988, Grigg & Dollar 1990). The capability to
recognize differences in ecosystem structure and bio-
geochemical function between pristine and degraded
reefs could inform and direct science-based manage-
ment (Done 1992).

In situ measurement of coral reef community metab-
olism can be used to assess reef health as impacted
by changes in environmental parameters such as graz-
ing, sedimentation, eutrophication (Gattuso & Jaubert
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for external inputs of suspended particulate organic matter. Further, our results suggest that the
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may parallel the community phase shifts documented within other reef systems polluted by organic
detritus.
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1990), storm frequency (Done 1999), and atmospheric
carbon-dioxide concentration (Kleypas et al. 1999).
The spatial scale of carbon and carbonate flux mea-
surements across a coral reef ecosystem is variable
(Gattuso et al. 1998). Therefore, the inclusion of de-
tailed ecosystem structure is difficult if strictly in situ
methods are used in scaling-up the investigation of
reef metabolism from the organism to the community
and landscape levels (Andrefouet & Payri 2000). 

Remote sensing methods provide a synoptic, re-
peatable, and multiple-scale view of the biosphere, but
at the present time the direct sensing of benthic
metabolic rates is not possible. Joyce & Phinn (2003)
examined the relation between spectral reflectance,
chlorophyll a concentration, and photosynthetic capa-
city for common coral reef substrates. They found that
photosynthetic capacity did not exhibit statistically sig-
nificant correlations to spectral reflectance or absorp-
tion at any wavelength for massive corals, macroalgae,
and sediment interspersed with benthic microalgae.
However, if coupled with process measurements or
models, satellite and airborne imaging is of great value
in investigating biogeochemical fluxes across
a range of spatial scales (Gurney et al. 1993).
Direct remote sensing of the reef system land-
scape (Andrefouet et al. 2001, Bouvet et al.
2003) and community structure (Clark et al.
1997, Mumby et al. 1997a, 1998) and the indi-
rect remote sensing of environmental condi-
tions (Green et al. 2000) provides a method for
the geographic extrapolation of in situ point
measurements (Yates & Halley 2003). 

Models of the organic carbon and carbonate
metabolism of coral reef ecosystems, parame-
terized by process measurements and scaled in
time-space using remote sensing, can integrate
studies of physical and chemical forcing with
observed biological and geological responses
(Grigg et al. 1984, Hatcher 1999). Synoptic geo-
graphical modeling of reef biogeochemical
dynamics has potential for the prediction of
coral reef change across a range of time scales
(Hatcher 1997, Andrefouet & Payri 2000). Such
prediction of coral reef responses to environ-
mental forcing scenarios on the ecosystem
scale has been suggested as the only meaning-
ful approach to preserve coral reefs (Bohnsack
& Ault 1996, Christensen et al. 1996). 

This paper presents the initial development
of a model of coral reef benthic ecosystem car-
bon and carbonate fluxes that is scaled geo-
graphically through the use of remote mapping
sensors mounted on aircraft and satellites. The
analyses presented are limited to an approxi-
mately 0.5 km2 segment of a single reef zone,

the patch reef-studded platform of the northern Florida
reef tract (NFRT) within Biscayne National Park. The
objectives are to: (1) Test the influence of variable
mapping sensor accuracies on the estimation of the
space-scaled metabolism; (2) Determine the inter-
biotope variability of benthic carbon and carbonate
metabolism within this reef zone; and (3) Use a holistic
estimate of reef platform biogeochemical performance
to examine the net impact of combined natural and
human stresses on the NFRT. 

MATERIALS AND METHODS

The study area is located approximately 5 km east of
Caesar’s Creek and Elliot Key on the lagoonal carbon-
ate platform seaward of Hawk Channel in the NFRT
within Biscayne National Park (Fig. 1) (Ginsburg &
Shinn 1993). This backreef platform lies landward of
Ajax Reef, a shelf-edge bank reef, and is covered by
carbonate sand, mostly capped by a Thalassia testudi-
num seagrass meadow and numerous scattered patch
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Fig. 1. Study area location shown on a Landsat satellite image.
UTM: universal transverse Mercator
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reefs surrounded by bare sandy halos (Shinn et al.
1989, McPherson & Halley 1996). The patch reefs are
roughly circular, with a maximum vertical relief of
about 3 m and a breadth of 10 m to 100 m, and mostly
occur in coalesced groups in the north and west por-
tions of the study area. At present, octocorals dominate
the topographically irregular tops of these patch reefs,
above a framework of scleractinian corals that grew
upward as sea-level rose during the Holocene trans-
gression (Jones 1963, 1977, Marszalek et al. 1977, Jaap
1984, Shinn et al. 1989).

Most earlier studies of reef metabolism have focused
on pristine reef systems in the western Pacific, leading
to the conclusion that rates of coral reef carbon and
carbonate production conform narrowly to standard
modes (Kinsey 1983, 1985). In contrast, we selected a
site that is at the downstream end of the general circu-
lation in both the Caribbean region and the Florida
reef tract and adjacent to the heavily urbanized coastal
region around Miami (Burke & Maidens 2002). We
chose a study site that is located to reflect, in metabolic
performance, the degradation of coral reefs that is
well recognized throughout the Caribbean (Hallock et
al. 1993) and within the Florida reef tract (Causey et
al. 2002a). Our study site is impacted by cold-water
disturbances (Burns 1985), frequent hurricanes, coral
diseases (Mueller et al. 2001, Porter et al. 2001), over-
fishing (Ault et al. 1998), bleaching (Hoegh-Guldberg
1999), and pollution (Jones & Boyer 2001). We view our
study site on the backreef platform of the NFRT as an
excellent location for examining the metabolism of a
stressed and degraded reef system. 

Remote sensing observations. The Advanced
Imaging Spectrometer for Applications (AISA) sensor
(Table 1) was flown at an altitude of approximately
1500 m on January 7, 2001 to collect hyperspectral
imagery at 1.5 m spatial resolution in 25 spectral chan-
nels of 10 nm width (O. Weatherbee pers. comm.). To
avoid sun glint, overflights were conducted in the early

morning and late afternoon when solar illumination
angle was <30°. Concurrent with the collection of
upwelling spectral radiance, a Fiber Optic Down-
welling Irradiance System (FODIS) incorporated in
the AISA sensor package measured downwelling
irradiance in the same spectral channels. Subsequent
to the overflights, the apparent at-platform remote
sensing reflectance (Rrs) was calculated for each spec-
tral channel. A combined rudimentary atmospheric
water-column radiance correction of the AISA spectral
Rrs images, and also the IKONOS and ASTER imagery,
was performed by use of the ‘darkest pixel’ method
(Gordon 1978, Gordon & Clark 1981), based on the
sampling of adjacent deep-water pixels within the
AISA coverage region. The AISA system was cali-
brated prior to the overflights with reference to
NIST traceable integrating sphere (O. Weatherbee
pers. comm.). 

Space Imaging’s IKONOS satellite (Table 1) ac-
quired a multispectral, 4 m spatial resolution image of
the study area from an orbital altitude of 681 km on
March 18, 2001, 70 d after the AISA overflight. Space
Imaging provided radiometrically calibrated images in
3 visible region (400 to 700 nm) spectral channels that
vary from 60 to 80 nm in spectral band width (Space
Imaging 2004). The IKONOS image was acquired in
the morning, when the solar elevation angle was
low enough to preclude significant sun glint. The Ad-
vanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) imaged the study area on Janu-
ary 31, 2001, 24 d after the AISA survey. The ASTER
was placed on the NASA EOS Terra satellite by a
United States-Japan cooperative project, and pro-
vides images at 15 m spatial resolution in 2 visible
region spectral channels from an altitude of 705 km
(Table 1; Abrams 2000). ASTER imaging occurred dur-
ing morning low sun angle conditions to avoid sun glint. 

The topography of the study area was surveyed
during a 2 wk time period in early August 2002 by
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EAARL AISA IKONOS ASTER

Platform Aircraft Aircraft Satellite Satellite
Altitude (m) 300 1500 681 000 705 000
Acquisition date Jul–Aug 2001, Aug 2002 Jan 7, 2001 Mar 18, 2001 Jan 31, 2001
Horizontal resolution (m) ~1 1.5 4 15
Vertical resolution (cm) ~20 NA NA NA
Spot density (No. of spots m–2) ~1 NA NA NA
Ground spot diameter (cm) ~20 NA NA NA
Number of spectral bands 1 (532 nm laser) 25 3 2

(400 to 700 nm) #1: 450–520 nm #1: 520–600 nm
#2: 520–600 nm #2: 630–690 nm
#3: 630–690 nm

Spectral band width (nm) NA 10 nm 60–80 nm 60–80 nm

Table 1. Sensor design and acquisition specifications
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Experimental Advanced Airborne Research Lidar
(EAARL) overflights staged from Marathon, Florida
(Brock et al. 2004). The EAARL is a temporal wave-
form-resolving, airborne light detection and ranging
(lidar) instrument that is designed to measure the fine-
scale topography of shallow reef substrates at a verti-
cal resolution of about 15 cm at surface spot densities
of at least one 20 cm diameter spot m–2 (Table 1)
(Wright & Brock 2002). The EAARL system includes a
downlooking digital camera that continuously acquires
digital aerial photographs at a 1.0 s time step and is
co-registered to the EAARL optical system (Wright &
Brock 2002).

Creation of vertically resolved biotope maps. Fol-
lowing standard practice in the lidar surveying of dry
land surfaces (Krabill & Martin 1987, Fowler 2001), the
EAARL system determines the geographic position of
laser topographic soundings horizontally and vertically
in relation to the constellation of Geographic Posi-
tioning System (GPS) satellites, requiring no Earth
reference surface (Curry & Schuckman 1993, Schwarz
et al. 1993). The instantaneous aircraft location, lidar
range measurements, and scan angle were combined

to determine the Earth location of each benthic laser
reflection to a horizontal precision of approximately
1 m, and an absolute vertical precision of about 20 cm
(Wright & Brock 2002). The resulting substrate eleva-
tions were converted to the North American Datum of
1983 (NAD83) horizontal datum and the North Ameri-
can Vertical Datum of 1988 (NAVD88) mean sea-level
vertical datum by the use of a geoid model (Krabill
et al. 2000). The resulting point elevations were then
gridded into 1.5 m wide cells to create a submarine
digital elevation model that forms the morphologic
component of the 3D biotope maps created from the
AISA, IKONOS, and ASTER images. In the remainder
of this report, all elevations are referenced to the North
American Vertical Datum of 1988 (NAVD88), a mean
sea-level vertical datum. 

Ground geopositioning for the AISA pixels was pro-
vided to less than 5 m error in the Universal Transverse
Mercator (UTM) projection system by an onboard
OMNI STAR GPS receiver integrated with a C-Migits
II inertial navigation system. The initial geometric cor-
rection of the IKONOS and ASTER images was based
on the satellite ephemeris (Abrams 2000, Space Imag-
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Fig. 2. Underwater photographs of the mapped biotopes, depicting (a) sand, (b) seagrass, (c) dense live substrate, and 
(d) sparse live substrate
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ing 2004). The georectification of these satellite images
was enhanced by image-warping to match the very
well navigated aircraft lidar digital elevation model
and hyperspectral imagery. 

The AISA, IKONOS, and ASTER images underwent
supervised classification based on the maximum-
likelihood decision rule (Mumby et al. 1997a, 1998),
using training sites identified from over 200 field sur-
vey points collected in March 2001 and 2002. Given
that our investigation evaluated reef zone carbon
fluxes, the classification discriminated very distinct
substrate types that are well correlated with water
depth and that could be unambiguously recognized in
the field during the benthic chamber deployments.
The benthic cover types that the supervised classifica-
tion discriminated were identical for each image type,
and were limited to sand, seagrass, and 2 coral reef
classes, dense live substrate, and sparse live substrate
(Fig. 2). 

The sand class is consistently bare uncolonized car-
bonate sandy sediment (Fig. 2a), and the seagrass class
is uniformly dense Thalassia testudinum seagrass
meadow (Fig. 2b). The mean composition of the dense
live substrate class (Fig. 2c) was determined by de-
tailed benthic surveys of 12 patch reefs in the study
region (I. B. Kuffner et al. unpubl.). In areal percent-
ages, the dense live substrate class is mainly composed
of bare lithified substrate (21%), Dictyota spp.
(15%) and Halimeda tuna (12%) algae, cyano-
bacteria (8%), scleractinian coral (5%), Millepora
alcicornis hydrocoral (2%), encrusting gorgonians
and gorgonian holdfasts (10%), and Porifera spp.
(3%). Gorgonian cover includes the encrusting
species Erythropodium caribaeorum and Bria-
reum asbestinum, as well as the holdfasts of
branching species. Gorgonian holdfast areal cov-
erage is a poor measure of the extreme abundance
of branching gorgonians, as these octocorals occur
at a mean spatial density of 32 specimens m–2. The
encrusting zoanthid Palythoa carribaeorum (3%)
is also found in this biotope. The patch reef com-
munity is classified as sparse live substrate (Fig. 2d)
rather than dense live substrate at locations where
bare lithified substrate cover exceeds 50%.

All of the remote sensing data used were col-
lected in 2001 and 2002, within the 2000 to 2002
time period that covers the acquisition of the
benthic incubation chamber measurements. No
major storm impacted the study site during the
2000 to 2002 time period; therefore, we assume
that the spatial pattern of benthic habitats did
not vary significantly. Accordingly, the acquisition
of mapping sensor observations in winter is not
incompatible with the measurement of benthic
metabolism in the spring and summer.

Digital camera images acquired in the study area in
August 2002 were used to visually identify the actual
benthic class at over 535 discrete random points
(Fig. 3). This set of geolocated known substrate type
values was used to evaluate the biotope maps created
from the AISA, IKONOS, and ASTER images. A confu-
sion matrix was developed to quantify the percentages
of both correctly and incorrectly classified map cells. 

In situ metabolic measurements. The Submersible
Habitat for Assessing Reef Quality (SHARQ) was
deployed over various biotopes in the study area
during June 27 to July 1, 2000, May 30 to June 2, 2001,
and July 12 to 13, 2002 to measure diurnal spring-
summer rates of calcification, photosynthesis, and res-
piration (Yates & Halley 2003). The SHARQ is a large
(4.9 m long × 2.4 m wide × 1.2 m high) portable incuba-
tion system that acquires in situ measurements of com-
munity-scale metabolic rates by isolating the water
mass overlying the substrate, thereby allowing the
monitoring of changes in water chemistry over time
(Fig. 4). A detailed description of the SHARQ design
and operation is provided by Yates & Halley (2003).

The SHARQ differs from most benthic chambers by
replicating to a large degree the natural circulation in
this part of the NFRT. This is accomplished in 2 ways.
First, the SHARQ contains a circulation system that
produces turbulent flow in the chamber at current
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Fig. 3. AISA false-color composite image of the study area, with 
in situ benthic observation points marked as white crosses
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speeds similar to those measured on this platform (Lee
1986, Haus et al. 2000). Second, the flexible structure
of the SHARQ propagates oscillatory flow through the
chamber as waves pass over the study area.

Water depth at the SHARQ study area sites ranged
from about 3 to 10 m, and temperature and salinity
ranged from 27.3 to 30.2°C and 33.6 to 35.4‰, res-
pectively. During 24 h incubation periods at each site,
the SHARQ was used to measure community meta-
bolism over the mapped substrate types. The benthic
cover at each SHARQ site was measured by use of
photoquads. The circumferences of all coral colonies
within the incubation chamber were also measured
(Yates & Halley 2003).

Following the method of Kinsey (1978), we measured
total alkalinity (TA), dissolved oxygen (O2), pH, salini-
ty, and water temperature and calculated community
metabolism. Net calcification was determined for each
of six 4 h periods within each 24 h incubation period
using the alkalinity anomaly technique of Smith & Key
(1975). Net photosynthesis and respiration were calcu-
lated from dissolved O2 at 15 min intervals. Net meta-
bolic rates per unit area of substrate were obtained by
multiplying the O2 concentration change by the vol-
ume to basal surface area ratio of the chamber. Diurnal
curves for net photosynthesis and respiration were
developed based on the determinations for 15 min
intervals. Daily gross production was calculated by
integrating the daytime photosynthesis curves estab-
lished for instantaneous gross production. A 24 h respi-
ration estimate was based on the mean rates of respira-
tion measured during each incubation period (Yates &
Halley 2003). Mean metabolic rates were calculated
for representative sites selected for each benthic class

defined in the supervised classification
of the AISA, IKONOS, and ASTER
images. This procedure established the
rates of daily spring-summer gross
photosynthesis, respiration, and net
calcification for the mapped substrates
that were subsequently used in esti-
mating spatially integrated carbon and
carbonate fluxes.

Technique for spatial extrapolation
of metabolism. A raster model imple-
mented in the Interactive Data Lan-
guage (IDL) at 1.5 m grid cell resolution
was used to extrapolate the SHARQ
metabolic measurements across the
AISA, IKONOS, and ASTER-based
benthic class maps. This operation
resulted in a set of maps for each map-
ping sensor that depicted the estimated
spatial patterns of spring-summer day-
time calcification (G; g CaCO3 m–2 d–1),

daily gross photosynthesis (P, g C m–2 d–1), and 24 h
respiration (R; g C m–2 d–1). A map showing excess
production (E; g C m–2 d–1) was created for each sensor
type by differencing the corresponding estimated spa-
tial distributions of P and R. For each sensor, the E and
G distributions created using the corresponding ben-
thic cover map were spatially integrated by benthic
class. Finally, the flux distributions shown on the AISA,
IKONOS, and ASTER-based reefscape metabolism
maps were integrated across all benthic cover types
and over space to estimate the total and class-specific
carbon and carbonate benthic flux estimates for the
study area, and to allow sensor-to-sensor comparisons.

The knowledge of class-to-class discrimination error
obtained from the map accuracy analysis was used to
correct the total class areas obtained for the AISA-
based biotope map. The corrected AISA-mapped areas
were then used to most accurately estimate the total
carbon and carbonate benthic fluxes for each biotope
and for the entire study area. Holistic study area rates
of G, P, R, and E, and P/R ratios were calculated as
weighted averages by combining the SHARQ mea-
surements with the biotope areal coverage estimates
obtained from the AISA, IKONOS, ASTER and AISA-
corrected mapping analyses. 

RESULTS

Accuracy of vertically resolved biotope maps

The 1.5 m resolution EAARL submarine topography
map created for the study area ranges in elevation
from –2.3 to –12.4 m (Fig. 5a). Clusters of patch reefs
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Fig. 4. The Submersible Habitat for Analyzing Reef Quality (SHARQ), a large
benthic incubation chamber that allows the 24 h monitoring of water chemistry

variations driven by substrate carbon and carbonate metabolic processes
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that overlie slight topographic highs at about –6 m are
apparent along the north and west margins of the
study area. In addition, several scattered patch reefs
reside in the center and southeast portions of the study
area where the platform is slightly deeper at about
–10 m. The EAARL lidar soundings capture detailed
substrate morphology at a vertical precision of within
20 cm (Brock et al. 2004). This capability to capture

fine scale topographic detail is evident across the crest
of Alina Reef, the large patch reef situated directly
west of the study area centerpoint (Fig. 5a). 

The AISA-based biotope map (Fig. 5b) clearly de-
picts the distribution of live substrate on patch reefs
ringed by sand halos, and the seagrass and sand dis-
tribution on the adjacent platform, closely matching
the EAARL submarine topographic map (Fig. 5a). Use
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Fig. 5. (a) Submarine topographic map based on NASA EAARL lidar surveys. Areas shown in black represent regions where laser
soundings of bottom elevation were not obtained. Benthic habitat classification maps based on (b) AISA airborne hyperspectral 

imagery, and (c) IKONOS, and (d) ASTER multispectral satellite imagery

a b

c d
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of the AISA imagery resulted in classification accura-
cies at or higher than 82% for all biotopes, a result
that was markedly superior to the accuracies achieved
with IKONOS or ASTER (Table 2). The IKONOS-
based map (Fig. 5c) more clearly captures the general
benthic spatial pattern than does the ASTER-based
map (Fig. 5d), but the biotope maps based on the
2 types of satellite imagery are both inferior to the
AISA-based map in accuracy (Table 2). Both IKONOS
and ASTER performed best in discriminating sea-
grass, with respective accuracies of 77 and 71%, but
at sand classification accuracies of 8% (IKONOS) and
13% (ASTER), these sensors failed to reliably capture
the sand halos that rim patch reefs (Table 2). At
accuracies of 26 and 21%, respectively, both IKONOS
and ASTER poorly differentiated the live substrate on
patch reefs (Table 2). 

The hyperspectral, high spatial resolution aircraft
survey enabled the best discrimination of narrow sand
halos, resulting in the greatest total area mapped as
sand (75195 m2), roughly twice the total sand area on
the ASTER-based map (39735 m2) (Fig. 6). The super-
iority of the AISA in discriminating seagrass resulted in
a greater total area of seagrass (353 623 m2) relative
to the coverage of this class on the ASTER map
(275 265 m2). Mapping based on IKONOS, and espe-
cially ASTER, grossly overestimated the total area of
live substrate cover, resulting in total areas roughly 2
(IKONOS) or 3 (ASTER) times the live substrate cover
on the AISA-based map (62221 m2). In order to derive
the most accurate possible estimates of total biotope
area, the AISA results were adjusted by using the
results of the map accuracy analysis. This correction
caused a 36% increase in the AISA total class area of
sand, an 8% decrease in total seagrass area, and a 5%
increase in total live substrate area (Fig. 6).  

Variation in metabolic rates

The patch reef communities investigated
with the SHARQ in the study area are domi-
nated by octocorals, a variety of scleractina
(Montastrea annularis, Porites astreoides,
Acropora cervicornis, Siderastrea siderea),
several species of Halimeda, and coralline al-
gae (Yates & Halley 2003). The seagrass beds
on the adjacent platform are uniformly dense
and are composed of Thalassia testudinum.
The diurnal variation in gross photosynthesis
and respiration for all substrate types is simi-
lar to the classical patterns reported by Marsh
& Smith (1978) and Kinsey (1978). Mean P
was highest on patch reefs at 6.43 g C m–2 d–1,
the lowest P values were associated with
sand bottoms (1.76 g C m–2 d–1), and the
daily mean seagrass P was 2.88 g C m–2 d–1

(Table 3). The lowest rates of mean R were associated
with sand (1.96 g C m–2 d–1), seagrass R was inter-
mediate at 3.32 g C m–2 d–1, and the highest rate was
associated with patch reef bottoms (8.09 g C m–2 d–1).
P/R ratios were less than 1.0 and similar for all substrate
types at 0.90, 0.87, 0.79, and 0.80, for sand, seagrass,
dense live substrate, and sparse live substrate, respec-
tively. 
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Actual class Mapped as class
Sand Seagrass Combined live 
(%) (%) substrate (%)

AISA-based map
Sand 85.1 12.8 2.1
Seagrass 9.6 86.8 3.6
Combined live substrate 6.6 11.5 82.0

IKONOS-based map
Sand 8.5 78.7 12.8
Seagrass 6.3 77.3 16.4
Combined live substrate 16.4 57.4 26.2

ASTER-based mapping
Sand 12.8 78.7 8.5
Seagrass 3.6 71.3 25.1
Combined live substrate 9.8 68.8 21.3

Table 2. Accuracies for the AISA, IKONOS, and ASTER image classifi-
cation maps. Correct classification percentages shown in bold

Fig. 6. Total mapped areas for each classified benthic class
based on the AISA (red), IKONOS (green), ASTER (blue) and

AISA-corrected (black) analyses
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During daylight hours, calcification exceeded disso-
lution at all SHARQ sites, in contrast to the night, when
dissolution processes dominated, except at one of the
patch reef sites (Yates & Halley 2003). The highest
mean rate of G, 1.29 g CaCO3 m–2 d–1 (Table 3), was
measured on the dense communities found atop patch
reefs, typically sites of the most extreme calcification:
dissolution ratios (Yates & Halley 2003). G was lower
but still positive over sand bottoms (0.11 g CaCO3 m–2

d–1), near zero in coral reef areas of sparse live sub-
strate (–0.04 g CaCO3 m–2 d–1), and negative in sea-
grass beds, where the assigned mean class value was
found to be –0.19 g CaCO3 m–2 d–1. The number of
SHARQ incubations per class was 1, 4, 2, and 1 for
sand, seagrass, dense live substrate, and sparse live
substrate, respectively (Table 3), insufficient to draw
any conclusion with respect to intra-biotope metabolic
variability. 

Space-integrated benthic carbon and carbonate
metabolism

The estimated spatial distributions of P, R, E, and G
were constructed by assigning SHARQ-determined
metabolic rates to the benthic-classes mapped by
AISA, IKONOS, and ASTER. Although the analysis
was performed for all mapping sensor types, metabolic
rate maps are only presented for the AISA-based
benthic class map, determined to be the most accurate
representation of the actual spatial biotope distribution
(Fig. 7). Accordingly, the spatial patterns shown on the
G, P, R, and E metabolic rate maps (Fig. 7) match the
corresponding AISA-based benthic class map.

Integration of the metabolic rate maps constructed
for each mapping sensor resulted in estimates of the
biotope-specific total study area E (kg C d–1) and G
(kg CaCO3 d–1) fluxes. The analysis based on the cor-

rected AISA total biotope areas, taken to be the most
accurate, demonstrated that all 4 mapped biotopes are
heterotrophic, and that live substrate and seagrass
result in significant net negative E values of –108.8 kg
C d–1 and –145.7 kg C d–1, respectively. The corrected
AISA analysis also reveals that organic carbon and
carbonate fluxes due to sand and sparse live substrate
are minor within the study area. Net positive calcifi-
cation on patch reefs in the study area is estimated to
be 84.2 kg CaCO3 d–1, while total net dissolution of
61.5 kg CaCO3 d–1 is calculated to occur in seagrass
meadows. The diminished accuracies of the benthic
class maps based on IKONOS and ASTER do not
substantially alter the total organic carbon and car-
bonate flux estimates associated with sand, sparse live
substrate, or seagrass. However, relative to the cor-
rected AISA analysis, the IKONOS analysis, and espe-
cially the ASTER analysis, significantly overestimated
total calcification and organic carbon import by live
substrate. 

Holistic estimates of total E and G for the study area
were obtained by summing the biotope-specific flux
estimates. The corrected AISA analysis reveals that the
study area as a whole is heterotrophic, receiving exter-
nal organic carbon at an estimated rate of 274.8 kg d–1.
Further, the study area overall fixes about 34.4 kg
CaCO3 d–1, due to calcification on shallow patch reefs
and sandy bottoms that is largely offset by net dissolu-
tion within the deeper platform seagrass meadows.
Both the IKONOS and ASTER analyses overestimated
the net heterotrophic performance and overall calci-
fication of the study area. However, the respective
errors relative to the corrected AISA results for nega-
tive E and positive G are much higher for the ASTER
analysis (48, 431%) than for the IKONOS analysis
(19, 125%).

To enable comparison with prior investigations
based on flow respirometry, holistic daily summertime
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Class Number of G P R E P/R
observations (g CaCO3 m–2 d–1) (g C m–2 d–1) (g C m–2 d–1) (g C m–2 d–1)

Sand 1 0.11 1.76 1.96 –0.20 0.90

Seagrass 4 Mean –0.19 2.88 3.32 –0.44 0.87
Min. –0.40 2.29 2.86
Max. –0.03 3.60 4.02

Dense live substrate 2 Mean 1.29 6.43 8.09 –1.66 0.79
Min. 0.82 6.41 8.08
Max. 1.76 6.45 8.10

Sparse live substrate 1 –0.04 4.23 531 –1.08 0.80

Table 3. Daily summertime community metabolic rates for mapped substrate classes based on SHARQ measurements. Fluxes
listed are net calcification (G), gross photosynthesis (P), 24 h respiration (R), and excess production (E). If more than one
measurement was acquired for a substrate class, the number of observations, mean, minimum, maximum rates, and the rate 

SDs are provided
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community metabolic rates were calculated by di-
viding the total carbon and carbonate fluxes by the
total area of the study region (Table 4). Based on the
most accurate corrected AISA analysis, the area-
normalized holistic E and G rates for the study region

are estimated to be –0.56 g C m–2 d–1 and 0.07 g CaCO3

m–2 d–1, respectively. Moreover, the corrected AISA
analysis resulted in a holistic study area daily P of
3.11 g C m–2 d–1, an R rate of 3.67 g C m–2 d–1, and a
P/R of 0.85.
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Fig. 7. Total estimated daily summertime (a) net calcification (g CaCO3 m–2 d–1), (b) gross primary production (g C m–2 d–1),
(c) respiration (g C m–2 d–1), and (d) excess production (g C m–2 d–1)

a b
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DISCUSSION

Historically, community-scale measurements of
reef metabolic processes have been performed using
a flow respirometry approach based on the lag-
rangian monitoring of the chemistry of water mass
passing over a reef zone (Kinsey 1985). Flow
respirometry requires that water circulation at the
study site be well characterized using current meters
or other water-mass tracking techniques, assumes the
conservation of water mass along transects, and
requires unidirectional currents (Yates & Halley
2003). Flow respirometry is also limited by the res-
olution of geochemical measurements, and is difficult
or impossible to employ at night. Further, the irregu-
lar topography of coral reefs complicates the use of
flow respirometry, resulting in the potential for large
errors. Therefore, although traditional flow respirom-
etry is of great value in well constrained settings
within reef zones, we regard this method to be insuf-
ficient for the estimation of the metabolism of reef
zones with complex structure. 

Our study has demonstrated that an alternative
approach, the integration of biotope mapping by
remote sensing with local metabolic functions de-
termined through in situ process measurements,
allows the estimation of reef system excess organic
carbon production and calcification at intra-reef
zone biotope scale. Although current remote sensing
methods cannot provide local community metabolic
rates (Joyce & Phinn 2003), our study has demon-
strated that large portable incubation systems (Yates
& Halley 2003) provide this capability if deployed at
sites defined by remotely sensed biotope distribu-
tions. Also, benthic chamber experiments under vary-
ing light and nutrient conditions have the potential to
enable the definition of biotope-specific metabolic
algorithms for photosynthesis, respiration, and calcifi-
cation. Further, deployment is not limited due to cur-
rent patterns, and the large footprint enables mea-
surement of community-scale fluxes (Yates & Halley
2003).

Mapping sensor accuracies and metabolic scaling

Recent studies have led to a consensus that high
spatial/high spectral resolution airborne sensors are
superior to satellite sensors in capturing the biotic
diversity of coastal systems (Andrefouet et al. 2003,
Call et al. 2003, Held et al. 2003, Malthus & Mumby
2003, Thompson et al. 2003). Advantages of airborne
scanning include the possibility of more spectral bands
than are employed on satellite sensors, affording the
ability to measure complete reflectance spectra, the
capability for multiple sensor integration, and the
ability to acquire very high spatial resolution scans in
digital format (Mumby et al. 1997a).

The AISA class mapping accuracies above 80%
(Table 2) found by this study are consistent with
prior findings on the capabilities of aerial imaging
(Catt & Hopley 1988, Thamrongnawasawat & Hopley
1994, Green et al. 1996), and especially airborne
hyperspectral scanning (Mumby et al. 1997a,b, 2001,
Hochberg & Atkinson 2000), in the mapping of coral
reef habitats. Our study has clearly demonstrated that
airborne hyperspectral scanning at spatial resolutions
approaching 1 m is the preferred mapping method
for the scaling of metabolic processes in coral reef
ecosystems.

The failure of ASTER to classify the shallow patch
reef community reliably as dense or sparse live sub-
strate, or to discriminate deeper platform seagrass from
reef accurately, is consistent with prior evaluations of
intermediate resolution satellite sensors for the map-
ping of coral reef habitats. Various prior studies have
concluded that moderate resolution satellite imagery
does not yield reliable quantitative estimates of
coral cover or coral spatial distribution (Bainbridge &
Reichelt 1988, Ahmad & Neil 1994, Green et al. 1996,
Dustan et al. 2000). In the case of ASTER, these map-
ping limitations resulted in respective errors in E and
G of 48 and 431%, and accordingly, we cannot re-
commend ASTER or similar spatial resolution multi-
spectral satellite sensors for the scaling of reef system
carbon and carbonate fluxes. 
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Imagery type G (g CaCO3 m–2 d–1) P (g C m–2 d–1) R (g C m–2 d–1) E (g C m–2 d–1) P /R

AISA 0.04 3.15 3.71 –0.565 0.85
IKONOS 0.15 3.52 4.20 –0.684 0.84
ASTER 0.36 4.05 4.91 –0.86 0.82
AISA corrected 0.07 3.11 3.67 –0.56 0.85

Table 4. Holistic study area daily summertime community metabolic rates and P/R ratios based on SHARQ measure-
ments scaled by remote sensing. Fluxes listed are net calcification (G), gross photosynthesis (P), 24 h respiration (R), and

excess production (E)
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The 4 m spatial resolution of IKONOS is quite high
for a multispectral satellite sensor, and this has led
some researchers to anticipate significant capabilities
for creating ecologically useful biotope classifications
for littoral zones (Malthus & Mumby 2003). These
expectations are substantiated to some degree by the
current study, given that the holistic E and G rates
determined based on IKONOS mapping are markedly
less in error (19%, 125%) relative to the corrected
AISA results than are the ASTER-based estimates
(48%, 431%). Mumby & Edwards (2002) suggested the
use of image texture to refine reef system biotope
maps derived from IKONOS. We regard this as a
possible means to upgrade map accuracy and thereby
enable the use of IKONOS-based maps in the spatial
scaling of benthic biogeochemical processes. Capolsini
et al. (2003) found that MASTER and IKONOS per-
formed best in high-complexity reef mapping, sug-
gesting that enhanced spatial, spectral, and radio-
metric resolutions all contribute to improved fine-scale
habitat mapping (Capolsini et al. 2003). We do anti-
cipate some restrictions on the use of IKONOS in meta-
bolic studies at the community scale because the high
IKONOS spatial resolution relative to other satellite
sensors is not matched by commensurate improve-
ments in spectral or radiometric resolution (Dustan
et al. 2000, Lubin et al. 2001, Andrefouet et al. 2003). 

Holistic metabolic function

During the last century, the NFRT has been sub-
jected to catastrophic hurricanes, cold water events,
disease and bleaching outbreaks, and the cumulative
impacts of overfishing (Burns 1985, Ault et al. 1998,
Hoegh-Guldberg 1999, Jones & Boyer 2001, Mueller et
al. 2001, Porter et al. 2001). Gradual decline in water
quality (Hudson et al. 1994, Cook et al. 2002), increases
in seasonal temperature (Hudson 1981) and salinity
fluctuations (Porter et al. 1999) have resulted in de-
gradation of the environmental conditions needed for
coral growth and survival.

Beyond south Florida, natural and anthropogenic
stresses have resulted in the large scale degradation of
coral reefs both globally (Dubinsky & Stambler 1996)
and throughout the Caribbean region (Tomascik &
Sander 1985, Hallock et al. 1993, Hughes 1994, Kramer
2003). Similar phase shifts have occurred over the last
several decades in the Florida reef tract, where coral
bleaching has become more frequent and more per-
sistent (Causey et al. 2002a), disease prevalence has
increased (Mueller et al. 2001, Porter et al. 2002), and
stoney coral cover has declined dramatically (Causey
et al. 2002b). Massive bleaching outbreaks driven by
high sea surface temperatures and quiescent winds

were first observed in the Lower Keys along the outer
reef tract in 1983, and then expanded and moved
shoreward during 1987, 1990, and 1997 to 1998 events
(Hoegh-Guldberg 1999). Serial overfishing has dra-
matically altered reef fish populations throughout the
Florida reef tract, leaving 23 of 35 market fish species
now recognized as overfished (Ault et al. 2001).
Between 1996 and 2000, 66% of 160 monitoring sta-
tions in the Florida Keys National Marine Sanctuary
(FKNMS) showed losses in stoney coral diversity, and
stoney coral cover on reefs decreased by 36.6% to
just 6.6% of total cover (Jaap et al. 2001). Monitoring in
this time period also found increases in diseased coral
and the number of disease types (Jaap et al. 2001).

The holistic study area calcification rate of 0.07 g
CaCO3 m–2 d–1 estimated by our scaling analysis is
negligible, especially if compared to modal values for
reef zone metabolic performance in similar seaward
backreef settings worldwide, reported to be 4 ± 1 g
CaCO3 m–2 d–1 in ‘standard’ reef flats (Kinsey 1985).
At a mean value of 6.4 g CaCO3 m–2 d–1, G on patch
reefs was low relative to the range of 11 to 32 g CaCO3

m–2 d–1 reported by Kinsey (1985) for high activity
areas of near total cover by hard substratum in-
vestigated in the Pacific and Caribbean basins. The
depressed patch reef G value in the study region is
consistent with the well documented decline of the
Florida reef tract and associated loss of stoney coral
cover. A second reason for the quite low holistic study
region G value is the dissolution that occurs in seagrass
meadows at a rate of –0.19 g CaCO3 m–2 d–1, over an
area that exceeds patch reef cover by 396%.

Although near the perimeter of the reef system, the
backreef carbonate platform of the NFRT was deter-
mined to be net heterotrophic across all substrates, with
a holistic excess production rate of –0.56 g C m–2 d–1 and
an overall P/R ratio of 0.85. Note that while our process
measurements were made during summer high light
conditions favorable to photosynthesis, all of the mapped
biotopes, including the seagrass meadows, were ob-
served to have P/R ratios less than one. Backreef plat-
forms immediately landward of the reef crest generally
tend towards net autotrophy, with P ranging from 2.6 to
40.0 g C m–2 d–1 and P/R ratios of 0.7 to 3.2 (Hatcher
1990). In contrast, our site on a backreef platform just
landward of the NFRT barrier-bank reef zone has a com-
paratively low holistic gross primary production rate of
3.1 g C m–2 d–1 that is exceeded by the overall respiration
rate of 3.7 g C m–2 d–1. 

Although the NFRT is downstream from major
potential sources of inorganic nutrients in the Gulf
of Mexico (Boyer & Jones 2002) and south Florida
(Lapointe & Clark 1992, Lapointe et al. 1993, 2002),
the net autotrophy that might be expected to result
from nutrient-loading and associated eutrophication
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(Kinsey & Domm 1974, Pastorok & Bilyard 1985,
LaPointe & O’Connell 1989) does not occur. Consistent
with the findings of Szmant & Forrester (1996), we
infer that the inward advection of inorganic nutrients is
not a dominant forcing mechanism for benthic biogeo-
chemical function in our study region. In fact, based on
our determination of a holistic P/R ratio less than 1, we
infer that the carbonate platform of the NFRT is a sink
for external inputs of particulate organic matter.

The NFRT segment investigated demonstrates a
holistic carbon and carbonate metabolism that most
closely resembles that of coastal reef systems that
receive elevated influxes of organic detritus (Kinsey
1988). Inorganic nutrient loading typically affects reef
communities by enhancing primary production, but
sewage-rich sediment pollution promotes filter-feed-
ing heterotrophy, and leads to boring and dissolution
of the reef substratum (Smith et al. 1981, Kinsey 1988).
Although suspended sediment in high concentrations
is a known stressor for coral reefs (Hubbard 1986,
Abdel-Salam & Porter 1988, Te 1992, Riegl & Branch
1995), some corals utilize sediment as a supplementary
food source (Riegl et al. 1996, Rosenfeld et al. 1999).

The sewage pollution of Kaneohe Bay, Hawaii from
the 1950s to the 1970s is an excellent example of the
impact of organic detritus-rich suspended particulate
loading on a nearshore reef system adjacent to heavy
urbanization. Sewage created a soluble nutrient input
that stimulated a supply of water column phytoplank-
ton and zooplankton, and resulted in a flux of organic
particulates to southern Kaneohe Bay that rivaled or
exceeded inorganic nutrient loading (Kinsey 1988).
Benthic detritivorous heterotrophic biomass increased
markedly, and the cycling of nutrients between hetero-
trophs, autotrophs, detritus, and inorganic nutrients
became quite active (Smith et al. 1981). Moreover,
benthic primary production decreased, particle-feed-
ing epifauna and infauna and community respiration
greatly increased, and calcification declined. Coloniza-
tion by coral and algal communities was thereby
replaced by filter feeding communities largely com-
posed of zooanthids, sponges, and barnacles (Kinsey
1988). We suggest that the degradation of the NFRT
has affinities with the mode of phase shifts that have
occurred in Kaneohe Bay and other reef systems
polluted by organic detritus.  

The high respiration rates observed on the study
region patch reefs may be due to both coral trophic
elasticity and changes in community composition as an
adaptation to increasing suspended particulate matter
concentration (Johannes 1974). Corals derive nourish-
ment from their zooxanthellae and also from feeding
on zooplankton, detritus, and bacteria. This capability
for trophic elasticity allows accommodation to varying
light levels, nutrients, and particle loads, and varies

between coral species (Johannes 1974, Porter 1974,
Anthony & Fabricius 2000). The ability of a coral
species to shift trophic mode in response to variations
in suspended particulate loading and shading is a
means of expanding the inhabitable physiological
niche (Anthony & Fabricius 2000).

The zooxanthellate reef-building corals Montastrea
annularis, Stylophora pistillata, Meandrina mean-
drites, Goniastrea retiformis, and Porites cylindrical
have been shown to feed on suspended particulate
matter to compliment or replace autotrophic nutrition
(Tomascik & Sander 1985, Telesnicki & Goldberg 1995,
Ferrier-Pages at al. 1998, Anthony & Fabricius 2000).
Heterotrophic nutrition takes place routinely in scle-
ractinian corals, even if light is sufficient for the satis-
faction of metabolic carbon requirements by photo-
synthesis, because symbiotic algae do not provide all
of the needed nutrients to the host coral (Dubinsky &
Jokiel 1994, Rosenfeld et al. 1999). 

The trophic environment of photosymbiotic aquatic
organisms such as scleractinian corals can be altered
by increased concentration of water column suspen-
ded particulate matter, a likely occurrence in the
NFRT over the last several decades. The maintenance
of a positive energy balance in photosymbiotic benthic
suspension feeders may require heterotrophic as
well as phototrophic acclimation at sites of elevated
suspended organic and inorganic sediment concentra-
tion (Anthony & Fabricius 2000). Indeed, under light-
limiting turbid conditions, particulate feeding may
supply most of the energy needed by corals (Ferrier-
Pages et al. 1998, Anthony & Fabricius 2000). Experi-
ments using fluorescently labeled sediment have
demonstrated that in such turbid environments, corals
consume and digest the organic matter fraction of sus-
pended sediment (Rosenfeld et al. 1999). Consistent
with the numerous studies that describe the delete-
rious impacts of sediment, above a threshold in con-
centration, suspended particulates can smother corals
and reduce zooxanthellae photosynthesis and coral
growth rates by reducing light (Tomascik & Sander
1985, Anthony & Fabricius 2000). We propose that the
possibility of heterotrophic functioning of sclerac-
tinian corals in the NFRT be investigated as a possible
response to suspended particulate loading.

Under conditions of increasing suspended sediment
eutrophication in reef systems, some reef benthos have
a competitive edge over other reef organisms in that
they can more readily act as heterotrophs (Bak et al.
1998). This suggests another possible explanation for
the high respiration rates observed on NFRT patch
reefs, that is, a past community shift towards increased
abundance of octocorals and suspension feeders. Pres-
ently these reefs are covered with gorgonian octo-
corals, and although the ability of gorgonians to feed
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on the organic fraction of suspended sediment has not
been well documented, their morphology suggests that
they have this capability (Rosenfeld et al. 1999). A
slenderness ratio, the height to width ratio of the body
plane normal to the flow, proposed by Abelson et al.
(1993) can be used to evaluate the morphologies of
benthic organisms. High slenderness ratio organisms
such as gorgonians create diverging flow, causing
higher fluxes of fine suspended particles to be encoun-
tered. The very high slenderness ratios of gorgonians,
and the typical increase of low density organic particle
flux with height above the seabed, strongly suggest
that gorgonians are active feeders on suspended
organic detritus (Abelson et al. 1993). 

Studies of similar nearshore octocoral-dominated
reefs in water with elevated turbidity due to suspended
particulate matter loading have demonstrated the
community capability to remove particulate organic
carbon. Fabricius & Dommisse (2000) found that reef
communities in a high turbidity nearshore regime and
dominated by zooxanthellate alcyonacean octocorals
can extract large quantities of suspended particulate
matter from the water column. Suspended sediment
import greatly exceeded export, and therefore these
alcyoniid octocoral-dominated nearshore reefs were
determined to be net heterotrophic (Fabricius & Dom-
misse 2000), as are the gorgonian octocoral-dominated
patch reefs in our NFRT study region. Accordingly,
future investigation is suggested on the ability of NFRT
patch reef gorgonians to consume suspended particu-
late matter and thereby meet metabolic requirements,
and establish high population densities on reefs with
elevated turbidity.

CONCLUSIONS

This study demonstrates that biotope mapping by
remote sensing combined with local metabolic func-
tions determined by a large portable benthic incuba-
tion system enables the estimation of reef system
excess organic carbon production and calcification at
reef zone and biotope scales. AISA airborne hyper-
spectral scanning at 1.5 m spatial resolution is shown
to be markedly superior to satellite multispectral
imaging in the spatial scaling of benthic metabolic
processes in coral reef ecosystems. The mapping limi-
tations of the 15 m resolution ASTER multispectral
satellite sensor resulted in respective errors in holistic
excess production and calcification rates of 48 and
431% relative to estimates based on AISA hyperspec-
tral scanning corrected by a map accuracy analysis.
We judge these errors to be unacceptable, and ac-
cordingly, we cannot recommend that ASTER or similar
spatial resolution multispectral satellite sensors be

used to spatially scale reef system carbon and car-
bonate fluxes. The respective errors in holistic excess
production and calcification rates determined based on
4 m resolution IKONOS multispectral satellite map-
ping are 19 and 125%, much less than those obtained
with ASTER.

The holistic calcification rate of 0.07 g CaCO3 m–2 d–1

estimated by our scaling analysis for a segment of the
backreef platform of the northern Florida reef tract is
negligible. All substrates in this reef zone were de-
termined to be net heterotrophic, resulting in an
estimated holistic excess production rate of –0.56 g C
m–2 d–1 and an overall P/R ratio of 0.85. The compara-
tively low overall study region rate of gross primary
production of 3.1 g C m–2 d–1 is exceeded by a respira-
tion rate of 3.7 g C m–2 d–1. Based on the observed
heterotrophy, we infer that the inward advection of
inorganic nutrients is not a dominant forcing mecha-
nism for benthic biogeochemical function on the back-
reef platform of the northern Florida reef tract. Rather,
we conclude that this reef zone is a sink for external
inputs of particulate organic matter, and suggest that
the degradation of the northern Florida reef tract may
resemble phase shifts documented within other reef
systems polluted by organic detritus. Our study has
established a need for future investigation of possible
heterotrophic functioning of scleractinian corals and
gorgonian octocorals on NFRT patch reefs in response
to suspended particulate loading.
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