Uptake of sedimentary organic matter by the deposit-feeding Baltic amphipods *Monoporeia affinis* and *Pontoporeia femorata*

Lars Byrén, Gunilla Ejdung*, Ragnar Elmgren

Department of Systems Ecology, Stockholm University, 106 91 Stockholm, Sweden

ABSTRACT: Some benthic deposit-feeders mainly eat freshly deposited phytodetritus, while others feed more on older material that has been mixed with the sediment and modified by diagenetic processes before being ingested. We studied the uptake of sedimentary foods of different ages by the Baltic amphipods *Monoporeia affinis* (Lindström) and *Pontoporeia femorata* Kröyer in laboratory experiments using 3 isotopic tracers. The amphipods were offered fresh 14C-labelled diatoms spread on top of a thin unlabelled sediment layer, underlain by 1 yr old sediment to which 13C- and 15N-labelled diatoms had been added. Thus, 14C uptake represented surface feeding on fresh organic material, and 13C:15N uptake subsurface feeding on aged phytodetritus. Experiments using a single species only or mixed species were conducted in spring with 1 yr old adults and in summer with 3 mo old juveniles. Adult *M. affinis* (initial dry mass 1.6 mg) took up ~5 times more 14C than *P. femorata* (initial dry mass 1.7 mg), indicating that *M. affinis* depended more on fresh phytodetritus, while *P. femorata* had significantly higher 13C:15N uptake, showing a greater reliance of this species on aged organic matter from the deep sediment. In experiments, adult *P. femorata* consistently fed at depth in the sediment, whereas adult *M. affinis* modified feeding depth depending on food quality. Juveniles (0.1 mg initial dry mass) of both species had similar tracer uptake and fed both on surface and subsurface sediment, suggesting greater potential for interspecific food competition in juveniles than in adults. Juveniles of both species had higher mass-specific 14C uptake than adults. Single species treatments had higher 14C uptake than mixed treatments in both adults and juveniles, indicating food competition at the higher density of the mixed treatments.

KEY WORDS: 14C · 13C · 15N · Deposit-feeding · Amphipods · Food quality · Baltic Sea · *Monoporeia affinis* · *Pontoporeia femorata*

INTRODUCTION

Corresponding author. Email: gunilla.ejdung@ecology.su.se © Inter-Research 2006 · www.int-res.com
Uptake of sedimentary organic matter of different origin or quality by deposit-feeders can be studied using tracers (Lopez & Crenshaw 1982, Fry & Sherr 1984). The radioactive carbon isotope 14C is one of the most frequently used tracers in biological research and is commonly used in feeding or food web studies (Rudnick 1989, Widbom & Frithsen 1995, van de Bund et al. 2001). Stable isotope ratios, e.g. 83C and 85N, are other common tracers in food web research, and can use either natural variations in isotopic ratios (Owens 1987, Guigner & Barton 2002) or manipulated ratios (Levin et al. 1999). Enrichment with the heavy isotope is often used in nutrition studies (e.g. Preston et al. 1996).

In the northern Baltic Sea proper, soft bottom macrobenthic abundance is often dominated by the deposit-feeding amphipods Monoporeia affinis (Linndström) and Pontoporeia femorata Krøyer (Ankar & Elmgren 1976, Laine et al. 1997). After the recruitment of juveniles in March and April, the abundance of these amphipods can reach 10,000 m$^{-2}$ (Uitto & Sarvala 1984). The radioactive carbon isotope 14C is one of the most frequently used tracers in biological research and is commonly used in feeding or food web studies (Rudnick 1989, Widbom & Frithsen 1995, van de Bund et al. 2001). Stable isotope ratios, e.g. 83C and 85N, are other common tracers in food web research, and can use either natural variations in isotopic ratios (Owens 1987, Guigner & Barton 2002) or manipulated ratios (Levin et al. 1999). Enrichment with the heavy isotope is often used in nutrition studies (e.g. Preston et al. 1996).

Materials and Methods

Field collections. Animals and sediment were collected with a benthic sled (Blomqvist & Lundgren 1996) at depths of 35 to 45 m near the Askö Laboratory, northwestern Baltic Sea proper (58° 49‘N, 17° 38‘E). Sub-adult amphipods, born in spring the previous year and expected to become reproductive in the coming autumn, for brevity called adults, were collected in late March and early April, and juveniles (young-of-the-year) in late May 2002. Although of similar appearance and size, the 2 species studied are easily identified, since Pontoporeia femorata has a dorsal spine which Monoporeia affinis lacks. Before use, the amphipods were stored in natural sediment (no food added) in aerated Baltic seawater (salinity 6.5) at 5°C, under the same daily light cycle as in the experiments.

Algal culture and preparation of fresh and aged sediment. The diatom Skeletonema costatum (Greville) was cultured in nutrient medium (Guillard 1975) for 11 d in artificial seawater (salinity 15) at 17°C, under a 16:8 h light-dark (L:D) cycle, and labelled by replacing 25% of NaHCO$_3$ in the medium with 25% (0.33 mCi) NaH13CO$_3$ (Amersham; specific activity 54.0 mCi mmol$^{-1}$) (Kester et al. 1967). After harvesting the algae by settling in a separatory funnel in the dark for 5 h at 4°C, remaining dissolved 14C was removed from the water phase by centrifuging the algae at 2500 rpm (ca. 350 g) for 10 min, rinsing with filtered brackish seawater, and repeating 3 times. The resulting radioactivity in the algae was 8.2 \times 106 dpm (disintegrations per minute) ml$^{-1}$ for the adult and 1.6 \times 106 dpm ml$^{-1}$ for the juvenile amphipod experiments. Labelling with 13C and 15N was done the same way, except that all carbon and nitrogen in the nutrient medium were replaced by enriched NaH13CO$_3$ (98%) and Na15NO$_3$ (99.6%), respectively. The fresh sediment was collected in March 2002, sieved through a 0.5 mm metal mesh to remove macrofauna, and stored aerated at 5°C for 1 mo before the first experiment. The sediment was 66% water, with 2.4% C and 0.4% N in its dry mass. The aged sediment was collected in March 2001, sieved through a 0.5 mm mesh, and labelled with stable isotopes by mixing 13C- and 15N-labelled Skeletonema costatum thoroughly with the sediment. The sediment was then stored in the dark at 5°C under 10 cm of aerated Baltic seawater (salinity 6.5) for 1 yr. The aged sediment was 78% water, with 4.1% C and 0.6% N in its dry mass. Evaporation losses during aging were replaced with Baltic seawater, raising the salinity of the sediment to 20. Extra experiments in spring 2003 (28 d, 10 replicates/treatment) started with elevated sediment salinity (20). The results showed that normal sediment salinity (~7) was restored within 14 d under the conditions of the
experiment, and that elevated initial sediment salinity had no significant effect on carbon uptake from the sediment compared to controls at normal salinity (7) for either Monoporeia affinis (ANOVA, $F_{1,18} = 0.18$, $p = 0.68$) or Pontoporeia femorata (ANOVA, $F_{1,18} = 1.46$, $p = 0.24$).

Adult amphipod experiment. The adult amphipod experiment began on April 23, 2003 and lasted 28 d. Each plastic experimental jar (380 ml, sediment area $46 \, \text{cm}^2$) received 110 g of the wet old 13C- and 15N-labelled sediment (ca. 3 cm deep). Then 50 g of wet fresh unlabelled sediment (ca. 1 cm deep) was carefully spread on the top, followed by gentle addition of water and then 1 ml of 14C-labelled algae (total activity $8.2 \times 10^6 \, \text{dpm}$) spread evenly on the sediment surface with a Pasteur pipette. Sediment depth was $4.1 \pm 0.2 \, \text{cm}$ (±SD). Amphipods were picked in batches of 3, with damaged ones replaced after checking under a stereo-microscope. After adding 2 randomly selected batches (6 individuals) per species, the jars were connected to a seawater supply ($5^\circ C$, salinity 6.2, 11.0 ± 0.1 ml min$^{-1}$), and kept under a daily light cycle ($14:10$ h L:D), which is similar to field conditions.

Three treatments were used, with Monoporeia affinis and Pontoporeia femorata either individually or mixed, with 11 replicates in single species treatments and 22 in the mixed treatment. The amphipod density used, $1300 \, \text{m}^{-2}$, is often found in the study area (Ankar & Elmgren 1976, Cederwall 1999; Table 1). After the experiment, amphipods were left overnight without sediment to empty their gut, and then counted, dried individually at $60^\circ C$, weighed, and analysed per replicate. Due to their small size, juveniles were allowed to empty their gut overnight, and then were counted, pooled, dried at $60^\circ C$, weighed, and analysed. The experiment was designed to give independence of data for species and isotope analyses.

The mixed treatment had 28 replicates, and half were used for each species. Due to their small size, juveniles were analysed for 13C and 15N by replicate, giving a value based on all intact survivors, with half the 14 replicates for each species from each treatment used for 14C, the rest for 13C and 15N.

Radioactive isotope analysis. Amphipods for 14C analysis were transferred individually (adult experiment) or by replicate (juvenile experiment) to 20 ml scintillation vials with 1 ml tissue solubiliser (Lumisolve, Lumac). After solubilisation in $50^\circ C$ overnight, a 10 ml scintillation cocktail (Hionic-Flour, Packard) was added and samples were counted in a liquid scintillation counter (1214 RackBeta, LKB Wallac).

Elemental and stable isotope analysis. Amphipod and sediment samples were dried at $60^\circ C$, milled, and a weighed subsample analysed for 13C and 15N using an Elemental Analyser (EuroEA3024, Eurovector), coupled on line to an Isoprime isotope ratio mass spectrometer (Micromass UK) at the Department of Natural Science, Örebro University, Sweden.

The nitrogen and carbon isotope ratios are expressed in the % notation, using the equation:

$$\delta R(\%) = \frac{[R_{\text{sample}}/R_{\text{standard}}] - 1} \times 10^3$$

where R is the ratio between the heavy and light isotopes (13C:12C or 15N:14N). The stable isotope ratio, denoted by δ, is defined as the deviation in % from an international reference standard (VPDB, Vienna PeeDee Belemnite for C, and atmospheric nitrogen gas for N). Higher δ values indicate a higher proportion of 13C or 15N in the sample. For example, if the ratio of 13C to 12C in a sample is 0.011, the % deviation from the VPDB standard is δ^{13}C = $(0.011/0.012 - 1) \times 10^3 = 8.33\%$. The standard deviation, usually abbreviated to SD, indicates the spread of the data.

Table 1. Monoporeia affinis and Pontoporeia femorata. Experimental survival and animal mass. Initial adult dry mass was $1.6 \pm 0.5 \, \text{mg}$ for $M. \text{affinis}$ and $1.7 \pm 0.4 \, \text{mg}$ for $P. \text{femorata}$. Values are mean ± SD

<table>
<thead>
<tr>
<th>Variable</th>
<th>Adult experiment</th>
<th>Juvenile experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single species</td>
<td>Mixed</td>
</tr>
<tr>
<td></td>
<td>Single species</td>
<td>Mixed</td>
</tr>
<tr>
<td>Survival (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$M. \text{affinis}$</td>
<td>80 ± 21</td>
<td>85 ± 15</td>
</tr>
<tr>
<td></td>
<td>81 ± 13</td>
<td>82 ± 17</td>
</tr>
<tr>
<td>$P. \text{femorata}$</td>
<td>86 ± 15</td>
<td>76 ± 21</td>
</tr>
<tr>
<td></td>
<td>83 ± 12</td>
<td>77 ± 17</td>
</tr>
<tr>
<td>Final dry mass (mg)</td>
<td>2.2 ± 0.6</td>
<td>2.2 ± 0.7</td>
</tr>
<tr>
<td>$M. \text{affinis}$</td>
<td>0.11 ± 0.02</td>
<td>0.10 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>0.10 ± 0.01</td>
<td>0.09 ± 0.02</td>
</tr>
</tbody>
</table>
| $P. \text{femorata}$ | 2.4 ± 0.6 | $1.18 = 0.18, p = 0.18$, $p = 0.68$) or Pontoporeia femorata (ANOVA, $F_{1,18} = 1.46$, $p = 0.24$).

Juvenile amphipod experiment. This experiment began on June 5, 2002 and lasted 22 d. The experimental jars (105 ml, sediment area $13 \, \text{cm}^2$) first received 30 g (ca. 2 cm deep) of wet aged sediment (as in the adult experiment) after which 8 g (ca. 0.5 cm deep) of wet fresh unlabelled sediment was carefully spread on top. This was followed by gentle addition of seawater, and then 1 ml of 14C-labelled algae (total activity $1.6 \times 10^6 \, \text{dpm}$) spread evenly on the sediment surface with a Pasteur pipette. Sediment depth was $2.5 \pm 0.1 \, \text{cm}$ (±SD). Then 2 batches of 5 amphipods per species, checked for damage under a stereo-microscope, were added and the jars connected to a seawater supply ($5.2^\circ C$, salinity 6.2, 12.0 ± 0.1 ml min$^{-1}$). A daily light cycle of 16:8 h L:D approximated field conditions.

The 3 treatments were Monoporeia affinis only, Pontoporeia femorata only and both species mixed, with 10 individuals (7700 m$^{-2}$) of each species per replicate. At the end of the experiment, surviving juveniles were allowed to empty their gut overnight, and were then counted, pooled, dried at $60^\circ C$, weighed, and analysed. The experiment was designed to give independence of data for species and isotope analyses. The mixed treatment had 28 replicates, and half were used for each species. Due to their small size, juveniles were analysed for 13C and 15N by replicate, giving a value based on all intact survivors, with half the 14 replicates for each species from each treatment used for 14C, the rest for 13C and 15N.

Amphipods for 14C analysis. The amphipods were left overnight without sediment to empty their gut, and then counted, dried individually at $60^\circ C$, weighed and analysed per replicate. In the mixed treatment, independence of data between species was assured by using half the replicates for analyses of $M. \text{affinis}$ and the rest for $P. \text{femorata}$. Half the survivors of a species from each jar were analysed for 14C and the other half for 13C and 15N. If the survivor number was uneven, an extra specimen was used for 14C-analysis.
the heavy isotope, and hence a smaller proportion of the light isotope, while a lower δ value indicates a lower proportion of the heavy isotope. C:N ratios were calculated from C and N mass contents obtained from the Elemental Analyser during the stable isotope analysis.

Remaining labelled phytodetritus. In the aged sediment (1 yr) remaining labelled phytodetritus could be calculated from its 13C and 15N content. Eqs. (1) and (2) gave $\%_{\text{av}}^{13}$C and $\%_{\text{av}}^{15}$N in the aged sediment,

$$F = \frac{(\delta + 1000) \times R_{\text{standard}}}{(\delta + 1000) \times R_{\text{standard}} + 1000}$$

The culture medium contained 98% 13C and 99.6% 15N, from each of which 1.5% was subtracted as an estimate of remaining light isotope from the seed phytoplankton population to estimate δ^{13}C and δ^{15}N in the algae before addition to the sediment. The total carbon content in the old sediment was 4.1%, of which only 0.03% was derived from the 13C-labelled fraction, and 0.59% N, of which only 0.1% was from the 15N-labelled fraction. The C:N ratio of the remaining labelled aged phytodetritus was 2.2, compared to 7.0 for the old sediment as a whole.

Uptake was calculated as the difference in average individual content of an isotope before and after the experiment, and thus includes new somatic growth, possible microbial growth on the exoskeleton and label associated with particles left in the gut.

Statistical analyses. Data were analysed using 2-factor ANOVAs with species and culture type (single species vs. mixed species) as factors. Increase in mass was tested with a 1-factor ANOVA for adult amphipods. All data were tested for homogeneity of variance with Cochran’s C-test, and log-transformed if needed, to obtain variance homogeneity. No significant interaction effects were found. The multiple comparison Tukey HSD test for unequal n was then used for 14C analyses in both adult and juvenile experiments.

RESULTS

Adult amphipod experiment

Survival was 76 to 86%, with no significant differences between species or treatments (2-factor ANOVA, $p > 0.05$; Table 1). Individual mass increased significantly during the experiment by about 40% for Monoporeia affinis (ANOVA, $F_{2,30} = 11.5, p < 0.01$) and by 33% for Pontoporeia femorata (ANOVA, $F_{2,27} = 10.8, p < 0.01$), but no significant biomass differences between treatments were found for either species (Tukey HSD for unequal n, $p > 0.05$; Table 1). No significant difference in mass was found between the species, either initially or at the end of the experiment (p > 0.05). P. femorata had significantly higher C:N ratios than M. affinis in all treatments, but there were no significant within species differences between treatments or over time (2-factor ANOVA, $F_{1,44} = 28.9, p < 0.05$; Fig. 1).

Monoporeia affinis clearly fed more on surface sediment than Pontoporeia femorata, and took up about 5 times more 14C (p < 0.001; Table 2), whether single species or mixed species (Tukey HSD for unequal n, $p > 0.05$).

![Fig. 1. Monoporeia affinis and Pontoporeia femorata. Mean (±SE) of C:N ratios in the (a) adult and (b) juvenile experiments](image-url)

<table>
<thead>
<tr>
<th>Variable</th>
<th>df_{effect}</th>
<th>df_{error}</th>
<th>F</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>14C Species</td>
<td>1</td>
<td>38</td>
<td>86.58</td>
<td><0.001</td>
</tr>
<tr>
<td>Treatment</td>
<td>1</td>
<td>38</td>
<td>9.24</td>
<td><0.05</td>
</tr>
<tr>
<td>(single species/mixed)</td>
<td>1</td>
<td>38</td>
<td>2.49</td>
<td>ns</td>
</tr>
<tr>
<td>Species \times Treatment</td>
<td>1</td>
<td>38</td>
<td>7.01</td>
<td><0.05</td>
</tr>
<tr>
<td>13C Species</td>
<td>1</td>
<td>36</td>
<td>7.01</td>
<td><0.05</td>
</tr>
<tr>
<td>Treatment</td>
<td>1</td>
<td>36</td>
<td>0.12</td>
<td>ns</td>
</tr>
<tr>
<td>(single species/mixed)</td>
<td>1</td>
<td>36</td>
<td>0.02</td>
<td>ns</td>
</tr>
<tr>
<td>Species \times Treatment</td>
<td>1</td>
<td>36</td>
<td>0.14</td>
<td>ns</td>
</tr>
<tr>
<td>15N Species</td>
<td>1</td>
<td>36</td>
<td>20.69</td>
<td><0.001</td>
</tr>
<tr>
<td>Treatment</td>
<td>1</td>
<td>36</td>
<td>0.04</td>
<td>ns</td>
</tr>
<tr>
<td>(single species/mixed)</td>
<td>1</td>
<td>36</td>
<td>0.04</td>
<td>ns</td>
</tr>
<tr>
<td>Species \times Treatment</td>
<td>1</td>
<td>36</td>
<td>0.14</td>
<td>ns</td>
</tr>
</tbody>
</table>
p < 0.05). Single species treatments generally had higher 14C uptake than mixed treatments (p < 0.05; Table 2), and *P. femorata* had significantly higher 14C uptake in single species than in mixed treatments (Tukey HSD for unequal n, p < 0.05; Fig. 2). On the other hand, *P. femorata* took up significantly more of both 13C and 15N than *M. affinis* (13C: p < 0.05; 15N: p < 0.001; Table 2), demonstrating more feeding on old sediment, and greater uptake of both carbon and nitrogen from the aged phytodetritus. Both treatments of *P. femorata* differed in δ15N from both treatments of *M. affinis* (Tukey HSD for unequal n, p < 0.05; Fig. 3).

The analysis of the stable isotopes 13C and 15N in cultured, stable-isotope-labelled algae, in new sediment and in old sediment to which the labelled algae had been added before aging for 1 yr (Table 3), demonstrated that strong labelling had been achieved. This allowed the proportion of new amphipod somatic growth (assumed equal to biomass increase), which was based on uptake from new and old sediment, to be estimated, given some assumptions. The mass of added fresh diatoms was not measured, but could be roughly estimated to be 0.14 g C m–2 from an earlier identical culture (Byrén et al. 2002). Based on the 14C uptake, carbon from fresh algae would then account for only 0.8% of increase in mass in *Monoporeia affinis* and 0.2% in *Pontoporeia femorata*, and could be ignored in further calculations. Separate 2 source mixing models for 13C and 15N were used to estimate uptake from the 2 remaining sources, new and old sediment. The δ13C of new somatic growth was calculated as:

\[
\delta^{13}C_{\text{prod}} = \frac{(\text{Tot} \ C_{\text{end}} \times \delta^{13}C_{\text{end}}) - (\text{Tot} \ C_{\text{start}} \times \delta^{13}C_{\text{start}})}{\text{Tot} \ C_{\text{end}} \times \delta^{13}C_{\text{start}}}
\]

Table 3. δ13C, δ15N and C:N ratio for 14C-labelled algae and sediment. Values are mean ± SD

<table>
<thead>
<tr>
<th>Variable</th>
<th>Algae</th>
<th>New sediment</th>
<th>Old sediment</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ13C</td>
<td>-29.5 ± 0.1</td>
<td>-24.3 ± 0.3</td>
<td>0.5 ± 0.2</td>
</tr>
<tr>
<td>δ15N</td>
<td>2.9 ± 0.5</td>
<td>5.4 ± 0.4</td>
<td>266 ± 3</td>
</tr>
<tr>
<td>C:N</td>
<td>5.21 ± 0.05</td>
<td>6.92 ± 0.43</td>
<td>6.98 ± 0.03</td>
</tr>
</tbody>
</table>

Fig. 2. *Monoporeia affinis* and *Pontoporeia femorata*. Mean (±SE) of 14C uptake as dpm mg–1 (dry mass) in (a) adult and (b) juvenile experiments. Note different scales on y-axis. Different letter codes denote significant differences (Tukey test for unequal n, p < 0.05)

Fig. 3. *Monoporeia affinis* and *Pontoporeia femorata*. Mean δ13C and δ15N in *M. affinis* (filled symbols) and *P. femorata* (open symbols) in (a) adult and (b) juvenile experiments. The start value for juvenile *P. femorata* has been moved half a unit to the right to separate the points. Vertical and horizontal bars show ±SEM
and analogously for δ^{15}N. The isotopic proportions from new (f_A) and old (f_B) sediment were calculated from:

$$f_A = \frac{\delta_M - \delta_B}{\delta_A - \delta_B} \text{ and } f_A = 1 - f_A \quad (4)$$

where δ_M is the isotopic signature of the new somatic mass produced (mean of single species and mixed treatments), and δ_A and δ_B the signatures for new (A) and old (B) sediment. Results are given in Table 4.

Juvenile amphipod experiment

Survival was 77 to 83%, with no significant difference between species or treatments (2-factor ANOVA, $p > 0.05$; Table 1). There were no significant differences between species in C:N ratio, but there was a significant effect among treatments (2-factor ANOVA, $F_{2,31} = 4.42$, $p < 0.05$), with a decrease in mixed treatments during the experiment (Tukey HSD for unequal n, $p < 0.05$; Fig.1).

A treatment effect was found for 14C uptake, which was higher in single species treatments than in mixed ones ($p < 0.05$; Table 5), with *Monoporeia affinis* in single species treatments having significantly higher 14C uptake than *Pontoporeia femorata* in mixed treatments (Tukey HSD for unequal n, $p < 0.05$; Fig. 2). There were no significant differences in uptake of 13C or 15N between species or treatments (2-factor ANOVA, $p > 0.05$; Fig. 3).

DISCUSSION

This study found clear differences in preferred food source between adults of *Monoporeia affinis* and *Pontoporeia femorata*. The 5-fold higher 14C uptake by adult *M. affinis* compared with adult *P. femorata* demonstrates a preference for surface feeding on fresh material by *M. affinis*, in agreement with previous experimental studies (van de Bund et al. 2001, Byrén et al. 2002). The uptake of both δ^{13}C and δ^{15}N, which demonstrates subsurface feeding on aged phytodetritus, was significantly greater in *P. femorata* than in *M. affinis*, indicating that the former relies more on old organic material found at depth in the sediment. This older material is probably more refractory than the fresh organic material settling on the sediment surface. These results confirm that adult *P. femorata* prefer to feed at depth in the sediment, as found by Byrén et al. (2002), but goes further in demonstrating uptake of both carbon and nitrogen from aged organic material from the deeper sediment layer. The old sediment contained live meiofauna (e.g. nematodes and ostracods) even after a year of aging, which demonstrates the presence of utilisable organic matter. We still assume that the older sediment had lower food quality than the fresh algae added on top of the sediment, as indicated by its much lower relative organic matter content, and its higher C:N ratio (7.0 vs 5.2). The estimated C:N ratio in the labelled fraction of the old sediment was extremely low, 2.2. This low value may be influenced by remaining inorganic nitrogen (ammonium adsorbed to clay particles), whereas inorganic carbon is lost as carbon dioxide upon drying the sediment for combustion analyses. The labelled fraction added to the old sediment was very small, and thus hardly influenced its C:N ratio.

In both adult and juvenile experiments a treatment effect was found for 14C uptake, with higher uptake in single species than in mixed treatments. This may indicate direct competition for food at higher density, as reported in previous experimental studies (Elmgren et al. 2001, van de Bund et al. 2001), rather than a crowding effect causing interference with feeding. No indication of competition was found at similar amphipod densities in a study where fresh 14C-labelled algae had been mixed down into the sediment (Byrén et al. 2002), and both amphipod species had about the same uptake from subsurface feeding. The present study added no fresh material to the subsurface sediment, from which *Pontoporeia femorata* took up significantly more 13C and 15N than *Monoporeia affinis*. The 2 studies thus differ in terms of age and probable food quality of the subsurface sediment, which could partly explain the interspecific difference in subsurface feeding. That *M. affinis* took up significantly less label than *P. femorata*

Table 4. *Monoporeia affinis* and *Pontoporeia femorata*. Proportion new body mass, calculated from 13C and 15N values from the 2 sources, new (f_A) and old (f_B) sediment

<table>
<thead>
<tr>
<th>13C</th>
<th>f_A</th>
<th>f_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monoporeia affinis</td>
<td>0.54</td>
<td>0.46</td>
</tr>
<tr>
<td>Pontoporeia femorata</td>
<td>0.14</td>
<td>0.86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15N</th>
<th>f_A</th>
<th>f_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monoporeia affinis</td>
<td>0.59</td>
<td>0.41</td>
</tr>
<tr>
<td>Pontoporeia femorata</td>
<td>0.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Table 5. *Monoporeia affinis* and *Pontoporeia femorata*. Two-factor ANOVA results for the juvenile experiment. ns: not significant

<table>
<thead>
<tr>
<th>Variable Factor</th>
<th>df_effect</th>
<th>df_error</th>
<th>F</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>14C Species</td>
<td>1</td>
<td>24</td>
<td>2.53</td>
<td>ns</td>
</tr>
<tr>
<td>Treatment</td>
<td>1</td>
<td>24</td>
<td>5.73</td>
<td><0.05</td>
</tr>
<tr>
<td>(single species/mixed)</td>
<td>1</td>
<td>24</td>
<td><0.001</td>
<td>ns</td>
</tr>
<tr>
<td>Species \times Treatment</td>
<td>1</td>
<td>24</td>
<td><0.001</td>
<td>ns</td>
</tr>
</tbody>
</table>
from old subsurface sediment in this study, but had similar uptake when both species were offered subsurface sediment amended with fresh algae (Byrén et al. 2002), indicates feeding plasticity in *M. affinis*.

The calculation of carbon and nitrogen uptake from new and old sediment assumes that only the added biomass is newly assimilated material. In reality there is also some turnover of old body material, which results in a slight overestimation of the importance of old sediment. Still, the carbon uptake estimated from 13C seems reasonable, with similar proportions from new (0.54) and old sediment (0.46) in *Monoporeia affinis*, and a preponderance of old sediment (0.86) over new (0.14) in *Pontoporeia femorata*. The nitrogen source apportioning calculated using 15N is similar to that for carbon for *M. affinis* (0.59 new, 0.41 old), but suggests that all newly assimilated nitrogen in *P. femorata* comes from old sediment, which is unlikely, since carbon isotopes indicate some feeding on new sediment.

For both species, the adult C:N ratios resembled those found in nature and did not change during the experiment. A range from 3.7 at the end of winter to a peak of 11 in late summer has been found for *Monoporeia affinis* in the field (Lehtonen 1996, Cederwall & Jermakovs 1999). Adult *Pontoporeia femorata* had a higher C:N ratio than adult *M. affinis*. This is in agreement with the higher lipid content reported by Hill et al. (1992) for this time of the year. In these amphipods, Lehtonen (1996) found a strong positive correlation between C:N ratios and the content of lipids, the major energy storage compounds in both species (Hill et al. 1992). Feeding on old sediment with a high C:N ratio will give adult *P. femorata* proportionally more carbon to store as lipids. This is in agreement with Hill et al. (1992), who found a higher and less variable C:N ratio in *P. femorata* than in *M. affinis*. During winter starvation, lipid stores are more quickly depleted in *M. affinis* than in *P. femorata* (Hill et al. 1992), as expected from its higher rate of metabolism (Cederwall 1979).

There was no clear difference in isotope uptake and hence probably little or no difference in feeding depth between juveniles of the 2 species. The adult and juvenile 14C uptake experiments allow a rough comparison of daily carbon uptake from fresh algae by adult and juvenile amphipods, in spite of differences in the amount of 14C added, individual densities, and experimental jar size (Fig. 4). Since there were no significant differences between treatments with species, all values are pooled. Juveniles had 5-fold higher 14C uptake than adults of *Monoporeia affinis*, and 17 times higher in *Pontoporeia femorata*. A smaller animal has a higher metabolism per unit body mass (Peters 1983), but these differences in 14C uptake are too large to be fully explained by size/metabolism allometry, and also suggest different feeding strategies. Thus, it is clear that *P. femorata* juveniles feed more on surface sediment than adults (Fig. 4), and it is also likely that juvenile *M. affinis* feed more on subsurface sediment than conspecific adults (Fig. 3). In the field, surface feeding by juvenile *P. femorata* in the period during and after the sedimentation of the phytoplankton spring bloom should give them a higher rate of intake of fresh organic matter, and presumably a faster growth rate, than the deep feeding strategy of the adults would allow. Since proteins are essential for growth, feeding on surface sediments with fresh sedimented algae with low C:N ratios could yield proportionally more nitrogen which can be used for growth. This could partly explain the feeding patterns of the juveniles, for which a good strategy would be to grow large as quickly as possible. As in adults, juvenile isotope uptake was lower at the higher density of the mixed treatments, suggesting competition for food. The C:N ratio decreased significantly (4.7 to 4.2) only for juveniles in the mixed treatments, another indication of competition for food.

CONCLUSIONS

Several studies have indicated clear differences among benthic deposit-feeders in the use of fresh, newly deposited organic material and older organic matter in the sediment (Rudnick & Oviatt 1986, Rudnick 1989, Widbom & Frithsen 1995, Ólafsson & Elmgren 1997, Byrén et al. 2002). This study is the first to test such differences in controlled laboratory experiments, with both old and new organic material isotopically labelled.

In summary, this study shows that juveniles of both amphipod species studied have similar feeding patterns, and act like generalists in utilising both fresh
surface organic material, and deeper, older sediment. Both species also recruit at the same time in spring, which suggests that they could potentially compete for food. Such competition is, however, likely less in late spring—early summer, when abundant new organic matter from the recently settled spring bloom is still available in the surface sediment (Bianchi et al. 2002). Later in their life, **Pontoporeia femorata** and **Monoporeia affinis** become more specialised subsurface and surface deposit-feeders, respectively. Adult **P. femorata** rely primarily on older, more deeply buried organic material, as suggested by Byrén et al. (2002), whereas adult **M. affinis** feed at a higher rate and use freshly deposited organic matter, normally available primarily at the sediment surface. Feeding at the sediment surface will ensure **M. affinis** immediate access to newly deposited phytoplankton and hence promote rapid growth, but will also increase vulnerability to predators active on or above the sediment surface. By feeding on subsurface food resources of generally lower quality, adult **P. femorata** will probably decrease their risk of predation, at the price of a reduced intake of food, a strategy made possible by their lower respiration rate (Cederwall 1979).

The combination of several isotopic tracers proved useful for experimental testing of differences in depth of feeding and in utilisation of food of different origin. In future studies, this should be useful for differentiating between use of organic matter of different ages or from different sources, also when these are thoroughly mixed.

Acknowledgements. We thank A. Ekblad at Örebro University for the stable isotope analyses, the staff of the Åskö laboratory for field and laboratory assistance and S. Hynynen, J. Wennergren and L. Rosén for laboratory assistance. S. Blomqvist, C. Rolff and E. Flach Lundgave helpful comments on the manuscript. This study was supported by grants from the Swedish Natural Research Council to R.E., and from the Stockholm Centre for Marine Research to L.B. and G.E.

Literature Cited

Hill C, Elmgren R (1987) Vertical distribution in the sediment in the co-occurring benthic amphipods **Pontoporeia affinis** and **P. femorata**. Oikos 49:221–229

Editorial responsibility: Otto Kinne (Editor-in-Chief), Oldendorf/Luhe, Germany

Submitted: April 23, 2005; Accepted: November 10, 2005
Proofs received from author(s): April 3, 2006