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INTRODUCTION

The role of mathematical modelling in understand-
ing the relationship between environmental factors
(biotic and abiotic) and population dynamics has long
been appreciated (Conway 1977). Modelling can also
be a very useful tool for evaluating different manage-
ment techniques in aquaculture. Models have already
been applied to different commercial shellfish species
(see Barbeau & Caswell 1999 for an example for scal-
lops, Gangnery et al. 2003 for oysters, Gangnery et al.
2004 for mussels, and Melià & Gatto 2005 for clams).
Many models have also been developed to describe
growth of mussels in aquaculture situations (see Bead-
man et al. 2002 for review). Such models are often
based on an ecophysiological approach and have the

advantage of producing very precise results under a
wide range of environmental conditions. However, to
be accurate, they require a large number of parame-
ters, making them difficult to apply in field conditions
and compromising their use in management situations. 

Beadman et al. (2002) suggested that modelling of
mussel populations should integrate individual pro-
cesses with the effects of predation, density and food
limitation on growth and mortality. Few models have
looked directly at sources of mussel mortality, and spe-
cific mechanisms to explain mortality are generally
omitted. An exception is mortality due to bird preda-
tion, which has been modelled on wild mussel beds
(Goss-Custard et al. 1995, Hilgerloh & Siemoneit 1999).
Mortality from self-thinning has also been investigated
(Fréchette et al. 1996), and some attempts at describing
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self-thinning have been made in both natural (Hughes
& Griffiths 1988) and aquaculture (Fréchette & Lefaivre
1990, Fréchette et al. 1992) situations.

Blue mussel Mytilus edulis aquaculture is an impor-
tant part of Atlantic Canada’s economy. Over 80% of
the national cultivated mussel crop comes from Prince
Edward Island (PEI), Canada. Over the last 10 yr, blue
mussel aquaculture has more than quadrupled in PEI
(Department of Fisheries and Ocean, Canada, pers.
comm). The area available for the establishment of
new mussel cultivation leases is rapidly shrinking, and
in order for aquaculturists to increase their production,
more efficient management techniques need to be
developed. Much work has been done to test the
effects of different environmental conditions and culti-
vation techniques on mussel growth and survival
(Gosling 1991, Mallet & Myrand 1995, Lauzon-Guay et
al. 2005), but a tool is needed to integrate all of the
information and help resource managers and aquacul-
turists to make informed decisions concerning mussel
farming practices.

In this study, we develop a deterministic population
model discrete in time and continuous in state (mus-
sel size) that predicts growth and survival of culti-
vated mussels. Our model, which incorporates a num-
ber of ecological processes, consists of 2 sub-models:
(1) a growth sub-model based on allometric growth
and temperature dependence and (2) a survival sub-
model based on self-thinning. The parameters of this
population model were estimated from field experi-
ments conducted in PEI. We used Monte Carlo simu-
lations to calculate confidence intervals for model
predictions based on errors associated with parame-
ter estimates, and we then compared predictions with
an independently collected data set. We also con-
ducted a sensitivity analysis to measure the response
of the model to small changes in parameter values.
Finally, we used the model to evaluate several man-
agement scenarios that could optimize growth and
survival of cultivated mussels during the grow-out
phase.

MATERIALS AND METHODS

Model structure: growth sub-model. A growth sub-
model was developed to predict growth in shell length
of individual blue mussels Mylitus edulis on ‘socks’
(plastic mesh sleeves containing mussels, Mallet &
Myrand 1995). It has been shown that mussel growth is
size-specific and follows an allometric relationship
(Gangnery et al. 2004). Therefore, size-specific daily
growth rate of mussels (mm d–1) was modelled by:

Gopt = aLb (1)

where Gopt = daily growth rate (mm d–1) under optimal
growing conditions, a = a scale parameter for growth, b =
the allometric exponent and L = mussel shell length.

In order to account for seasonal variation in growth,
we incorporated temperature dependence into Eq. (1).
We chose the equation used first by Lassiter & Kearns
(1974) to model growth rate of phytoplanktonic
species, and later by Solidoro et al. (2000) on Tapes
philippinarum (Bivalvia) (see Lassiter 1975 for deriva-
tion). In their model, optimal growth rate is multiplied
by a temperature function described as:

(2)

where T is seawater temperature, Tmax is the upper
temperature at which growth stops, Topt is the temper-
ature that maximises growth, and c is a constant
related to strength of temperature dependency. This
function offers 2 major advantages over more com-
monly-used functions (e.g. power function, Q10 rela-
tionship): (1) the exponential factor determines the
behaviour of the curves at low temperature, such as
would be expected according to Arrhenius’s law (Ursin
1967); and (2) the function is valid over a wide range of
temperature because it decreases after temperature
exceeds an optimal value. The latter is especially
important in situations where temperatures above the
optimal value are encountered. 

Multiplying Eq. (2) by Eq. (1), our growth sub-model
becomes:

GT = Goptƒ(T) (3)

where GT is temperature-dependent daily growth rate
(mm d–1). This growth sub-model predicts growth of
individual mussels based on mussel shell length and
temperature only, without any density-dependence.
Mallet & Carver (1991) and Lauzon-Guay et al. (2005)
demonstrated that growth in terms of shell length of
mussels reared on longlines is density-independent
over a wide range of mussel densities. With a known
temperature (Tt) at time t, the shell length of a mussel
(L) at time t+1 can be calculated using:

Lt+1 = Lt+GT (4)

Model structure: survival sub-model. A survival
sub-model was developed based on the self-thinning
rule (Westoby 1984). This rule assumes that as individ-
uals grow, competition for space or food increases,
forcing the death or dislodgment of some individuals.
The self-thinning rule generally takes the form of: 

N = τM ω (5)
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where N is number of individuals, τ is density at charac-
teristic mass, M is mean mass of individuals, and ω is
the self-thinning exponent. Many studies have indi-
cated that mussel survival is not dependent on site
(Dickie et al. 1984, Mallet & Carver 1991, Myrand &
Gaudreault 1995, Karayucel & Karayucel 2000, Lauzon-
Guay et al. 2005), which suggests that a factor constant
across sites, such as competition for space, affects sur-
vival. When survival is space-driven, we can assume
that: (1) the number of mussels (N) is inversely propor-
tional to the space occupied by 1 individual; (2) the sur-
face area of an individual is proportional to the square
of one of its linear dimensions (e.g. shell length, L); and
(3) the mass of an individual (M) is proportional the
cube of its linear dimension (L). It follows that the num-
ber of individuals should be proportional to the mean
mass of individuals with an exponent of –2⁄3. Therefore,
when survival is space-limited, the self-thinning expo-
nent (ω) should theoretically approach –2⁄3. In practice,
the self-thinning exponent can vary according to allo-
metric growth (Westoby 1984) or geometry of packing
(Hughes & Griffiths 1988). In our model, we used mean
mussel length (Lt) rather than mass for the self-thinning
expression, since we followed mussel length rather
than mass throughout our field experiments (Lauzon-
Guay et al. 2005). Thus, the expected number of mus-
sels (Nexpt) remaining on a sock at time t should follow:

Nexpt = αLt
β (6)

where α is density at characteristic length (1 mm) and‚
β is the self-thinning exponent. In our model, a value of
–2 for β would be equivalent to a value of –2⁄3 for ω in
Eq. (5) (M αL3, so M –2/3 α L–2).

We then developed a model to estimate the number
of mussels that survive and remain on a sock as a func-
tion of the distance between the actual mussel density
(Nt) and the expected mussel density (Nexpt):

(7)

where r is survival rate independent of self-thinning
and κ controls the rate at which Nt approaches Nexpt.
When mussel density is below the expected density,
self-thinning does not occur and mussels survive at
rate r. 

Experimental data. The data used for model calibra-
tion and validation were obtained from field experi-
ments conducted in 2 bays on the north shore of PEI,
over a period of 24 mo. Field experiments were of 2
types: (1) small-scale experiments that monitored
growth trajectories of individual mussels; and (2)
large-scale experiments that monitored populations of
socked mussels (Lauzon-Guay et al. 2005).

Growth trajectories of individual mussels. Growth
measurements were done on individual mussels glued
onto strips of screening mesh, which were hung at
2 commercial mussel farms in St. Peter’s Bay
(46° 25’ 16” N, 62° 37’ 19” W) and New London Bay
(46° 29’ 34” N, 63° 27’ 05” W) on the north shore of PEI.
Mesh strips measuring 1.5 m × 5 cm were attached on
longlines and weighted at the bottom in order to keep
them in a vertical position. Using marine epoxy, a total
of 20 mussels (10 on each side) of various shell lengths
(5 to 50 mm) were glued onto the mesh at 10 to 15 cm
intervals. To assure that the same mussels were re-
measured at each sampling date, each mussel was
numbered using a plastic tag glued onto the shell with
Crazy GlueTM. An initial set of 6 mesh strips was hung
at each site on 30 to 31 May 2002. These mussels were
measured on 3 July, 31 July and 23 September 2002. A
second set of 6 mesh strips was deployed between
1 and 8 October 2002, and a third set between 1 and
4 November 2002 at each site. These latter 2 sets were
measured at each site on 11 May, 27 June and
14 August 2003. During each sampling period, mussel
shell length was measured underwater using plastic
calipers. Only live mussels were measured; cracked or
empty shells were discarded (~50%). Water tempera-
ture was measured hourly using underwater-auto-
mated temperature recorders (HugrunTM), which were
replaced every 6 mo. 

Experimental populations of mussels. Experimental
mussel aquaculture leases were set up in New London
Bay and St. Peter’s Bay, PEI, in November 2001 and
October 2002. Initially 3 seed sizes of mussels (~13, 20
and 25 mm in shell length) were packed into different
socks. Each of the 3 seed sizes was packed at a low and
a high initial density (ranging from 100 to 800 mussels
per 30 cm2 of sock), giving a total of 6 treatments.
Growth and survival of mussels on these socks were
monitored over a period of 18 mo for socks deployed in
2001, and for 8 mo for socks deployed in 2002. A
detailed description of the sites, treatments, sampling
protocol and results is given in Lauzon-Guay et al.
(2005). 

Model calibration: growth sub-model. Parameter
estimation of the growth sub-model was done using
data from the small-scale experiments on growth tra-
jectories of individual mussels. Hourly data on water
temperature were averaged to obtain mean daily
water temperatures, which varied between –1 and
24°C. Data were pooled over both sites for the model
calibration. The shell length of each mussel at each
sampling period was predicted by numerical simu-
lation of Eq. (4) using SIMULINK and MATLAB (The
MathWorks). Squared deviations between the pre-
dicted shell length at the end of each interval and the
observed shell length were calculated for each mussel
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measurement. The total squared deviation was then
obtained by summing the squared deviations over all
the mussel measurements. Best parameter estimates
were calculated using an optimization procedure
based on the simplex (Nelder-Mead) method (Math-
ews & Fink 2004) to minimize the total squared devia-
tion. Because of a lack of convergence, Tmax was fixed
at 30°C, which is a good estimate of the upper temper-
ature limit for Mytilus edulis (Read & Cumming 1967,
Almada-Villela et al. 1982). We used a wide range of
initial parameter values in the optimization and
obtained identical results each time. 

Confidence intervals of parameter estimates were
calculated by bootstrap by redrawing individual mus-
sel length (Manly 1997). A total of 200 bootstrap sam-
ples were taken; this number of samples generally pro-
duces good estimates (see Manly 1997 for discussion). 

Model calibration: survival sub-model. Mussel den-
sity on socks at each sampling period was predicted by
numerical simulation of Eq. (7) using MATLAB.
Squared deviations between the predicted mussel
density and the observed mussel density were calcu-
lated at each sampling period and for socks of different
treatments (i.e. the 3 seed sizes and 2 initial densities,
Lauzon-Guay et al. 2005). The total squared deviation
was then obtained by summing the squared deviations
over all socks and time. Best parameter estimates were
calculated using the optimization procedure described
above. Only data collected from the large-scale field
experiment of 2001 at both sites were used to estimate
parameter values and associated standard errors. 

Model validation: growth sub-model. To validate
the growth sub-model, we compared model predic-
tions to experimental data obtained independently of
the data used to parameterise and calibrate the model.
Specifically, we compared predictions of mean mussel
length for socks of each treatment with observed val-
ues recorded on experimental socks. This was done for
2 sites during 2 consecutive years using site- and year-
specific temperature data, and by setting initial seed
size as an initial condition of the model. Thus, predic-
tions of the growth sub-model were compared to
observed values for a total of 24 combinations of year ×
site × treatment, and an r2 value was calculated for
each combination. 

Model calibration: survival sub-model. To validate
the survival sub-model, we compared predictions of
mussel densities on socks to observed densities from
the large-scale experiment of 2002. This is a data set
that is independent of that used to parameterise and
calibrate the sub-model. Correspondence between the
expected and predicted densities observed was evalu-
ated by r2.

Uncertainty analysis. Each parameter entering the
model was calculated with a degree of uncertainty.

This uncertainty resulted in some level of uncertainty
in the model predictions. In order to evaluate confi-
dence intervals for the model predictions, an uncer-
tainty analysis was performed using Monte Carlo sim-
ulations. For each simulation, parameter values were
randomly chosen from the Gaussian probability distri-
butions (Evans et al. 2000) associated with each para-
meter. Specific probability distributions were calcu-
lated for each parameter independently using their
mean and standard error obtained by bootstrap (for the
growth sub-model) and by linear regression (for the
survival sub-model). Also, because of uncertainties in
the actual initial conditions (mussel length and den-
sity), initial conditions were also randomly chosen from
their respective probability distributions. A total of
1000 simulations were done for each sub-model and
95% confidence intervals were calculated by the
percentile method (Manly 1997). We did not consider
possible cross-correlations between parameters; our
confidence intervals are thus conservative. 

Elasticity analysis. Elasticity analysis is a type of sen-
sitivity analysis that uses small proportional perturba-
tions to measure the response of the model to changes
in parameter values (Caswell 2001). It generates valu-
able information on the robustness of the model pre-
dictions and helps to identify influential parameters
that need to be estimated with more care. Elasticities of
mussel size at Day 365 (mean mussel shell length) to
a, b, c, Tmax and Topt were calculated numerically by
increasing each parameter, one at a time, by 1% at the
beginning of a simulation. Elasticities of the mussel
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Sub-model Value SE
Parameter

Growth (Eqs. 1 & 2)
a (scale for growth) 1.14 0.01

b (allometric exponent) –0.547 0.002

c (constant related to 0.393 0.001
temperature dependency)

Tmax (upper temperature at 30.0 –
which growth ceases)

Topt (temperature maximising 15.80 0.02
growth)

Survival (Eqs. 6 & 7)
α (density at 6.0 × 105 0.1 × 105

characteristic length)

β (self-thinning exponent) –2.05 0.01

κ (constant related to self- 0.67 0.04
thinning dependency) 

r (survival rate independent 0.9994 0.0001
of self-thinning)

Table 1. Mytilus edulis. Estimate and standard error (SE) of
parameters in population model of cultivated mussels at 

Prince Edward Island, Canada
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density at harvest (number of mussels on a 30 cm
section of sock) to α, β, κ and r were also calculated.
Elasticity was defined as:

(8)

where Ep (%) is elasticity of the output to a 1%
increase in parameter p, X0 is the output of the original
model, and Xp is the output of the model modified for
parameter p (Barbeau & Caswell 1999).

Evaluation of aquaculture practices. The optimal
seeding time, defined as the seeding time that mini-

mized the grow-out period, was determined by calcu-
lating the number of days needed for mussels to reach
commercial size (60 mm shell length). A total of 365
simulations were done, 1 for each day of the year being
used as the initial condition. For each simulation, 3
mussel sizes were used as initial conditions (15, 20 and
25 mm in shell length), which represent approximately
the size classes of seeds used by aquaculturists. 

We used 2 types of optimal seeding density: an opti-
mal density to maximise survival and an optimal den-
sity to maximise harvest. The optimal density to max-
imise survival is the value of Nini which maximises
Nhar/Nini where Nini is the initial number of mussels and
Nhar is the number remaining in a sock at harvest time.
The optimal density to maximise harvest is the value of
Nini which maximises Nhar. 

RESULTS

Parameter estimation

Parameters for the growth sub-model (Table 1) were
obtained by fitting Eq. (4) to data collected during
the small-scale experiments on growth trajectories of
individual mussels (Fig. 1a). The parameterised model
explained over 96% of the variance in growth tra-
jectories. In a similar model applied to Mytilus 
galloprovincialis, a value of –0.45 was obtained for
the allometric exponent (A. Gangnery pers. comm.; 
aline.gangnery@ifremer.fr). Although slightly smaller
than our estimate of b (–0.547), both values produced
qualitatively similar growth rates that decreased with
increasing mussel size (Fig. 1a). 
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Parameters for the survival sub-model (Table 1) were
obtained by fitting Eq. (7) to data collected in 2001. The
survival sub-model explained 83% of the variance in
mussel density for the parameter estimation from 2001
data. Fig. 2 shows the self-thinning relationship de-
scribed by Eq. (6) as well as observed trajectories of mus-
sel density as they increase in shell length. As mussels
increase in shell length, their densities converge toward
the self-thinning line (Fig. 2). Our estimate of β (–2.05) is
very similar to the exponent of –2 expected from the self-
thinning rule (Westoby 1984). Our daily survival rate (r)
translates into a yearly survival rate of ~81% (r365).

Temperature effects on growth

Eq. (2) describes a skewed bell-shaped relationship
between growth rate and temperature (Fig. 1b). The
best fit for the growth sub-model was obtained by
using a value of 15.80°C as the optimal temperature
(Topt). The parameterised growth model produced a
seasonal growth profile, with 2 peaks in growth, 1 in
spring and 1 in early fall (Fig. 1c). Growth rates drop
during both the summer and winter months when the
temperature is above and below Topt. Even during the
coldest months of winter, when bays are covered in ice,
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field observations indicate that mussels continued to
grow at very slow rates.

Comparisons of predicted and observed data: 
growth sub-model

There was excellent agreement between predicted
mussel sizes and those observed from the large-scale
experiments of 2001 (Fig. 3). This fit was equally good
for all treatments, with r2 values between 0.93 and
0.99. However, when the model simulations were
compared with the results of the large-scale experi-
ment of 2002, the model overestimated growth
between the start of the experiment (October 2002)

and the first sampling time (January 2003) at both
sites. Slow growth is to be expected immediately fol-
lowing deployment, as mussels spend much energy
migrating outside the socks and forming new byssal
threads. If the model is started using as initial condi-
tions the first sampling time (when the effect of
deployment is no longer important), then there is
good fit between model predictions and observed
data (Fig. 4). This fit was good for all treatments in St.
Peter’s Bay (r2 = 0.81 to 0.98) and in New London Bay
(r2 = 0.55 to 0.95).

Overall, growth rates predicted by the growth sub-
model are in agreement with growth rates observed
elsewhere in suspended culture conditions (Mallet &
Carver 1993). The temporal pattern of growth pre-
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dicted by the model is also in accordance with that
observed elsewhere (see Bayne 1976 for a review).

Comparisons of predicted and observed data:
survival model

Good agreement was found between the model pre-
dictions calibrated with the 2001 data and the
observed densities of 2002 (r2 = 0.70) (Fig. 5).

Elasticity analysis

Elasticity analysis of the growth sub-model indicated
that a small change in parameters had a minimal or
moderate effect on mussel size at 365 d (Fig. 6).
Increasing the scale parameter for growth (a) by 1%
resulted in an increase (~0.5%) in the final predicted
size of mussels. The allometric exponent (b) had the
strongest effect. Increasing this allometric exponent
increased the final predicted size of mussels by reduc-
ing the effect of size on mussel growth (b is a negative
exponent). A 1% increase in parameters related to
temperature (Eq. 2) had little effect (<0.5%) on final
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mussel size. Increasing maximal growing temperature
(Tmax) increased final mussel length. In contrast, in-
creasing optimal growing temperature (Topt) reduced
final mussel length because it increased the difference
between observed mean water temperature and opti-
mal growing temperature. Increasing the temperature
dependency parameter (c) also resulted in a decrease
in final mussel length, since c governs the shape of
the temperature relationship and a larger c results in
a steeper curve and therefore lower growth rates.
Changes in parameters had a slightly greater effect on
small than on large seeds. 

Elasticity analysis of the survival sub-model indi-
cated that most parameters had a large influence on
density at harvest (Fig. 7). Mussel density at harvest
was most sensitive to the self-thinning exponent (β).
A 1% increase in β produced an increase of >8% in
harvestable density. Increasing β decreased the
strength of self-thinning (β is a negative exponent) and
therefore increased the number of mussels surviving to
harvest. A 1% increase in density at characteristic
length (α) and survival rate (r) resulted in increases (~1
and ~2% respectively) of mussel density at harvest.
Density at harvest was not sensitive to changes in κ
(Fig. 7). Since κ controls the rate at which N
approaches Nexp and mussels always reach Nexp
before reaching harvestable size, any effect of κ disap-
pears before harvest.

Evaluation of aquaculture practices

Only some aspects of mussel aquaculture can be
manipulated in an effort to enhance production. Tim-
ing of deployment of mussels is one of these. Based on
the model, changing the deployment date had a large
effect on how quickly mussels reached harvestable
size (Fig. 8). If deployment occurs in the summer
months, mussels reach harvestable size in 400 to 450 d,
whereas if it occurs in the fall, which is the normal
practice in PEI, mussels need 550 to 600 d. Changing
the seeding time can alter the number of days to reach
harvestable size by 33% for large mussel seed and up
to 38% for small seed. 

Aquaculturists may want to maximise the density of
mussels at harvest or the proportion of mussels surviv-
ing to harvest, both of which are affected by the initial
density of seed. Thus, another practice that could be
changed is the density at which mussels are socked
(Fig. 9). A high number of mussels at harvest can be
obtained by using high initial mussel densities
(Fig. 9a). Conversely, to obtain a high proportion of
mussels surviving to harvest, it is necessary to start
with low initial densities because survival decreases
with increasing density (Fig.9b).

DISCUSSION

Model formulation and biological insights

When modelling biological functions, it is essential to
use appropriate equations in order to obtain biologi-
cally meaningful parameter estimates. For this reason,
we elected to use the equation developed by Lassiter &
Kearns (1974) to relate temperature and growth, rather
than some of the other more commonly employed rela-
tionships (see Cossins & Bowler 1987). The Q10 rela-
tionship, which assumes that physiological rates in-
crease exponentially with increasing temperature (for
applications see van Haren & Kooijman 1993, Dowd
1997, and Barbeau & Caswell 1999), has been widely
employed by other investigators. Its formulation is of
special interest because it correctly represents, at low
temperature, the exponential relationship expected by
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Arrhenius’s law (Ursin 1967) between the rate of meta-
bolic processes and temperature. According to Arrhe-
nius’s law, enzymatic activity increases following an
exponential relationship with temperature. However,
it has been demonstrated that Q10 values vary with
temperature: as temperature increases, the Q10 value
decreases in a progressive manner (Ege & Krogh 1914,
Krogh 1914). Therefore, using 1 value of Q10 over a
wide range of temperature (such as experienced in
PEI) would overestimate growth at high temperature. 

An alternative to the Q10 is the use of power func-
tions (Growth = Texponent) (Fréchette & Bacher 1998,
Gangnery et al. 2004), which provide a better fit when
Q10 is known to decrease with increasing temperature.
Both formulations (Q10 and power function) increase
indefinitely with increasing temperature, which is
bound to overestimate the physiological rates as tem-
peratures go beyond an optimal value. Therefore,
although widespread, the usefulness of the Q10 rela-
tionship or the power function is limited to a narrow
range of temperatures. In field situations, especially
under circumstances similar to those in PEI, where
large variations in water temperature occur through-
out the year, Lassiter & Kearns’ (1974) equation, as
employed in our model, allows predictions over a
greater range of temperatures than more commonly
used equations. 

Our model and our use of Lassiter & Kearns’ (1974)
equation also enabled us to estimate the optimal grow-
ing temperature (Topt) for mussels. Such estimates are
difficult to obtain in the field without the use of a
model. In the literature, the optimal growing tempera-
ture for Mytilus spp. has been reported to be between
15 and 20°C (Coulthard 1929, Coe & Fox 1942). Fur-
thermore, Mallet & Carver (1993) observed a decline in
shell growth rate in M. edulis cultivated in Nova Scotia
when the water temperature exceeded 14°C. Our
model estimate for Topt (15.80 ± 0.02°C) is therefore in
accordance with these previous observations. 

Parameter estimates of the survival sub-model also
revealed biological information. For example, r is the
survival rate that does not depend on crowding. We
obtained a value of 0.999, which translates into a
yearly survival rate of ~81%. This value is in the upper
range of survival rates previously found for mussels
growing with conspecifics (Mallet & Carver 1991: 45 to
65%; Myrand & Gaudreault 1995: 20 to 90%). How-
ever, in a study looking at survival rate of individual
mussels growing on nets (not subject to competition or
crowding), Mallet & Carver (1993) found values (70 to
75%) close to our estimate. Because we defined r as
the survival rate without density-dependent mortality,
it is not surprising that it is higher than survival rates in
the presence of competition, but similar to survival
rates without competition.

Determining which parameters need to be included
in the model gives a good indication of what affects
growth and survival of mussels in the field (or, in our
case, in an aquaculture situation). Most previous
attempts at modelling mussels in an aquaculture set-
ting have used food availability (POM, DOM, chloro-
phyll a or seston) to predict growth (see Beadman et al.
2002 for review). Our model does not incorporate food
availability; seasonal variation in growth is a function
of water temperature only. In a similar model applied
to Mytilus galloprovincialis, Gangnery et al. (2004)
incorporated water temperature in their model to
reproduce the observed seasonal variations in growth,
and food availability to reproduce the observed spatial
variation. In our case, temperature could predict
growth in 2 bays over 2 yr without adding any other
environmental variable. It therefore appears that
either food availability is highly correlated with water
temperature in both bays or that food is not a limiting
factor for growth in these 2 bays. 

Based on our experimental work (Lauzon-Guay et al.
2005) and modelling exercise, survival of cultivated
mussels does not vary between sites. Our survival sub-
model could predict survival at 2 sites. Furthermore,
parameter estimates for Eq. (6) did not differ signifi-
cantly whether the equation was fitted to the 2001 or to
the 2002 dataset (J.-S. Lauzon-Guay unpubl. data).
Previous studies have also noted that survival of culti-
vated mussels is not site-dependent (Dickie et al. 1984,
Mallet & Carver 1991, Myrand & Gaudreault 1995,
Karayucel & Karayucel 2000). This compilation of
observations suggests that the mechanisms responsi-
ble for self-thinning of mussels in PEI are consistent
across years and probably inherent to the mussel pop-
ulation rather than to environmental conditions. This
favours space-driven self-thinning over food-driven
self-thinning for 2 reasons: (1) as previously men-
tioned, results from the growth sub-model indicated
that food availability was not a factor limiting growth,
and (2) competition for space is more likely to be con-
sistent from year to year and site to site than competi-
tion for food. Furthermore, the self-thinning exponent
obtained in our study is much closer to the value
expected from space-driven self-thinning than food-
driven self-thinning (Fréchette & Lefaivre 1990).

Uncertainty associated with our growth predictions
was relatively small, which is somewhat surprising
given the usual high level of individual variation (up to
10 times) in growth observed in mussels (Mallet &
Carver 1991, Trevelyan 1991). Our relatively small
level of uncertainty is probably due to 3 reasons. First,
our confidence intervals around mussel size predic-
tions represent variation in mean size of mussels on
socks and do not represent variation in size of individ-
ual mussels (i.e. we used the model to simulate our
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large-scale experiments, and the experimental unit in
these experiments was mussel sock and not individual
mussel). Second, a high number of marked mussels
was monitored for growth in the small-scale experi-
ments, and this highlights the importance of develop-
ing an adequate sampling protocol when gathering
data for model calibration.. Finally, the fact that our
growth model was fairly robust (Fig. 6) helped attenu-
ate the effect of sampling error on the model output.
Conversely, the survival model was quite sensitive.
This sensitivity and the large standard error associated
with parameter estimates resulted in high uncertainty
in survival predictions (Fig. 9). This level of uncertainty
was expected given the general high variability in
mussel survival (Dickie et al. 1984, Mallet et al. 1990,
Myrand & Gaudreault 1995). In addition, some of the
variability is likely to have stemmed from the difficulty
in obtaining consistent initial densities of mussels
between socks (Lauzon-Guay et al. 2005). Conse-
quently, it was difficult to estimate survival precisely.
Therefore, experimental work with better controlled
initial densities of mussels would be necessary to
improve survival estimates. Also, including size-spe-
cific mortality, asymmetric competition, and inter-indi-
vidual variability in growth in our models may have
affected our mussel survival predictions (Fréchette et
al. 2005) and may prove to be a valuable avenue for
future modelling work.

The results of the sensitivity analysis provided addi-
tional insights on potentially important processes
affecting populations of cultivated mussels. Our
growth predictions were robust to changes in the allo-
metric exponent (b), density at characteristic length (a),
optimal growing temperature (Topt), maximal growing
temperature (Tmax), and strength of the temperature
dependency (c). In other words, relatively large
changes in the relationship between growth and its
underlying variables would be necessary to result in
appreciable changes in mussel production. Con-
versely, survival predictions were quite sensitive to
changes in most parameters, namely the coefficient for
density dependence (α), the survival rate (r), and espe-
cially the self-thinning exponent (β). Thus, intraspe-
cific competition between mussels appears to be a
particularly important process affecting their survival.
Future research should focus on improving our
understanding of intraspecific competition and the
self-thinning relationship in mussels. 

Aquaculture implications

It may be possible to increase mussel production
through optimization of growth rates by adjusting the
deployment date of socks. If seeds were packed in

socks between May and September, aquaculturists
might be able to reduce the grow-out period by up to
35%. Most of the socking actually occurs between
October and December on PEI (Mallet & Myrand
1995). Based on our modelling exercise, this results in
the longest turnaround time for seeds to reach com-
mercial size. 

However, although our results suggest that it may be
advantageous to alter socking time, this may prove
impractical for other reasons. For example, mussel
seed of an appropriate size may not be available in
summer, and deployment of mussels during warm
summer conditions may increase stress and mortality
of mussels during socking. Further, development of a
socking strategy to maximise profits should also
involve consideration of timing of seeding and harvest
such that a lag between crops is minimized (see Melià
& Gatto 2005 for example). Nonetheless, aquaculturists
should consider deploying mussels earlier in the fall
(September), as this would still result in a substantial
reduction of the grow-out period. Overall, this strategy
may be beneficial, even if it entails using smaller seeds
(as long as they are not socked too densely). Smaller
seeds have been observed to reach commercial size in
the same time period as large seeds, because of their
faster growth rates (Lauzon-Guay et al. 2005). Mean-
while, further research should be done to evaluate pos-
sible changes in survival resulting from deploying
mussels in the summer.

Socking density (i.e. no. of mussels sock–1) clearly
plays an important role in the survival of mussels to
commercial size. According to model predictions, 2
options are available to aquaculturists: (1) maximise
the proportion of mussels surviving to harvest and (2)
maximise the number of mussels per sock available at
harvest. These 2 strategies are mutually exclusive,
because survival is maximised using low initial den-
sity, and number of mussels at harvest is maximised
using high initial density. The best approach to take
would depend on whether lease area or mussel seed
availability was more limiting. A shortage of seeds
would dictate that aquaculturists should pack seeds at
low initial density, although this could increase labour-
related costs. Conversely, if seeds are abundant but
space is the limiting factor, an aquaculturist should use
high initial density to assure a greater number of mus-
sels at harvest. However, it is likely that beyond a cer-
tain initial density, density at harvest will remain con-
stant (Lauzon-Guay et al. 2005). In PEI, seed shortage
has occurred periodically in the past; in such years,
using low initial density would insure a greater yield.
On the other hand, as availability of lease area
becomes more limited, mussel aquaculturists may
want to use higher initial densities, especially in years
when seeds are abundant.
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CONCLUSION

Simple mathematical models of population dynamics
that incorporate individual-based processes coupled
with mechanisms at the population level can produce
accurate predictions. Our results suggest that at our 2
sites, growth of suspended mussels can be modelled
using allometric growth coupled with water tempera-
ture as the only environmental factor. Our model
requires few variables to be measured in the field,
which facilitates its use in more locations. However,
such a model would probably not be applicable to
situations where food availability is low.

Our model proved useful in assessing different
short-term management scenarios (over 1 grow-out
cycle). By socking in summer or early autumn, aqua-
culturists could reduce their turnaround time by up to
35% compared to socking in mid- to late-autumn.
Also, depending on specific situations, an aquacultur-
ist could increase mussel survival by using low initial
densities, or increase the number of mussels available
at harvest by using high initial densities. In sum, this
modelling exercise has enhanced our understanding of
mechanisms responsible for population dynamics of
cultivated mussels, enabled evaluation of possible
management scenarios, and offered direction for fur-
ther research.

Mussel survival can be predicted as a function of the
size of mussels and their initial density using a self-
thinning relationship. The relationship between sur-
vival and shell length remained constant over 2 yr at
2 sites, suggesting that survival is not related to site-
specific environmental conditions. More research is
necessary to fully understand the mechanisms respon-
sible for self-thinning. Such information could then be
used to alleviate density-dependent survival and to
increase production.
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