INTRODUCTION

Stable nitrogen isotopic composition ($\delta^{15}N$) of whole organisms and their tissues has been widely used in a number of ecological studies (Fry 2006), particularly for elucidating the trophic level of organisms and nitrogen flow in the food web (e.g. Hobson & Welch 1992, Keough et al. 1996, Yoshii et al. 1999, Ogawa et al. 2001, Post 2002). The method is based on observations that the $\delta^{15}N$ of organisms tends to increase with trophic level (e.g. DeNiro & Epstein 1981, Minagawa & Wada 1984). Although the exact mechanism of ^{15}N-enrichment is not fully understood, it has generally been considered to be related to the isotopic discrimination associated with biosynthetic and metabolic effects.

Recently, McClelland & Montoya (2002) presented a detailed report on the trophic relationship of $\delta^{15}N$ of individual amino acids between phytoplankton (the green alga Tetraselmis suecica) and its consumer zooplankton (the rotifer Brachionus plicatilis). They suggested that ^{15}N-enrichment in bulk materials along the food web should strongly reflect relative abundance and the degree of ^{15}N-enrichment of amino acids in the consumer. Moreover, they suggested that ^{15}N-enrichment in some amino acids (e.g. glutamic acid) provides a greater scope for defining trophic level than small changes in bulk material, and that small changes in nitrogen isotopic compositions of other amino acids (e.g. phenylalanine) provide information on nitrogen sources at the base of the food web. Therefore, the nitrogen isotopic composition of amino acids from organisms would potentially provide a more detailed understanding of the mechanisms of ^{15}N-enrichment in bulk materials and their trophic level in an ecosystem. For example, McClelland et al. (2003) applied the method to food web structure in the tropical North Atlantic, showing that zooplankton feed on N$_2$-fixers to a significant degree.

However, it is still uncertain whether or not the $\delta^{15}N$ relationship observed in the rotifer-green alga combi-
nation is generally applicable to other sets of producers and consumers. Particularly, few other data are available for primary producers, even though they provide essential information on the base of the food web. Moreover, the biochemical mechanism responsible for the distinct trophic relationship of δ15N value between amino acids (i.e. significant 15N-enrichment in some amino acids vs. little change in others) is not well understood. Therefore, in the present study, we investigated the nitrogen isotopic compositions of individual amino acids in natural marine macroalgae and gastropods: (1) to ascertain the trophic relationship of the δ15N of amino acids in a marine coastal ecosystem and (2) to discuss controlling factor(s) of the isotopic signature of each amino acid from both biosynthetic and metabolic viewpoints.

MATERIALS AND METHODS

Two brown (Heterokontophyta: Sargassum filicinum and Undaria pinnatifida) and 2 red (Rhodophyta: Binghamia californica and Gelidium japonica) macroalgae were collected from 2 to 4 m depth along the seacoast near Yokohama, Japan (35° 08’N, 139° 07’E) (Chikaraishi 2006). About 20 to 30 ind. for each alga were collected. This area is dominated by the brown algae and small colonies of the red algae, which are found in the vicinity of the brown algal colonies; other macroalgae are not common in this coastal area. We also collected 3 gastropods (Gastropoda: Batillus cornutus, Haliotis discus, and Omphalius pfeifferi) from the brown algal colonies. One individual from each gastropod species was collected. It has been shown that these gastropods specifically feed on brown macroalgae (e.g. Harada et al. 1984, Tutschulte & Connell 1988, Fallu 1991). This was also confirmed in this environment by a previous investigation into the carbon and hydrogen isotopic compositions of sterols in the brown algae and gastropods (Chikaraishi 2006). After collection the macroalgae and gastropods were washed with distilled water to remove contaminants such as algal debris. The washed samples were freeze-dried, crushed to a fine powder, and stored at –20°C until analysis.

The nitrogen isotopic composition of bulk sample materials was determined by an isotope ratio mass spectrometer (IRMS; ThermoFinnigan Delta plus XP) coupled to a Flash elemental analyzer (EA; ThermoFinnigan EA1112) via a Conflo III interface (e.g. Ohkouchi et al. 2005).

Amino acids were prepared for compound-specific isotope analysis by HCl hydrolysis, followed by N-pivaloyl/isopropyl (NP/iPr) addition according to the improved procedures of Metges et al. (1996). In brief, ~5 mg of each sample material was hydrolyzed with 12 N HCl at 100°C for 12 to 24 h. The hydrolysate was washed with n-hexane/dichloromethane (6:5, v/v) to remove hydrophobic constituents, such as lipids, and then evaporated to dryness under a N2 stream. After derivatization with thionyl chloride/2-propanol (1:4, v/v) at 110°C for 2 h and with pivaloyl chloride/dichloromethane (1:4, v/v) at 110°C for 2 h, the NP/iPr derivatives of amino acids were extracted with n-hexane/dichloromethane (6:5, v/v).

The nitrogen isotopic compositions of the individual amino acids were determined by gas chromatography/isotope ratio mass spectrometry (GC/IRMS) using ThermoFinnigan Delta plus XP coupled to a gas chromatograph (GC; Agilent Technologies 6890N) via combustion and reduction furnaces (e.g. Hayes et al. 1990, Brand et al. 1994). The combustion was performed in a microvolume ceramic tube with CuO, NiO, and Pt wires at 1000°C, and the reduction was performed in a microvolume ceramic tube with reduced Cu wire at 550°C. The GC was equipped with an Ultra-2 capillary column (25 m × 0.32 mm i.d., 0.52 mm film thickness; Agilent Technologies). The GC oven temperature was programmed as follows: initial temperature 40°C for 4 min, ramp up at 8°C min–1 to 100°C, ramp up at 6°C min–1 to 220°C, and dwell for 13 min. Carrier gas (He) flow through the GC column was 1.4 ml min–1. The CO2 generated in the combustion furnace was eliminated by a liquid nitrogen trap. The nitrogen isotopic composition is expressed in conventional δ notation against atmospheric N2. Standard mixtures of 8 δ15N-known amino acids were analyzed every 4 or 5 samples to confirm the reproducibility of the isotope measurement. Analytical errors (1σ) of the standards were better than 0.5‰, with a minimum sample amount of 30 ng N. The δ15N of 12 amino acids (alanine, glycine, valine, leucine, isoleucine, proline, asparatic acid, threonine, serine, methionine, glutamic acid, and phenylalanine) were determined by this method (Fig. 1). The isotopic compositions of aspartic acid and threonine were reported as a mixed value, because these compounds partly coeluted on the chromatogram.

RESULTS

Fig. 1 illustrates the nitrogen isotopic results in this study. The δ15N values of 12 amino acids ranged from –2.1 to +8.4‰ for the brown algae, from –3.3 to +12.9‰ for the red algae, and from –0.6 to +16.6‰ for the gastropods. No clear diagnostic difference was observed in the range among 4 algal as well as among 3 gastropod species.
Isotopic differences between each amino acid and bulk material \((\delta^{15}\epsilon) \) of the brown and red algae in the present study and of the green algae and cyanobacteria in the studies by McClelland & Montoya (2002) and McClelland et al. (2003). \(\delta^{15}\epsilon \) is defined as: \(\delta^{15}\epsilon = 1000[(\delta^{15}N_{\text{amino acid}} + 1000)/(\delta^{15}N_{\text{bulk}} + 1000) - 1] \). Bars indicate the range from 2 species. For amino acid abbreviations see Fig. 1.

Isotopic differences between each amino acid and bulk material \((\delta^{15}\epsilon; \delta^{15}\epsilon = 1000[(\delta^{15}N_{\text{amino acid}} + 1000)/(\delta^{15}N_{\text{bulk}} + 1000) - 1]) \) for the brown and red algae are illustrated in Fig. 2, along with the differences for green algae and cyanobacteria reported by McClelland & Montoya (2002) and McClelland et al. (2003). A large variation was observed in the \(\delta^{15}\epsilon \) values between amino acids, ranging from \(-9.7\) to \(+3.7\)‰ for 3 algal classes and cyanobacteria. Generally, valine, isoleucine, proline, and glutamic acid were enriched in \(^{15}N \) relative to the bulk material, whereas serine, methionine, and phenylalanine were depleted in \(^{15}N \) relative to the bulk material. It should also be noted that the \(\delta^{15}\epsilon \) values for valine, isoleucine, proline, methionine, glutamic acid, and phenylalanine were quite similar between these marine primary producers \((1\sigma < 1.1\%)\), whereas those of alanine, glycine, and leucine were variable between them. Particularly, glycine had the largest variation \((-7.3\) to \(-0.3\)‰) among the primary producers studied.

Isotopic differences in each amino acid between the brown algae and gastropods \((\Delta; \Delta = \delta^{15}N_{\text{gastropod}} - \delta^{15}N_{\text{brown alga}}) \) are illustrated in Fig. 3. Except for methionine and phenylalanine, the amino acids in the gastropods were significantly enriched in \(^{15}N \) (up to \(-10\%\)) relative to the corresponding amino acids from the food source brown algae. In contrast, methionine and phenylalanine in the gastropods demonstrated no substantial isotopic differences from those in the brown algae \((\Delta < \pm 1.2\%)\). Although the magnitude of \(^{15}N \)-enrichments varied for some amino acids (e.g. glycine, leucine, and serine), the general trend of this trophic \(^{15}N \) relationship in the gastropod-brown alga combination was similar to the one observed in the rotifer-green alga combination (McClelland & Montoya 2002). Particularly, the magnitude of \(^{15}N \)-enrichment for glutamic acid was the most consistent among herbivores \((1\sigma = 1.4\%)\).
DISCUSSION

Even in a single photoautotroph, the nitrogen isotopic composition of amino acids varies considerably. Such variability is partly attributable to the unique biosynthetic pathway for each amino acid (McClelland & Montoya 2002). Indeed, amino acids are biosynthesized in photoautotrophs through various pathways from 3-phosphoglycerate, phosphoenolpyruvate, pyruvate, oxaloacetate, and a-ketoglutarate (e.g. Lengeler et al. 1999, Buchanan et al. 2000). The nitrogen is incorporated to form amino acids by enzymatic transamination of the corresponding keto acids. Therefore, the δ15N values of amino acids could reflect the isotopic fractionation associated with each transamination process.

As demonstrated in Fig. 2, the 15ε values for valine, isoleucine, proline, serine, methionine, glutamic acid, and phenylalanine are quite similar among 4 macroalgal species, as well as among green algae and cyanobacteria, even though the values differ between amino acids. This suggests that these amino acids are biosynthesized and metabolized through common pathways in aquatic photoautotrophs, even including cyanobacteria, which are phylogenically distant from the algae. In fact, the biosynthetic and metabolic pathways of these amino acids in cyanobacteria have been reported to be quite the same as those of algae (e.g. Lengeler et al. 1999, Buchanan et al. 2000). In contrast, the 15ε values for other amino acids, particularly for glycine, vary considerably between algal classes, suggesting them to be biosynthesized or metabolized through processes with distinct isotopic fractionations. This may reflect either a distinct kinetic isotopic effect associated with the enzymatic transaminations between algal classes or the presence of unknown biosynthetic or metabolic pathways for alanine, glycine, and leucine in these algae or cyanobacteria.

As illustrated in Fig. 3, the pattern and amplitude of the 15N-enrichment of amino acids in the gastropod-brown alga combination have trends similar to those observed in the rotifer-green alga combination (McClelland & Montoya 2002). This suggests that the results from both studies represent a general isotopic relationship in amino acids along the marine food web. Therefore, the significant 15N-enrichment in some amino acids provides a scope for defining trophic level, whereas the small δ15N changes in other amino acids provide information on nitrogen sources at the base of the food web, as McClelland & Montoya (2002) suggested.

The 15N-enrichment of whole organisms and tissues along the food web could be highly susceptible to the relative abundance of nitrogen-containing molecules, such as amino acids. In fact, DeNiro & Epstein (1981) reported on a wide variation of bulk δ15N difference between food sources and consumers, ranging from −0.5 to +9.2‰. Moreover, the ranges of bulk 15N-enrichment in 1 trophic-level shift are 0.4 to 2.2‰ smaller for gastropods and 1.5 to 2.0‰ smaller for rotifers than the value generally mentioned in food web studies (3.0‰ by DeNiro & Epstein 1981, 3.4‰ by Minagawa & Wada 1984). This is probably because the 15N-enrichment in bulk materials shows an integrated 15N-enrichment of various nitrogen-containing molecules in the consumer. Therefore, the trophic level of organisms could be estimated more precisely by using the 15N-enrichment of specific amino acids instead of that of bulk material (Table 1). In particular, amino acids that have relatively large Δ values, with small variation among consumers (i.e. 7.6 ± 1.4‰ for glutamic acid), are potentially useful as a precise tool for studying the food web structure, because they reduce error in the trophic-level calculations.
Δ able and dispensable groupings are not necessarily (non-essential) amino acids. However, the indispens-
iors between indispensable (essential) and dispensable

toya (2002) pointed out different biochemical behav-
composition between amino acids. McClelland & Mon-
distinct trophic relationship in the nitrogen isotopic

consumers. In other words, an isotope analysis of primary
sumers is not required to identify the trophic level of

producers is not required to identify the trophic level of

Further studies are required for elucidation of the
patterns of the trophic relationship in δ¹⁵N (McClelland & Montoya 2002). For example, valine and isoleucine show significant ¹⁵N-enrichment along the food web, whereas methionine and phenyl-
alanine show small changes in δ¹⁵N (Fig. 3), even though these 4 amino acids are classified as indispens-
able amino acids. This might be due to the fact that the indispensable and dispensable amino acids have been determined based on rats, phylogenetically very different from gastropods and rotifers, as McClelland & Montoya (2002) pointed out.

Here, we propose an alternative, potentially important mechanism for determining the nitrogen isotopic composition of amino acids related to metabolic pathways. In heterotrophs, amino acids are acquired from food sources in excess of their need, and they are metabolized to control the nitrogen balance and protein turnover in the cell (Bender 2002). Deamination, the removal of the amine functional group, is a dominant metabolic process of many amino acids, including alanine, valine, leucine, isoleucine, and glutamic acid, in formation of the corresponding keto acids (Fig. 4). In other words, these amino acids are commonly degraded by a nitrogen-associated reaction in the first step of metabolism. Deamination is an enzymatic reaction potentially producing the nitrogen isotope discrimination between the metabolized and remaining amino acids, with the latter being theoretically enriched in ¹⁵N relative to the former. Moreover, in such cases of metabolic discrimination, the magnitude of ¹⁵N-enrichment should reflect the isotope effect and relative flux of the deamination process for each amino acid, which probably causes variation in the ¹⁵N-enrichment among amino acids and among herbivores. In fact, Macko et al. (1986) reported ¹⁵N-enrichment of

consistent with patterns of the trophic relationship in δ¹⁵N (McClelland & Montoya 2002). For example, valine and isoleucine show significant ¹⁵N-enrichment along the food web, whereas methionine and phenyl-
alanine show small changes in δ¹⁵N (Fig. 3), even though these 4 amino acids are classified as indispens-
able amino acids. This might be due to the fact that the indispensable and dispensable amino acids have been determined based on rats, phylogenetically very different from gastropods and rotifers, as McClelland & Montoya (2002) pointed out.

Here, we propose an alternative, potentially important mechanism for determining the nitrogen isotopic composition of amino acids related to metabolic pathways. In heterotrophs, amino acids are acquired from food sources in excess of their need, and they are metabolized to control the nitrogen balance and protein turnover in the cell (Bender 2002). Deamination, the removal of the amine functional group, is a dominant metabolic process of many amino acids, including alanine, valine, leucine, isoleucine, and glutamic acid, in formation of the corresponding keto acids (Fig. 4). In other words, these amino acids are commonly degraded by a nitrogen-associated reaction in the first step of metabolism. Deamination is an enzymatic reaction potentially producing the nitrogen isotope discrimination between the metabolized and remaining amino acids, with the latter being theoretically enriched in ¹⁵N relative to the former. Moreover, in such cases of metabolic discrimination, the magnitude of ¹⁵N-enrichment should reflect the isotope effect and relative flux of the deamination process for each amino acid, which probably causes variation in the ¹⁵N-enrichment among amino acids and among herbivores. In fact, Macko et al. (1986) reported ¹⁵N-enrichment of

consistent with patterns of the trophic relationship in δ¹⁵N (McClelland & Montoya 2002). For example, valine and isoleucine show significant ¹⁵N-enrichment along the food web, whereas methionine and phenyl-
alanine show small changes in δ¹⁵N (Fig. 3), even though these 4 amino acids are classified as indispens-
able amino acids. This might be due to the fact that the indispensable and dispensable amino acids have been determined based on rats, phylogenetically very different from gastropods and rotifers, as McClelland & Montoya (2002) pointed out.

Here, we propose an alternative, potentially important mechanism for determining the nitrogen isotopic composition of amino acids related to metabolic pathways. In heterotrophs, amino acids are acquired from food sources in excess of their need, and they are metabolized to control the nitrogen balance and protein turnover in the cell (Bender 2002). Deamination, the removal of the amine functional group, is a dominant metabolic process of many amino acids, including alanine, valine, leucine, isoleucine, and glutamic acid, in formation of the corresponding keto acids (Fig. 4). In other words, these amino acids are commonly degraded by a nitrogen-associated reaction in the first step of metabolism. Deamination is an enzymatic reaction potentially producing the nitrogen isotope discrimination between the metabolized and remaining amino acids, with the latter being theoretically enriched in ¹⁵N relative to the former. Moreover, in such cases of metabolic discrimination, the magnitude of ¹⁵N-enrichment should reflect the isotope effect and relative flux of the deamination process for each amino acid, which probably causes variation in the ¹⁵N-enrichment among amino acids and among herbivores. In fact, Macko et al. (1986) reported ¹⁵N-enrichment of

consistent with patterns of the trophic relationship in δ¹⁵N (McClelland & Montoya 2002). For example, valine and isoleucine show significant ¹⁵N-enrichment along the food web, whereas methionine and phenyl-
alanine show small changes in δ¹⁵N (Fig. 3), even though these 4 amino acids are classified as indispens-
able amino acids. This might be due to the fact that the indispensable and dispensable amino acids have been determined based on rats, phylogenetically very different from gastropods and rotifers, as McClelland & Montoya (2002) pointed out.

Here, we propose an alternative, potentially important mechanism for determining the nitrogen isotopic composition of amino acids related to metabolic pathways. In heterotrophs, amino acids are acquired from food sources in excess of their need, and they are metabolized to control the nitrogen balance and protein turnover in the cell (Bender 2002). Deamination, the removal of the amine functional group, is a dominant metabolic process of many amino acids, including alanine, valine, leucine, isoleucine, and glutamic acid, in formation of the corresponding keto acids (Fig. 4). In other words, these amino acids are commonly degraded by a nitrogen-associated reaction in the first step of metabolism. Deamination is an enzymatic reaction potentially producing the nitrogen isotope discrimination between the metabolized and remaining amino acids, with the latter being theoretically enriched in ¹⁵N relative to the former. Moreover, in such cases of metabolic discrimination, the magnitude of ¹⁵N-enrichment should reflect the isotope effect and relative flux of the deamination process for each amino acid, which probably causes variation in the ¹⁵N-enrichment among amino acids and among herbivores. In fact, Macko et al. (1986) reported ¹⁵N-enrichment of
−0.6‰ for aspartic acid and −3‰ for glutamic acid, after 30% deamination of the amino acids in laboratory experiments. Variation in the Δ values among amino acids and among herbivores was also observed in the present study (Fig. 3). In contrast, the dominant metabolic routes of methionine and phenylalanine lead, respectively, to the formation of S-adenosylmethionine and tyrosine, without nitrogen-associated reactions (Fig. 4). These metabolic processes should not produce significant isotopic fractionation for nitrogen, since they neither form nor break bonds related to the nitrogen atoms in the amino acids. In fact, in our study, little change was observed in the nitrogen isotopic compositions of methionine and phenylalanine, whereas significant 15N-enrichment was observed for other amino acids (Fig. 3). Thus, the δ15N patterns are consistent with the metabolic fates of individual amino acids, leading us to conclude that the differences in metabolic fates among amino acids could be an important factor in producing the distinct trophic relationship in the nitrogen isotopic composition between amino acids.

Acknowledgments. We thank Mr. T. Chikaraishi for collection of samples, Dr. T. Okutani for identification of gastropod species, and Profs. H. Naraoka and S. R. Poulson for technical advice on isotopic analyses. We thank Mr H. Chikaraishi for much support and encouragement. This work was supported by research grants from the JSPS for Young Scientists (Y.C. and Y.K.) and CREST-JST (N.O.).

LITERATURE CITED

Submitted: November 8, 2006; Accepted: February 6, 2007
Proofs received from author(s): June 26, 2007

Editorial responsibility: Otto Kinne (Editor-in-Chief), Oldendorf/Luhe, Germany