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INTRODUCTION

Species diversity gradients are among the most con-
spicuous ecological patterns and a major focus of eco-
logical research. Globally, the number of species has
been shown to decline poleward, peaking at the trop-
ics in terrestrial, coastal marine and pelagic marine
biotas. More than 30 evolutionary and ecological
hypotheses have been proposed to explain this gradi-
ent of species diversity (Hawkins & Diniz-Filho 2002,
Arita 2005). In the marine realm, similar parabolic
patterns have also been reported along bathymetric

gradients for fish (Powell et al. 2003) and macro- and
megafaunal invertebrate groups (polychaetes, cuma-
ceans and bivalves) from the northwestern Atlantic
(Gage & Tyler 1991, Gage 1996).

Since humped patterns may be generated stochasti-
cally without the need to invoke the direct effects of en-
vironmental gradients, a growing body of research is
focused on a particular approach that excludes all of the
environmental, biological, or historical processes that
might be causally linked to the observed patterns. Mid-
domain effect theory (MDE; Colwell & Hurtt 1994, Col-
well & Lees 2000) involves a null model that predicts
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that species ranges, when randomly arranged within a
bounded domain, produce a unimodal curve with a
mid-domain maximum (Colwell & Lees 2000). To date,
MDE models have been tested in several 1-dimensional
gradients (i.e. latitude, depth, elevation, river courses)
(Pineda 1993, Colwell & Hurtt 1994, Grytnes & Vetaas
2002, Sanders 2002, Brehm et al. 2007). In view of the
fact that an overview of 21 MDE studies (Colwell et al.
2004, 2005) revealed a substantial signature of MDE in
natural patterns, it seems possible to argue that sto-
chastic geometric phenomena are indeed affecting (al-
though in variable degrees) the patterns of species rich-
ness within any bounded domain. The only previous
MDE-related study of marine gastropods (Pineda &
Caswell 1998) reported that a random rearrangement
of species’ ranges within geographic boundaries did
not fully explain observed bathymetric patterns for
deep sea gastropods and polychaetes in the western
North Atlantic, but partial contributions of MDE to
these patterns were not assessed.

In the present paper, we explore the extension of
MDE null models to the assessment of the effect of
geometric constraints on patterns of species richness
along physiologically bounded environmental gradi-
ents of temperature and salinity, rather than within
spatially bounded physical domains. The only previous
such study that we are aware of is the work of Lusk et
al. (2006), which examined the distribution of young
trees along a light-availability gradient. Many environ-
mental gradients are not geographically fixed because
they are variable in time, like the salinity and temper-
ature of seawater. Moreover, in patchy environments,
environmental mosaics are more common than spa-
tially continuous environmental gradients. Nonethe-
less, the environmental characteristics of the patches
can be envisioned as mapping on continuous axes in
niche space (Pulliam 2000, Rangel et al. 2007) that rep-
resent bounded range limits based on the physiologi-
cal tolerances of species.

In estuaries, benthic organisms are commonly dis-
tributed along gradients of physiological stress accord-
ing to their environmental tolerance (Remane &
Schlieper 1971). Day et al. (1989) related spatial differ-
ences in the composition of the benthic communities
along estuarine gradients to changes in salinity, depth,
sediment grain size and organic content. When com-
pared with adjacent marine systems, estuaries are con-
sidered areas of low diversity, with high abundances
(Atrill et al. 1996, Constable 1999). However, the idea
that a humped pattern in species richness may emerge,
given a sufficiently wide range encompassing varia-
tion in salinity from estuarine to oceanic environments,
is supported by MDE predictions. Similarly, sea bottom
temperature also shows conspicuous spatial gradients,
being negatively correlated with depth and salinity.

Finally, water temperature is thought to be the princi-
pal limiting factor of the majority of shallow water
habitats (e. g. Barnes & Hughes 1988, Levinton 1995),
and is thought to determine limits of biogeographical
provinces in the southwestern Atlantic. For this reason,
it is worthwhile to explore regional-scale patterns of
specific richness in relation to temperature.

The large-scale environmental gradients associated
with the interaction of the Río de la Plata estuary and
oceanic water masses provide a unique opportunity to
explore these relationships. The Río de la Plata flows
into the Atlantic Ocean, with an average discharge of
22 000 m3 s–1 (Framiñan & Brown 1996, Guerrero et al.
1997, Ortega & Martínez 2007). The ca. 200 000 km2 of
the Uruguayan and the northern portion of Argen-
tinean continental shelf (36 to 39° S; Fig. 1) are thus
characterized by a singular hydrographical system
affected by water masses of contrasting thermohaline
characteristics, e.g. subantarctic waters (SAW), tropi-
cal waters (TW), subtropical waters (SW) and coastal
waters (CW). The last system (CW), characterized by
salinities <33.2, is principally a mixture of SAW and
waters from the Río de la Plata estuary (e.g. Ortega &
Martínez 2007). These oceanographic features and
their interaction with shelf topography are the main
environmental structuring processes at a regional
scale. In this context, the bathymetric gradient is asso-
ciated with a sea bottom temperature gradient from
25°C in shallower waters to 4 to 5°C on the outer conti-
nental shelf and slope (e.g. Olivier & Scarabino 1972,
Carranza et al. 2008a,b).

In this area, megabenthic gastropods are a conspicu-
ous faunistic component of the nearly uniform soft bot-
tom habitats. The megabenthic gastropods provide a
wide array of advantages for this kind of study. First,
the presence of these long-lived, relatively low-motil-
ity animals in a particular place give us some confi-
dence in their ability to tolerate local environmental
conditions. Since seasonal variation within a given site
sets the minimum breadth of tolerances required by
individuals living at that site, relatively low-motility
animals must be able to tolerate the full range of cli-
matic conditions imposed by seasonal change. Second,
their large size (5 cm < maximum adult shell length <
40 cm) makes it easy to document their presence, since
gastropods are usually retained in most commercial
fishing gear used in the study area. Third, their taxo-
nomic status is well established, thus avoiding confu-
sion regarding species misidentifications.

In the present study, we have described the patterns
of diversity in megabenthic gastropods from the
Uruguayan shelf in relation to the interacting salinity,
temperature and bathymetric gradients. We have
assessed the effect of geometric constraints on the
observed diversity patterns in the context of multiple
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causality with other candidate explanatory variables,
including the environmental gradients themselves and
the species–area relationship.

MATERIALS AND METHODS

Empirical data. Occurrence data for large gas-
tropods (>5 cm adult shell length) were gathered from
a total of 399 points in the study area, from 2 main
sources: (1) previously unpublished data, obtained
from 5 research cruises onboard RV ‘Aldebaran’ of the
Uruguay National Directorate of Aquatic Resources
(DINARA) and 2 cruises of commercial fishing vessels
(Carranza 2006), and (2) published data that include
the complete list of species collected during each trawl
and the exact geographic locations of the operations
(see Carranza et al. 2008a,b). The fishing gear used in
the research vessel consisted of an Engel-type bottom
trawl net with a 24 m horizontal opening and a 100 mm
stretched mesh in the cod ends. The average duration
of trawling operations was 0.5 h. The exact locations of
the stations were determined by global positioning
system (GPS). Mean operational depth was calculated
for each station, averaging initial and final depth of
each trawl. In the commercial trawler, the gear used
was quite similar, but the average duration of trawling
operations was generally >2 h. Large gastropods were
examined and identified to species in situ, either by the
senior author or by F. Scarabino, malacological curator
at the National Museum of Natural History of Uruguay.
Species’ concepts and nomenclature used here
(detailed in Scarabino 2004 and references therein)

can thus be checked for their accuracy from the
voucher material deposited at this institution (Museo
Nacional de Historia Natural y Antropología, Monte-
video). Secondary data (i.e. those not collected directly
by us) were carefully checked for taxonomy and accu-
racy of reported locations, taking particular considera-
tion of the status (i.e. live collected or shells) of the
material (see Bortolus 2008 for a full discussion on the
links between taxonomy and ecological studies).

The presence/absence data were then binned in 47
quadrats of 0.5° × 0.5°, in order to accumulate all spe-
cies observed in different hauls and to match the scale
of the oceanographic information available. The num-
ber of gastropod species recorded within a quadrat is
referred to here as ‘observed richness’.

With these data, we were able to establish with rela-
tive accuracy the bathymetric, salinity and tempera-
ture ranges for each species in the area, assuming a
continuous distribution within each domain (that is,
along each environmental variable). This assumption
is usually not a source of substantial bias for most taxa
(Colwell et al. 2004) and would seem particularly rea-
sonable for environmental, rather than geographical,
gradients. For the bathymetric ranges, we used the
direct observations of maximum and minimum depth
where a particular species was recorded (when avail-
able), or checked the literature for existing data. For
the salinity and temperature ranges, we used a differ-
ent approach, since snapshot sampling does not pro-
vide information about the temporal variability in envi-
ronmental conditions. For this reason, for each species
record, we looked at the mean seasonal values of tem-
peratures and salinity of the sea bottom in the pub-
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represents a trawling operation
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lished oceanographic information (Guerrero et al.
1997). The 2 extreme values were used as a conserva-
tive estimate of the temporal variability at each partic-
ular point. We repeated this procedure for each record
and species, thus obtaining the overall extreme values
for the environmental variables in each species’ distri-
bution along these variables. These extreme values
were considered as an estimate of the species’ physio-
logical tolerance to the physical variables involved.
Once the bathymetric, salinity and temperature ranges
for each species were obtained, we estimated species
richness at regularly spaced points along the gradients
as the number of species that had intersecting ranges
at that point. The resulting richness values for each
gradient are referred to here as ‘interpolated richness’.

Spatial analysis. Biodiversity data are usually
strongly spatially structured (spatially autocorrelated),
driven by environmental factors and/or dispersal
mechanisms. Spatial autocorrelation can be defined as
‘the property of random variables taking values, at
pairs of locations a certain distance apart, that are
more similar (positive autocorrelation) or less similar
(negative autocorrelation) than expected for randomly
associated pairs of observations’ (Legendre 1993,
p. 1659). Whereas spatial autocorrelation presents an
interesting opportunity for biological investigations, it
can also be a source of model misspecification because
sampling units close to each other are partially redun-
dant with respect to the information they provide.
Thus, the number of degrees of freedom (based on the
number of sampling points) is overestimated, and, con-
sequently, confidence intervals are much narrower
and Type I errors are inflated.

In the present study, we used Moran’s I (a distance-
weighted correlation coefficient used to detect de-
partures from spatial randomness) to measure the spatial
autocorrelation in the regression residuals, treating
the latitude and longitude centroid of each sampling
quadrat as the x- and y-coordinates. When regression
residuals are spatially autocorrelated, an explicit spatial
regression is needed, in order to control for bias that
spatially structured data may cause. However, when
regression residuals are not spatially autocorrelated,
further analysis by spatial regression is not necessary or
informative (Diniz-Filho et al. 2002). All spatial statistics
were carried out using SAM v.1.1 (Rangel et al. 2006),
freely available at www.ecoevol.ufg.br/sam.

Null models. To estimate predicted richness under
the assumption of random placement of interpolated
richness, we drew ranges at random from the empirical
range size frequency distribution (RSFD) and placed
them randomly within each unidimensional physio-
logical domain (Model 4 of the computer application
RangeModel 5, see Colwell 2008). Resampling RSFDs
balances the risk of underestimating and overestimat-

ing the role of MDE (Colwell et al. 2004). We chose to
truncate empirical physiological ranges that may
extend beyond the physiological domain limits repre-
sented in the study area, treating the portion occurring
within the domain as endemic. However, due to our
limited understanding of the biology of range forma-
tion, no obvious correct choice exists regarding how
the model should be implemented (see McClain et al.
2007). Ordinary least-squares regressions (OLS) were
performed to assess the fit between richness predicted
by the geometric constraints model and interpolated
empirical richness. The predicted distribution of spe-
cies richness along each gradient was then used in
multiple regression analysis (see below), in order to
incorporate MDE as an explanatory variable on an
equal statistical footing with other candidate explana-
tory variables.

Gradient structure and species–area effect. We
examined whether a simple species–area relationship
contributed to the observed patterns. On the
Uruguayan continental shelf, the frequency distribu-
tion of environments with regard to depth, salinity and
temperature is highly skewed: for example, the 50 m
isobath separates 2 areas of approximately equal size,
the remaining 100 m depth categories being repre-
sented by increasingly less area. To evaluate the possi-
ble contribution of area to species richness, we parti-
tioned the gradients into regular spatial intervals on an
arithmetic scale and constructed the frequency distrib-
ution of each environmental variable, using as a unit of
area the 0.5° quadrats, roughly equivalent to 2600 km2.

Multivariate analysis. Using multiple regression
analysis, we explored 4 sets of candidate variables to
assess the roles of depth, salinity, temperature, geo-
metric constraints (MDE) and area as explanatory fac-
tors for species richness. We used the number of 0.5°
quadrats in the bins of a frequency distribution of each
environmental variable (depth, salinity and tempera-
ture) as an estimate of the amount of map area charac-
terized by different levels of each environmental fac-
tor. The depth model included depth, depth-specific
area and geometric constraints as candidate explana-
tory variables, whereas the salinity model included
salinity, salinity-specific area and geometric con-
straints, and the temperature model included tempera-
ture, temperature-specific area and geometric con-
straints. The fourth model, the all gradients model,
included salinity, temperature, depth-specific area
and geometric constraints as candidate explanatory
variables.

For each of the 4 sets of candidate variables, we
selected the best model from among all possible com-
binations of simple variables, choosing the model that
minimized the Akaike information criterion (AIC) sta-
tistic (Burnham & Anderson 1998). Regression residu-
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als were examined for spatial autocorrelation based on
Moran’s I, based on a connectivity matrix constructed
using a distance criterion, with connections weighted
by the inverse of the distance between points (lag dis-
tance = 50 km). To assess levels of collinearity in our
data set, we calculated the condition number for each
matrix of explanatory variables. The condition number
can be calculated as the square root of the ratio
between the largest and smallest eigenvalues of the
matrix of explanatory variables. Values of the condi-
tion number <30 are usually interpreted as acceptable
levels of multicolinearity (Weisberg 1985).

RESULTS

Species richness of megabenthic gastropods (22 spe-
cies) in the study area is patchily distributed in space
(Fig. 2), with a roughly NW–SE gradient that extends
throughout the continental shelf. The area under the
influence of the discharge of Río de la Plata and the
shelf break are characterized by low richness, whereas
intermediate areas in the marine portion of the shelf
showed the highest values of species richness.

Plots of observed species richness and species rich-
ness predicted by the MDE models for each of the 3
different environmental domains in the South Atlantic
Ocean appear in Fig. 3. Interpolated species richness
patterns varied among the 3 domains. In spite of differ-
ences in shape, most of the empirical values lay within
the 95% confidence intervals generated by the MDE
predictions for temperature and for depth, but not for
the salinity domain.

Observed species richness for the bathymetric
domain showed a peak in species richness towards the

shallow end (100 to 200 m) (Fig. 3a). As depth
increased, there was a general trend for richness to
decrease linearly. A simple linear regression for the
predicted versus observed species richness patterns for
the bathymetric domain showed that geometric con-
straints accounted for only 16% of the variance, not
accounting for other candidate explanatory variables.
Species richness along the salinity domain (Fig. 3b)
shows a pattern that is sharply skewed towards the
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Fig. 2. Species richness map for the study area. Interpolation
was performed using point kriging. Shade bar: species
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more saline end, with a distinct peak in the observed
data lying substantially outside the 95% confidence
intervals generated by the null model. The MDE model
is shown by the linear regression to account for <5% of
the variance in salinity values. The observed distribu-
tion of species richness along the temperature gradient
showed a peak located in the mid-portion of the

domain (10 to 14°C) (Fig. 3c). The observed data
showed an approximately parabolic pattern of species
richness. For the temperature domain, the MDE model
explains 74% of the variance as shown by the simple
linear regression. Regression residuals were not signif-
icantly spatially autocorrelated in any of these analy-
ses (all Moran’s I < 0.231, for all distance classes).

The distributions of map area in relation to each gra-
dient are shown in Fig. 4. Table 1 reports the results of
model selection for multiple regressions of richness
measures on the environmental variables and MDE
predictions. In each case, the model with the lowest
AIC is reported (best model). Overall, interpolated
richness performed better than observed richness
(nearly 4-fold more variance accounted for by the best
model). Models based on interpolated richness along
the salinity and temperature gradients showed higher
r2 than bathymetric gradients. In contrast, the explana-
tory power of statistical models for observed richness
was very similar for the 3 gradients (range 14 to 15%
variance). These differences persisted in the spatial
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Spatial model (individual gradients)
Multiple regression Observed Interpolated 

richness richness

Depth gradient
Best model (r2, AIC) 0.146, 64.575 0.461, 49.877
Depth (β) 0.32 0.65
Geometric constraints (β) 0.357 0.55
Salinity gradient
Best model (r2, AIC) 0.156, 61.601 0.779, 50.555
Area (β) 0.52
Salinity (β) 0.395 0.46
Geometric constraints (β) 0.037
Temperature gradient
Best model (r2, AIC) 0.145, 64.605 0.742, 35.724
Area (β) 0.252
Temperature (β) 0.46 0.65
Geometric constraints (β) 0.558 1.12
All gradients
Best model (r2, AIC) 0.29, 58.087 0.61, 40.054
Salinity (β) 0.596 0.704
Temperature (β) 0.631 0.584
Geometric constraints (β) 0.387 0.863
Area (β) 0.61

Table 1. Multiple regression analysis of observed species
richness and interpolated species richness versus 2 environ-
mental factors (area and gradient) and geometric constraints
(mid-domain effect model predictions) for each environmen-
tal gradient (spatial mode, individual gradients) and for all
gradients and geometric constraints considered together
(spatial model, all gradients). Model selection (best model) for
multiple regressions (regression residuals were not affected
by spatial autocorrelation) was based on minimizing the
Akaike information criterion (AIC), with consideration of all
possible models. Beta (β) is the standardized regression slope 

for each factor in the best model
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model that considered all gradients together. Geomet-
ric constraints entered in 4 models (1 beta not signifi-
cant) for interpolated richness and 3 models for
observed richness. In contrast, the species–area effect
seems to be much less important, entering only 3 mod-
els for interpolated richness and none for observed
richness. All environmental factors were important
contributors in all cases, the strength of the relation-
ships differing considerably depending upon the mea-
sure of species richness, but generally showed the
same tendencies. Examination of Moran’s I for dis-
tance-class residuals from the multiple regressions for
the models selected using the AIC did not show sub-
stantial spatial autocorrelation. The condition number
for the matrices of explanatory variables were very low
(salinity model: 3.872; depth model: 4.912; temperature
model: 2.646; spatial model, all gradients: 6.213), indi-
cating that multicollinearity is not an issue for our
analyses, since all values are well below the level of
30 considered to indicate substantial collinearity
(Weisberg 1985).

DISCUSSION

The finding that a stochastic rearrangement of spe-
cies ranges on a bounded domain generates a pattern
in which species richness peaks at the middle of 1-
dimensional domains, declining towards the borders
following a parabolic curve, has repeatedly been
demonstrated for several geographic gradients (see
Colwell et al. 2004, Arita 2005). In the present paper,
we extended the use of MDE models to stress gradients
(in the sense of Chase & Leibold 2003), showing that a
random re-shuffling of empirical tolerance ranges
generated the characteristic parabolic pattern for 1-
dimensional MDE models. Overall, both geometric
constraints and environmental effects outweighed spe-
cies–area effects. For interpolated richness, MDE was
the most important contributor (spatial model, all
gradients), whereas temperature showed the largest
effect on observed richness. Interpolated richness,
however, may overestimate the presence of a species
in a given habitat, since species are often present in
unsuitable habitats and absent from suitable habitats
(Pulliam 2000), and, if unjustified, will inflate MDE
predictions (Grytnes & Vetaas 2002). Conversely,
observed richness may fail to detect a species in a par-
ticular place due to patchy distributions, insufficient
sampling, or simply random sampling error. Both kinds
of potential error must be taken into account when
analysing differences in empirical patterns emerging
from different measures of species richness. Interpo-
lated richness, however, does not affect species range
size, since species ranges were derived from empirical

observations and not from theoretical models. In this
vein, species ranges are more likely to have been
underestimated than overestimated. This is a conserv-
ative bias for MDE, as the overestimation of species
ranges increases the strength of the MDE predictions
(due to the disproportionate effect of species with large
ranges in the model outcome).

The degree to which the empirical data match the
MDE model and thus can be ascribed to ‘geometric
constraints’ is highly variable among studies (Pineda &
Caswell 1998, Colwell & Lees 2000, Colwell et al.
2004). Findings of certain hump-shaped patterns of
species richness documented across the depth gradi-
ent may be largely ascribed to a mid-domain effect
(Gage & Tyler 1991, Colwell & Lees 2000), whereas
other data sets do not fully meet the assumptions of the
null models (North Atlantic deep sea fishes; Kendall &
Haedrich 2006). In this vein, as suggested by Colwell
et al. (2004), MDE models are not null hypotheses to be
simplistically rejected or accepted. Thus, MDE should
be assessed on an equal statistical footing with other
candidate explanations for richness within the context
of multiple causality. In the present study, the same
multivariate data set displayed 3 different responses to
the gradients co-occurring at the study area; MDE was
conspicuous along the temperature gradient, but was
less important on the bathymetric gradient and almost
nil in the saline gradient.

Given the vast amount of space potentially suitable
for establishment of shallow-water species (Fig. 4a),
the species–area relationship seemed a plausible a pri-
ori hypothesis to explain this pattern, with conditions
that cover a larger spatial extent expected to support
more species than less common conditions. However,
this conjecture was not supported by the regression
analysis. Geometric constraints, on the other hand,
were found to be an important contributor to the
observed patterns. In general, there is some agree-
ment that the bathymetric increase in diversity within
the inner shelves is linked to a decrease in variability
of the environment (Boltovskoy 1981 as cited in Fortes
& Absalão 2004), favouring a higher species richness in
deeper waters. In support of this view, Fortes &
Absalão (2004) showed a positive relationship between
bathymetric range locations and the bathymetric gra-
dient for South Atlantic gastropods; this should lead to
a higher than expected species richness in deeper
areas. The apparent lack of concordance with our
study may be ascribed to the fact that we limited our
study to the well-sampled megagastropods (22 spe-
cies), whereas Fortes & Absalão (2004) studied a much
higher species number (4097 species), including both
large- and small-bodied gastropods. On the other
hand, the combination of higher productivity, warmer
temperatures and a full saline gradient may lead to a
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higher diversity in the shallower environments of our
study area.

The empirical distribution of both interpolated and
observed species richness along the saline gradient, on
the other hand, did not show the signature of MDE,
suggesting that strong deterministic factors may be
influencing the shape of the relationship between
species richness and salinity. Examination of patterns
showed a distinctly positive relationship of species
richness with salinity for values >29. This increase in
richness with salinity can be explained because lower
salinity also implies greater temporal variation as it is
associated with the estuarine regime operating at the
inner shelf. Environmental osmotic stress may be
affecting the number of species able to tolerate estuar-
ine conditions. In addition, areas with salinities rang-
ing from 30 to 35 occupied 78% of the available space
(Fig. 4b). This result suggests that a set of processes
(both physiological and ecological) may operate
together to determine the observed pattern. For the
distribution of species richness along the temperature
domain most of the observed variance is generated by
a pattern of ranges in relation to temperature that does
not differ substantially from random range placement
under geometric constraints set by fixed physiological
limits. We stress that this pattern is the statistical out-
come of deterministic evolutionary and ecological
processes at the level of individuals and populations
(Colwell & Lees 2000).

Finally, some methodological constraints must be
taken into account. The definition of a hard boundary
following Colwell & Hurtt (1994) is ‘a point beyond
which species ranges cannot extend’. Although mid-
domain models have now been extended to more ‘per-
meable’ boundaries (Connolly 2005), MDE curves are
nonetheless sensitive to their placement, so that cau-
tion must be exercised in defining domain limits. Two
implicit assumptions may lead to a failure in interpre-
tation of distributional data in defining domain limits.
The first is that the current distribution of a species is
representative of its basic habitat requirements; the
second is that these requirements remain relatively
invariant through time (Pearson & Dawson 2004). We
do not pretend to deal here with the uncertainty asso-
ciated with this issue, but it is an important caveat for
all the domains we have treated. To what extent the
empirical range distributions define the full extent of
the ‘realized’ species niche is difficult to ascertain. In
this context, identifying domain boundaries is often
difficult, as pointed out by McClain & Etter (2005).
These authors stated that randomly generated bathy-
metric species diversity patterns for gastropods,
bivalves and polychaetes in the North American Basin
differ significantly from the empirical patterns. They
also demonstrated how differences in assigned bound-

aries, the generating algorithms and distribution char-
acteristics (i.e. patchiness) influenced the output of the
null model. For our study, the boundaries for each
domain (temperature, salinity and depth) were set on
the basis of the maximum and minimum observed val-
ues. This, of course, does not imply that species ranges
cannot possibly extend further, at least for 1 of the 2
boundaries. While the absolute lower limits of the
domain (e.g. 0 m depth, 0 psu, 0°C) may constitute
truly ‘hard’ physiological boundaries to species distrib-
ution, upper limits are in some cases more relaxed, at
least within the domain examined. For example, our
maximum depth (800 m) was set on the basis of the
deepest oceanographic station monitored, but records
for some species indicate that their bathymetric distri-
bution may reach >1000 m depth. This discrepancy
may be seen as artificially biasing the bathymetric
range so the midpoint lies in a shallower position.
McClain et al. (2007) listed 3 approaches commonly
used for dealing with non-endemic species (i.e. species
whose ranges are only partially contained within the
analysed domain). These are: (1) exclude them entirely
from all analyses (Colwell & Lees 2000, Jetz & Rahbek
2001), (2) truncate the range at the domain edge and
treat the portion occurring within the domain as
endemic (Diniz-Filho et al. 2002, McCain 2003), and
(3) truncate the range at the domain edge and force
these non-endemic range fragments to remain at-
tached to a domain edge during randomization (Col-
well et al. 2004). Although Colwell et al. (2004) pointed
out that this decision does not strongly affect MDE
model fits to the data studied prior to their review,
McClain et al. (2007) suggested that this can affect the
general shape and magnitude of the predicted rela-
tionship. According to these authors, our approach will
produce stronger richness peaks than the third
approach. In the study model, however, the number of
non-endemic species in relation to depth ranges is pre-
sumably low. Salinity, on the other hand, rarely
exceeds 35 psu in the modern ocean, and, in this case,
the upper domain limit seems to be in agreement with
the hard boundary condition. To what extent these
uncertainties reduce the utility of the mid-domain
models, and the degree to which they are useful for
any given domain variable in any arbitrary set of
observations remain open questions.
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