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INTRODUCTION

Since the 1950s, purse-seine vessels fishing for yel-
lowfin tuna in the eastern tropical Pacific (ETP) have
utilized the association between tuna and certain trop-
ical dolphin species by encircling schools of dolphins
in order to capture the tuna swimming beneath them
(Perrin 1969). High mortality rates of encircled dol-
phins, particularly in the early years of the fishery
(Wade 1995), led to reductions in the abundance of
several dolphin populations (Smith 1983, Wade 1993)
and became known as the ‘tuna–dolphin issue’ (Ger-
rodette 2002). Two populations of dolphins have been
particularly affected by the fishery: the eastern spinner

Stenella longirostris orientalis (ES) dolphin and the
northeastern pantropical spotted Stenella attenuata
attenuata (NEPS) dolphin. Their abundances have
been reduced to an estimated one-third and one-fifth
of pre-fishery levels, respectively (Wade et al. 2007).
Consequently, these populations have been listed as
‘depleted’ under the US Marine Mammal Protection
Act (US Public Law 92-522). However, by the end of
the 1990s, due to a combination of regulations, embar-
goes, international agreements, scientific studies and
efforts by fishermen (Joseph 1994, Gosliner 1999, Hed-
ley 2001), reported dolphin bycatch (dolphins killed by
fishing operations) had fallen to <0.1% of estimated
population sizes (Bayliff 2004).
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In spite of the successful reduction in dolphin by-
catch, concerns over the impact of the repeated chase
and encirclement of dolphins by this fishery led the US
Congress to include additional scientific studies in the
1997 International Dolphin Conservation Program Act
(US Public Law 105-42). This law directed NOAA Fish-
eries to estimate current dolphin abundance and to
determine whether tuna fishing operations were hav-
ing a significant adverse impact on these populations,
including effects beyond direct mortality during the
chase and encirclement operation. Results reported
here are part of that effort. Previous research has
shown that 75 to 95% of lactating females killed in
purse-seines do not have their nursing calves with
them (Archer et al. 2001, 2004), that repeated chase
and encirclement could have negative physiological
consequences for individual dolphins (Reilly et al.
2005), and that neither of the 2 dolphin populations
considered here is recovering at the expected rate
since bycatch was greatly reduced (Gerrodette & For-
cada 2005, Wade et al. 2007).

The failure to recover at the expected rate may be
due in part to the cryptic (unobserved) mortality of
calves that occurs when nursing calves are separated
from their mothers during fishing operations (Archer et
al. 2001, Edwards 2006, Noren & Edwards 2007). The
swimming ability and stamina of young calves are infe-
rior to those of adults, and the number of sets on dol-
phins has been increasing over the past decade (Bayliff
2004). Besides cryptic effects of the fishery, ecosystem
changes, interspecific population dynamics effects,
and underreporting of dolphin bycatch are considered
further hypotheses for the lack of recovery (Gerrodette
& Forcada 2005, Wade et al. 2007).

Using medium-format aerial photography, we col-
lected and analyzed reproductive data for these
depleted populations between 1987 and 2003. Two
measures of reproductive output were estimated:
proportion of adult dolphins with calves (‘proportion
with calves’) and the body length at which calves dis-
associated from their mothers (‘length at disassocia-
tion’). As trends in proportion with calves’ values are
indicative of changes in calving interval and/or calf
survival rate, assessing trends in length at disassocia-
tion allowed us to determine whether changes in pro-
portion with calves could be attributed to changes in
calving interval.

Previous studies have assessed reproduction based
on dolphins killed by US-based purse-seine vessels in
the 1970s and 1980s (Perrin et al. 1976, 1977, Hender-
son et al. 1980, Perrin & Henderson 1984, Myrick et
al. 1986, Chivers & Myrick 1993). Direct information
on current reproduction is lacking, because vessels
from the USA no longer set on dolphins, and observers
on vessels which do set on dolphins, primarily from

Mexico, Ecuador, and Venezuela, do not collect bio-
logical samples from the dolphins killed. The present
study is the first to assess trends in reproduction for
these populations independently of fishery-derived
data, which are known to contain sampling biases
(Powers & Barlow 1979, Barlow & Hohn 1984).

MATERIALS AND METHODS

Aerial photography. Dolphin counts and measure-
ments were derived from medium-format (11.4 ×
11.4 cm) vertical aerial photographs of ES (Stenella
longirostris orientalis) and NEPS (S. attenuata attenu-
ata) dolphins collected between 1987 and 2003 during
the months of August to December. Photographs
were taken with 2 military reconnaissance cameras
mounted below the hull of a Hughes 500D helicopter.
The helicopter was carried aboard the NOAA research
vessel ‘David Starr Jordan’ as part of the population
surveys described above. Photographic sampling was
conducted when sun angle and sea conditions permit-
ted. Sampling occurred throughout the study area in
all years except for 2: sampling was concentrated in
the southern part of the species’ range in 1992 and in
the northern part of the range in 1993. One camera
was typically outfitted with a wide-angle lens and color
film for the purposes of counting as many animals as
possible in a school and of identifying them to species
and by swimming association type (‘Count data’
below). The other camera was typically outfitted with a
telephoto lens and high-resolution black and white
film to produce length measurements from individual
animals in a school (‘Measurement data’ below).

A series of photographic passes was made over the
dolphin school during which the cameras took overlap-
ping photographs at an approximate rate of 1.7 frames
s–1, resulting in 4 to 6 frames of each animal per pass.
Each pass was reviewed, and the pass that contained
the largest number of dolphins swimming parallel to
and near the sea surface was selected for analysis.
Individual frames taken from the highest quality pass
were analyzed under a magnifying scope mounted
above a light table in the laboratory. Approximately
80% of the photographic passes analyzed contained
>90% of the dolphins in a school. Further details of
photographic methods are described in Perryman &
Lynn (1993, 1994).

Count data. All clearly visible individual dolphins in
the selected photo pass were counted and scored
as engaged in either a mother–calf swimming forma-
tion or a non-mother–calf swimming formation. The
mother–calf swimming formation (Fig. 1) was identi-
fied by 2 criteria: (1) the presence of 2 animals of
unequal length, with the smaller dolphin (the ‘calf’)
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generally ≤0.75 the length of the larger dolphin (the
‘mother’) and (2) the closer proximity of the pair to one
another than to any other surrounding dolphins.
Calves were observed in 1 of 4 swimming positions:
(1) oriented on the same horizontal plane as the
mother, with the shortest distance between animals
located near the dorsal fin region of the mother (‘eche-
lon position’); (2) oriented below the mother, with
melon near the abdomen of the mother (‘infant posi-
tion’; Gubbins et al. 1999); (3) trailing behind the
mother; or (4) not associated closely with another non-
calf dolphin. Calves in the last position were very
rarely encountered.

All other types of swimming associations involving
adult-sized animals were classified as non-mother–calf
swimming formations. These were generally much
looser associations between individuals and included
various types of spatial arrangements between nearest
neighbors, although echelon-type swimming among
adults was also common. Dolphin pairs which were not
clearly visible in the images and for which we could
not determine with certainty the presence or absence
of a calf were excluded from the counts. Lone animals
which were not engaged in a distinct swimming asso-
ciation with another dolphin were assigned to adult or
calf categories based on their size relative to other
animals in the photograph, as discussed above.

For a subset of mother–calf and non-mother–calf
pairs, we measured nearest-neighbor distances to
quantify the difference between the 2 swimming asso-
ciations. Individuals who appeared to be engaged in

mating behavior or who were not part of a cohesive
subgroup of the school were not included in these
measurements.

Proportion with calves. For each school, the pro-
portion of dolphins associated with a calf was com-
puted as the ratio of calves/non-calves. As factors that
were easily measurable and would most likely have
the greatest impact on the observed proportion with
calves for each school, we considered: (1) year of the
photograph, (2) group size (total school size if single-
species school or number of animals of focal spe-
cies if mixed-species school), (3) species proportion
(proportion of individuals of focal species in the
school), (4) distance from shore, (5) multivariate El
Niño–Southern Oscillation (ENSO) index averaged
over all monthly values for that year (‘MEI’; Wolter &
Timlin 1993, 1998), and (6) number of purse-seine sets
on all dolphin species for that year (‘dolphin sets’;
Bayliff 2004). Distance from shore/MEI and dolphin
sets were included as indicators of effects of habitat
quality and fishing activity on dolphin reproduction,
respectively. Group size and species proportion were
included in the analyses so that the effects of school
composition versus habitat quality and fishing activity
on dolphin reproduction could be assessed. Including
the additional 5 factors beyond the year of the photo-
graph also allowed us to separate out their individual
effects on dolphin reproduction and the extent to
which each contributed to any observed temporal
trend in reproduction.

Group size and species proportion were usually esti-
mated by shipboard observers, but data from the aerial
photographs were used if the entire school had been
photographed. In a few cases, estimates by observers
in the helicopter were used when neither of the other
2 types of data was available. Shipboard observer
estimates were corrected for individual-observer bias
(Gerrodette et al. 2002).

Generalized additive models of the form y = a + Σi

si(xi) were used to estimate the effects of predictor vari-
ables x on the outcome variable y, the proportion with
calves for each dolphin school i. The functions s are
smooth functions of the predictor variables x, the sum-
mation is over the number of predictors, and a is a con-
stant. Additive models (Hastie & Tibshirani 1990) pro-
vide generality and flexibility in modeling (possibly)
nonlinear effects; models were fit with the gam func-
tion in S-Plus. For each analysis the default smoothing
spline method, a Gaussian error distribution, an iden-
tity link, and a weight (the number of sampled non-calf
dolphins in the school) were specified. Because a few
very large schools dominated the model fitting, we
restricted the analysis to schools of 600 dolphins or
fewer. This eliminated 6 of 88 ES and 3 of 124 NEPS
dolphin schools.
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Fig. 1. Stenella longirostris orientalis. Aerial photograph of
portion of eastern spinner dolphin school. Mother–calf pairs

are indicated by arrows
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Model selection was based on Akaike’s information
criterion (AIC) (Akaike 1973, Burnham & Anderson
1998). We manually explored models of single and
multiple predictors with up to 3 degrees of freedom
(nonlinearity). For both species, several different mod-
els, each with a single predictor, had similar lowest
AIC values. These single-predictor models did not,
however, lead to consistent predictor effects across
models, so model averaging of these single-predictor
models was not found to be a useful approach
(Schnute & Hilborn 1993). Instead, we focused on a
set of 5 models with several predictors whose effects
were non-zero and consistent regardless of which
other predictors were included. We considered this
set of models biologically plausible and used AIC to
rank and weight the relative influence of each model
to produce model-averaged results. Uncertainty was
estimated by resampling schools with replacement.
From 1000 bootstrap samples, 85% confidence inter-
vals were estimated by the 75th lowest and highest
values of each effect.

Measurement data. Dolphins swimming parallel to
and close enough to the sea surface so that both the tip
of the rostrum and straight edge of the flukes were vis-
ible were selected for measurement. Original black
and white film negatives were converted to digital for-
mat, and body length for each dolphin was measured
as the distance from the tip of the rostrum to the trail-
ing edge of the tail flukes using Image Pro Plus 4.0
software (Media Cybernetics, 1998). We followed the
procedures outlined in Perryman & Westlake (1998) to
convert image lengths to real lengths and to correct for
possible biases in measurements due to lateral tilting
of the helicopter. Biases in measurement originating
from errors in altitude measurement were avoided by
calibrating the radar altimeter readings at least once
every 3 wk throughout the photographic sampling
period (Gilpatrick 1996). Accuracy tests conducted on
dolphin-sized targets resulted in a standard error of
approximately 2 cm (Perryman & Lynn 1993).

Length at disassociation. For each animal mea-
sured, we also recorded whether it was a calf swim-
ming with its mother (the smaller animal in a
mother–calf association) or not. Generalized additive
models, as described above, were used to estimate
the probability that a calf would be associated with
an adult, as a function of length, year, MEI, and dol-
phin sets. MEI and dolphin sets were included as
indicators of effects of habitat quality and fishing
activity on length at disassociation, respectively, and
year was included to determine if temporal changes
in length at disassociation could be partially responsi-
ble for any observed changes in proportion with
calves. Since the outcome variable was binomial
(each calf associated with an adult or not), we used

logistic regression (logit link function and binomial
error distribution). Length at disassociation was
defined as the length at which the probability of
being in mother–calf formation was 0.5. Model-aver-
aged results and uncertainty were estimated using
the procedure described for analyses of proportion
with calves. Lengths were converted to ages using
updated, unpublished versions of published growth
curves for both ES (original: Perrin & Henderson
1984; updated: J. Larese unpubl. data) and NEPS
(original: Bright & Chivers 1991; updated: S. Chivers
unpubl. data) dolphins. Length to age conversions
were computed assuming there had been no change
in calf growth rates between the times when data
were collected from fishery kills for growth curves
(1972 to 1993) and for our study (1987 to 2003). Given
that population sizes for both species were relatively
constant during this period (Hoyle & Maunder 2004,
Gerrodette & Forcada 2005), no density-dependent
changes in calf growth rates would be expected.

Geographic bias. Tests for spatial clustering of: (1)
location of schools counted or measured, (2) proportion
with calves, and (3) mean calf length were conducted
to determine if the opportunistic (non-random) manner
of photographic sampling of schools resulted in a spa-
tial bias in the proportion with calves and length at
disassociation results. Comparison of expected and ob-
served nearest-neighbor distances were used to deter-
mine the degree to which schools were spatially dis-
tributed in a non-random manner. Moran’s I spatial
autocorrelation statistic (Moran 1950) was computed
to determine if the proportion with calves and mean
calf length by school were spatially distributed in a
non-random manner. These tests were performed
using ArcGIS 9.0 (ESRI, 2004).

RESULTS

Sample size and distribution

Dolphins were counted from photographs of 160
schools located throughout the geographic range of
both populations (Fig. 2). A total of 11 466 ES dolphins
from 88 schools and 9700 NEPS dolphins from 124
schools were counted (Table 1). The sum of the total
number of schools of each species exceeds the total
number of schools (160) because some schools con-
tained both species. A total of 1280 ES dolphins from
33 schools and 298 NEPS dolphins from 31 schools
were measured (Table 1). Due to a combination of
photographic quality, environmental conditions, and
dolphin swimming behavior, sometimes only one of the
species in a mixed-species school could be counted
and/or measured.
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Mother–calf swimming association

For both dolphin populations, the mean nearest-
neighbor distance was much smaller and less variable
for mother–calf pairs than for non-mother–calf pairs
(Fig. 3). The mean distance for mother–calf pairs was
14.3 cm (SE = 1.7 cm, n = 30) for ES and 36.6 cm (SE =
4.0 cm, n = 30) for NEPS dolphins. The mean distance
between non-mother–calf nearest neighbors was
171.5 cm (SE = 19.5 cm, n = 30) for ES and 109.3 cm
(SE = 18.7 cm, n = 30) for NEPS dolphins.

Proportion with calves

For ES dolphins, when considered as individual fac-
tors, year, school size, and distance from shore may

have some association with the proportion with calves.
The most parsimonious additive models included year,
school size, and species proportion as important pre-
dictors of the proportion with calves (Table 2A). The
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Fig. 2. Stenella longirostris orientalis and S. attenuata attenu-
ata. Locations of all eastern spinner (ES) and northeastern
pantropical spotted (NEPS) dolphin schools analyzed in the 

present study

Year ES dolphin NEPS dolphin
Counted Measured Counted Measured

Schools Animals Schools Animals Schools Animals Schools Animals

1987 8 489 1 34 18 1162 – –
1988 9 1568 7 632 7 700 3 45
1989 11 1254 4 186 10 851 2 60
1990 11 943 7 221 7 582 3 13
1992 8 2073 2 42 14 1134 8 80
1993 8 684 1 12 15 1718 8 63
1998 14 2320 – – 17 971 – –
1999 2 101 – – 8 272 – –
2000 8 1458 3 74 15 1459 3 19
2003 9 576 8 79 13 851 4 18
Totals 88 11466 33 1280 124 9700 31 298

Table 1. Stenella longirostris orientalis and S. attenuata attenuata. Summary of eastern spinner (ES) and northeastern pantropi-
cal spotted (NEPS) dolphins counted and measured from aerial photographs
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mother–calf pairs (hatched) and between individuals not in
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model-averaged estimated partial effects were a non-
linear decreasing effect for year, a linear increasing
effect for school size, and a linear decreasing effect for
species proportion (Fig. 4). Numerically, the estimated
proportion of adult dolphins with calves: (1) was
approximately constant from 1987 to 1993 at about
0.145, then declined to 0.111 by 2003; (2) increased
from 0.124 to 0.174 as school size increased from 8 to
541 dolphins; and (3) decreased from 0.166 to 0.116 as
the proportion of the school composed of ES dolphins
increased from 4 to 100%. The overall mean propor-
tion of ES dolphins with calves was 0.135—that is, on
average, about 14% of ES dolphins had a calf swim-
ming with them.

For NEPS dolphins, when considered as individual
factors, year, school size, species proportion, and dol-
phin sets may have some association with the pro-
portion with calves. The most parsimonious additive
models included year, school size, MEI, and dolphin
sets as important predictors of the proportion of dol-
phins with calves (Table 2B). The estimated partial
effects for year, school size, and dolphin sets were lin-
ear decreasing functions, while the effect for MEI was
convex (Fig. 5). Numerically, the estimated proportion
with calves: (1) decreased from 0.169 to 0.133 from
1987 to 2003, (2) decreased from 0.164 for a school size
of 15, to 0.118 for a school size of 456, and (3)
decreased from 0.182 to 0.131 when the number of dol-
phin sets increased from 7000 to 13 800. The propor-
tion of dolphins with calves was 0.156 for low MEI

values (La Niña conditions), and increased to approxi-
mately 0.168 for intermediate MEI values (normal con-
ditions). At the highest MEI values (El Niño condi-
tions), the proportion with calves decreased to 0.127.
The overall mean proportion with calves was 0.153—
that is, on average, 15% of adult NEPS dolphins had
a calf swimming with them.

Length at disassociation

For ES dolphins, body length was the most important
predictor of the probability of an individual being asso-
ciated with an adult. The model-averaging results in-
cluded a nearly linear effect for length and very small
numerical effects for year, MEI, and number of dolphin
sets (Fig. 6). The weak effects for these 3 predictor vari-
ables are due to their inclusion in only 1 or 2 of the 5
most parsimonious models (Table 3A). Length at disso-
ciation was estimated as 141.8 cm, or about 2 yr of age.

For NEPS dolphins, length was the most important
predictor of the probability of an individual being asso-
ciated with an adult, modeled as a linear effect (Fig. 7).
Number of dolphin sets had a smaller, but important
effect, and MEI had a very weak effect. Length at
disassociation decreased with number of dolphin sets,
from 167 cm (~6 yr) with about 7000 sets in 1993
to 140 cm (~3 yr) with nearly 14 000 sets in 2003
(Fig. 8).

Geographic bias

As anticipated, schools were spatially clustered for
ES dolphins (observed/expected nearest-neighbor dis-
tance = 0.68, p < 0.01) and NEPS dolphins (observed/
expected nearest-neighbor distance = 0.64, p < 0.01).
However, values of the proportion with calves were
not spatially clustered for ES dolphins (Moran’s I:
expected = –0.01, observed = –0.03, p > 0.1) nor for
NEPS dolphins (expected = –0.01, observed = –0.01,
p > 0.1). Similarly, average calf length was not spatially
clustered for ES dolphins (expected = –0.01, observed
= 0.03, p > 0.1) nor for NEPS dolphins (expected =
–0.01, observed = 0.00, p > 0.1).

DISCUSSION

Proportion with calves

The proportion with calves in a population is a
potentially complicated function of all vital rates
(Goodman 1984). Given the relatively constant popula-
tion sizes during the period of study, the proportion
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Term in model AIC
Year Group size Proportion Distance MEI Sets

ES dolphin
2 1 1 30.68
2 1 1 1 32.41
2 1 1 1 32.47
2 1 1 1 32.64
2 1 1 1 1 34.21
2 1 1 1 1 34.37
2 1 1 1 1 34.38
2 1 1 1 1 1 36.13
NEPS dolphin
1 1 2 1 48.97
1 1 1 1 49.16
1 1 1 2 1 50.79
1 1 1 2 1 50.95
1 1 1 1 2 1 52.76

Table 2. Stenella longirostris orientalis and S. attenuata atten-
uata. Model structure for additive models of the proportion
with calves for: eastern spinner (ES) and northeastern
pantropical spotted (NEPS) dolphins. Term in model: data
are dfs for each term—1: linear model, 2: an additional non-
linear df. For each species, the selected model is listed
first. AIC: Akaike’s information criterion; MEI: multivariate 

ENSO index
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with calves can be interpreted as a general index of
reproductive output. A decrease in proportion with
calves could be caused by a decrease in birth rate, a
decrease in calf survival, or both, but is not likely to
result from a change in calf growth rate (as discussed
in ‘Length at disassociation, Materials and methods’).

The relationship between species proportion and
group size and proportion with calves differed be-
tween the 2 species. Both commonly form mixed-
species schools in the ETP, but not with equal fre-
quency. While 79% of ES dolphins sighted occurred
in mixed-species schools, only 56% of NEPS dolphins
did. For ES dolphins, proportion with calves increased
with group size and proportion of the school composed
of NEPS dolphins (Fig. 4). For NEPS dolphins, propor-
tion with calves decreased with group size and was not
affected by species composition of the school (Fig. 5).
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Term in model AIC
Length Year MEI Dolphin sets

ES dolphin
3 1 209.56
2 1 209.60
2 210.44
2 1 212.43
2 1 212.43
NEPS dolphin
1 2 1 101.97
1 1 103.28
1 1 109.98
1 2 111.21
1 111.57

Table 3. Stenella longirostris orientalis and S. attenuata atten-
uata. Model structure for additive models of the length at calf
disassociation from mother for: eastern spinner (ES) and
northeastern pantropical spotted (NEPS) dolphins. Term in
model: data are dfs for each term—1: linear model, 2: addi-
tional nonlinear df. For each species, the selected model is
listed first. AIC: Akaike’s information criterion; MEI: multi-
variate ENSO index; 1: linear model; 2: additional linear df;

3: two additional nonlinear dfs
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As species proportion had a greater effect on propor-
tion with calves for ES dolphins than for NEPS dol-
phins, mothers and calves from the former may benefit
more from forming interspecific associations than
mothers and calves from the latter. In the majority of
mixed-species schools, NEPS dolphins were located
primarily in the front and periphery of the school (K. L.
Cramer pers. obs.), suggesting ES dolphins may re-
ceive some form of protection by associating with the
larger-bodied NEPS dolphins. Similarly, ES mothers
and calves may benefit more from overall larger school
sizes (possibly enhanced by the presence of NEPS
dolphins) than NEPS mothers and calves.

The schools sampled in the photographs are ephe-
meral groupings of individuals, variable in space and
time due to the fission–fusion type herding behavior
typical of pelagic and semi-pelagic dolphin species
(Norris & Dohl 1980, Norris & Johnson 1994, Scott
1998, Chivers & Scott 2002, Ward 2005). Therefore,
although school size and species proportion are statis-
tical predictors of proportion with calves, we do not
interpret them as determinates of reproductive output.
Rather, mothers with calves tend to be associated with
groups of certain sizes and species proportions. The
mean school size for these populations observed dur-
ing abundance surveys was about 100 dolphins, but
can range from a few animals to several thousand
(Gerrodette & Forcada 2005). Therefore, relevant
demographic units are probably groups that are much
smaller than observed schools (Norris & Johnson 1994).

While proportion with calves was related to MEI
–values for the NEPS dolphin, it was not for the ES dol-
phin. Both species are associated with warm tropical
surface waters and areas with shallow and strong
thermoclines. However, ES dolphins are more strongly
linked with low-productivity, warm surface waters
than NEPS dolphins (Reilly & Fiedler 1994, Fiedler
2002). The greater affinity of ES dolphins to waters
with physical characteristics similar to those present
during El Niño conditions may explain why reproduc-
tive output in this population is less affected by ENSO-
generated environmental changes.

Length at disassociation

Length at disassociation, as measured in the present
study, can be viewed as a proxy for age at weaning. It
is inversely related to birth rate because delphinid
calves generally tend to stay closely associated with
their mothers until the next pregnancy or birth (Herz-
ing 1997, Mann et al. 2000) or, if the calf dies before it
is weaned, until its death. The negative relationship
between length at disassociation and number of dol-
phin sets for NEPS dolphins could be interpreted as a

decrease in age at weaning from either increased birth
rate or increased calf mortality rates concomitant with
an increasing number of dolphin sets. The absence of a
temporal trend in length at disassociation for either
species means that the decline in proportion with
calves over time is not due to changes in calving inter-
val. Thus, the temporal decline in proportion with
calves is attributed to increased calf mortality, de-
creased birth rate, or a combination of the 2.

The age distribution of NEPS calves measured sug-
gests this population is experiencing depressed repro-
ductive output relative to the ES population. There was
a relative dearth of very young NEPS dolphin calves
sampled in the length at disassociation analysis: only
17% of NEPS dolphin calves sampled were <2 yr old
(<126 cm; S. Chivers unpubl. data) (Fig. 6) compared to
85% of ES dolphins (<144 cm; J. Larese unpubl. data)
(Fig. 7). Fewer young calves could be a result of
decreased birth rate and/or increased calf mortality.
While the small number of very young NEPS dolphins
measured could be an artifact of the species’ darker
body coloration making them harder to detect than ES
dolphins, the swimming behavior of very young calves
make this explanation unlikely (see ‘Potential sam-
pling biases’).

For both species, lengths and ages at calf disassocia-
tion estimated in the present study exceeded lengths
and ages at weaning estimated from fishery data.
Archer & Robertson (2004) estimated length at wean-
ing for data including NEPS, as well as the western-
southwestern stock of NEPS dolphins (Dizon et al.
1994) by analyzing calves killed in tuna purse-seine
nets. This estimate, defined as the length at which
there was a 0.5 probability of finding milk in a calf’s
stomach, was 122 cm (roughly 2 yr for the NEPS dol-
phin; S. J. Chivers unpubl. data). Henderson et al.
(1980) estimated ages at weaning of 11 mo for ES dol-
phins and from 1.7 to 2.9 yr for NEPS dolphins, based
on the distribution of calf lengths and number of lactat-
ing females in the kill. In comparison, the length at dis-
association analysis determined that both ES and
NEPS dolphin calves were weaned at older ages, at
roughly 2 yr and from roughly 3 to 7 yr, respectively.
The age at weaning estimates from fishery data are
probably underestimates, as calves are under-repre-
sented in the kill (Archer et al. 2001). The stomach con-
tents analysis is further biased downwards due to the
difficulties associated with detecting milk in a calf’s
stomach (Oftedal 1997, Best 1999). As both wild and
captive delphinid calves have not been observed asso-
ciating with their mother post-weaning (Herzing 1997,
Mann et al. 2000), the length at disassociation can be
interpreted as length (age) at weaning. In fact, the
length at disassociation estimates for NEPS are similar
to ages at weaning estimates from those longitudinal
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behavioral studies of wild Atlantic NEPS dolphin
calves, which were observed nursing until age 3 to 4 yr
on average (Herzing 1997).

Potential sampling biases

Conditions such as glare from the sun, vertical over-
lap of dolphins, and water surface disturbances re-
sulted in up to 70% of the animals photographed in
some schools being excluded from analysis. This could
possibly lead to sampling biases in the proportion with
calves and length at disassociation analyses. Calves
older than 2 wk and up to a year swim oriented below
the mother in the so-called ‘infant position’ the major-
ity of the time, at least in bottlenose dolphins (Gubbins
et al. 1999, Mann & Smuts 1999). Calves would proba-
bly be less likely to be detected in this position, and
could result in a negative bias in the proportion with
calves counted and/or in the length (age) distribution
of calves measured.

Multiple factors suggest that sampling biases were
minimal. Mother–calf pairs probably spend more time
near the surface than other dolphins, making them
more likely to be counted and measured. In addition,
many of the schools photographed were traveling at
high speeds to evade the research vessel and/or heli-
copter. Because dolphins respire more frequently
when running than when resting, and swimming in
infant position increases the distance traveled to take a
breath at the surface, infant-position swimming would
be reduced in these schools (Weihs 2004). Although
not all of the calves counted could also be measured, a
length bias within the sample of calves measured is
unlikely.

Implications for the tuna–dolphin issue

Assessment models (Wade et al. 2007) estimate that
NEPS dolphins are at 19% and ES dolphins at 29% of
their pre-1959 abundance levels, the year that the yel-
lowfin tuna purse-seine fishery began setting on dol-
phin schools. Given these reduced population sizes
and the current low level of reported dolphin bycatch,
recovery of both populations would be expected, but
has not yet occurred (Gerrodette & Forcada 2005).
Wade et al. (2007) tested hypotheses of fishery effects
and habitat changes for the lack of recovery, but came
to no clear conclusions based on reported bycatch and
estimated dolphin abundance data. Similarly, using
aerial photographic data, we modeled the effects of
habitat change (as summarized in annual values of the
multivariate ENSO index MEI) and fishing effort (as
summarized by the annual number of total dolphin

sets) on 2 measures of reproductive output, the propor-
tion of adults with calves and calf length at disassocia-
tion from its mother. The proportion of NEPS dolphins
with calves was affected by MEI. Although interesting
in its own right, a response in reproductive output to
ENSO conditions does not address the possible role of
long-term ecosystem changes in the lack of recovery of
this species, as ENSO cycles are a normal feature of
the ETP environment.

However, the effect of dolphin sets on both measures
of reproduction for NEPS dolphins demonstrates that
the practice of setting on dolphins has population-level
effects beyond the direct kill recorded by observers on
fishing vessels. The decline in proportion with calves
and increased length at disassociation with number of
dolphin sets could be caused by stress (Myrick &
Perkins 1995, Curry 1999, Reilly et al. 2005), increased
predation (Perryman & Foster 1980), separation of
mothers and calves (Archer et al. 2001, Weihs 2004,
Edwards 2006), or induced abortion (Perrin et al. 2003,
Chivers unpubl. data) resulting from the chase and
encirclement procedure. In retrospect, previous stud-
ies can be interpreted as showing negative relation-
ships between fishing activity and dolphin reproduc-
tive rates. Perrin & Henderson (1984) for ES dolphins
and Barlow (1985) and Chivers & Myrick (1993) for
NEPS dolphins interpreted their results as contrary
to density-dependent expectations: the more heavily
fished, and therefore more depleted, dolphin popula-
tions were expected to have higher reproductive rates
and younger ages at sexual maturity, but did not. How-
ever, their results, as well as ours, are consistent with
the hypothesis that the tuna purse-seine fishery has a
negative effect on dolphin reproduction.

Neither measure of reproductive output was related
to the number of dolphin sets for ES dolphins. It may be
that ES dolphins are less sensitive to the effects of fish-
ing. However, the available measure of fishing activity,
total annual number of dolphin sets, primarily reflects
trends in fishing activity on NEPS dolphins, since
approximately 90% of dolphin sets involve that species
(compared to 44% of sets for ES dolphins; Archer et al.
2002). Therefore, the reason that the number of dol-
phin sets was not a predictor for measures of reproduc-
tion for ES dolphins may simply be that the measure
did not adequately capture the effect of the fishery on
that species.

The temporal declines in dolphin reproductive out-
put (proportion with calves) estimated in the present
study are the proximate cause, or at least one of the
proximate causes, of the lack of recovery of both popu-
lations. However, the ultimate cause of these declines
is not clear. The temporal decline in proportion with
calves over and beyond that explained by the predictor
variables means that there are factors affecting repro-
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ductive output other than the ones we modeled. The
decline is not likely due to a density-dependent
response, as discussed above. The decline may be due
to some long-term ecosystem change, although no
such change has yet been identified (Fiedler 2002,
Reilly et al. 2005). The decline might also be due to
some effect of the fishery not captured by the simple
measure of annual total dolphin sets. An improved
analysis would use a stock-specific number of dolphin
sets and have greater spatial and temporal resolution
of fishing activity. If reproductive declines are due to
the effects of the fishery, it may then be possible
to identify specific times and/or areas where effects
are greatest and where management actions can be
targeted.

Any proposed changes in the management of the
yellowfin tuna fishery must consider that fishing meth-
ods that do not involve setting on dolphin schools
result in bycatch of other depleted marine organisms,
including billfish, sea turtles and sharks (Hall 1998,
Hinke et al. 2004). Modifications to fishing procedures
and gear and/or spatio-temporal restrictions on fishing
effort are tools that can be used to prevent the further
depletion of dolphin, turtle, and fish populations and to
move towards sustainable ecosystem-based manage-
ment of the yellowfin tuna fishery in particular and
ETP fisheries in general.
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