INTRODUCTION

Harmful algal blooms (HABs) are a regular occurrence on the west coast of South Africa, within the southern Benguela upwelling system, in late austral summer (February to April). HAB species in the Benguela include both high biomass producers, whose blooms can cause oxygen depletion and hydrogen sulfide production, and toxin producers, which are potential vectors of paralytic, diarrhetic and amnesic shellfish poisoning (PSP, DSP, ASP) (Pitcher & Calder 2000). PSP is typically attributed to *Alexandrium catenella* (Pitcher & Calder 2000), although a bloom of *A. minutum* in Cape Town harbour has recently been reported (Pitcher et al. 2007), indicating the potential threat posed by this species. In South Africa, DSP was first reported in 1991 on the west coast and attributed to *Dinophysis acuminata* (Pitcher et al. 1993b). *Dinophysis* spp. cell concentrations up to 4×10^5 cells l$^{-1}$ were recorded in March/April 2005 off Lambert’s Bay in association with okadaic acid (OA) concentrations of up to 0.4 µg l$^{-1}$ (Fawcett et al. 2007). Pseudo-nitzschia spp. (hereafter *Pseudo-nitzschia*) blooms also occur in the southern Benguela and were linked with high concentrations of domoic acid (up to...
3 µg l⁻¹) for the first time in March 2006 off Lambert’s Bay (Fawcett et al. 2007), although no cases of ASP have yet been reported.

The HAB taxa that occur in the southern Benguela also form blooms in the other eastern boundary upwelling systems. For example, *Dinophysis acuminata* and *D. acuta* blooms occur in the Iberian upwelling system (Reguera et al. 1993), blooms of *Pseudo-nitzschia pseudodelicatissima*, *P. australis* and *P. multiseries* occur in the California upwelling system (Buck et al. 1992, Adams et al. 2000, Trainer et al. 2001) and *Alexandrium catenella* blooms occur in the Humboldt (Avaria 1979) and California systems (Nishitani & Chew 1988). HABs around the South African coast are closely associated with the upwelling system, as they are generally restricted to the west of Cape Agulhas (Fig. 1) (Pitcher & Calder 2000). They are particularly frequent north of Cape Columbine, where the broad southern Namaqua shelf favours stratification (Fig. 1). Blooms tend to occur towards the end of the upwelling season (March to April), when reduced wind stress and increased thermal stratification favour dinoflagellates (Pitcher et al. 1993a). Within these periods, community succession is dictated by local wind patterns, whereby upwelling-favourable winds and a well-mixed water column tend to favour diatoms, whereas upwelling relaxation is conducive to dinoflagellate blooms (Fawcett et al. 2007) and can lead to their onshore advection (Pitcher & Boyd 1996, Pitcher et al. 1998). The persistence of stratified conditions, however, leads to a decline in biomass and a shift in community composition towards small flagellates, in particular coccolithophorids (Pitcher & Boyd 1996, Pitcher et al. 1998, Fawcett et al. 2007). The link between HABs, upwelling relaxation and onshore advection has also been reported for the Iberian (Tilstone et al. 1994) and Californian (Trainer et al. 2002) upwelling systems.

According to Margalef’s Mandala (Margalef 1978), the seasonal shift from diatoms in spring to dinoflagellates in summer occurs along a gradient of decreasing turbulence and nutrient availability. However, the ‘red tide sequence’ occurs under the anomalous combination of low turbulence/high nutrient conditions (Margalef et al. 1979), which fits with the apparent low affinity of dinoflagellates for nitrogen uptake relative to diatoms (Smayda 1997, Collos et al. 2005). However, HABs in upwelling systems tend to occur at the end of the upwelling season under stratified and nutrient-depleted conditions (Tilstone et al. 1994, Pitcher & Boyd 1996); therefore, they must have evolved adaptive strategies allowing survival under such conditions. In addition to the 4 adaptations suggested by Smayda (1997) (nutrient retrieval migrations, mixotrophy, secretion of allelochemicals and allelopathy), utilisation of recycled nitrogen sources may be significant in situations where ‘new’ nitrogen is depleted.

It has been hypothesised that diatoms may express a preference for nitrate (NO₃⁻) over ammonium (NH₄⁺) (Malone 1980), and several studies have shown that flagellates (Gilbert et al. 1982a, Probyn 1985) and dinoflagellates can be sustained by regenerated nitrogen, e.g. *Alexandrium catenella* in the Thau Lagoon, France (Collos et al. 2007) and HAB assemblages including *Dinophysis acuta* and *Gymnodinium catenatum* in the Iberian upwelling system (Rios et al. 1995). However, laboratory studies have shown preferences for either NO₃⁻ or NH₄⁺ (as shown by parameters of nutrient uptake kinetics for NO₃⁻ and NH₄⁺) in both diatom and dinoflagellate species (Dortch 1990). Furthermore, the nitrogen status of the cell can influence its preference for either form of nitrogen (Collos & Slawyk 1979) or its ability to compete for a specific nutrient (Riegman et al. 1996). *Pseudo-nitzschia* blooms on the United States West coast have been attributed to either elevated NO₃⁻ (Horner et al. 2000, Marchetti et al. 2004) or NH₄⁺ concentrations (Trainer et al. 2007). Field populations of *P. australis* from Cali-
fornia were found to grow equally well on NO$_3^-$, NH$_4^+$, or urea (Howard et al. 2007); however, P. australis cultures exhibited lower growth rates supported by urea relative to NO$_3^-$ and NH$_4^+$ and a preference for NO$_3^-$ (higher maximum uptake rates v_{\max} and lower half-saturation constants K_s) relative to recycled nitrogen forms (Cochlan et al. 2008).

We hypothesise that the success of HAB species in the southern Benguela at the end of the upwelling season could be attributable to their ability to utilise alternative nitrogen sources or to their high affinity for NO$_3^-$ under low NO$_3^-$ conditions.

To test this hypothesis, regular measurements of nitrogen uptake rates (NO$_3^-$, NH$_4^+$ and urea) were performed in conjunction with hydrographic and other biological measurements during ~3 wk sampling periods in 2006 and 2007 off Lambert’s Bay on the West coast of South Africa. In addition, experiments in nutrient uptake kinetics were performed during blooms of *Pseudo-nitzschia*, *Alexandrium catenella* and *Dinophysis acuminata*.

MATERIALS AND METHODS

Sampling. Sampling was carried out between 7 and 23 March 2006 and between 20 March and 11 April 2007 at the same station, 3.5 km off Lambert’s Bay (32° 05.020’ S, 18° 16.010’ E; Fig. 1) in ~50 m water.

Vertical profiles of temperature and fluorescence were established using a Seabird Electronics Seacat CTD coupled with a Wetstar fluorometer. Discrete water samples were taken daily from 5 depths (0, 5, 10, 15, 20 m) for chlorophyll a (chl a) analyses. Samples for 15N incubations were taken at 2 depths: at the surface (0 m) and a subsurface depth that was 5 m on all dates in 2007 and on most dates in 2006, except for 10 and 11 March 2006 where it was 10 m. Samples for phosphate (PO$_4^{3-}$), silicic acid [Si(OH)$_4$, hereafter Si], nitrite (NO$_2^-$), NO$_3^-$, NH$_4^+$ and urea concentrations were taken only at 2 depths in 2006, but at all 5 depths in 2007. Phytoplankton counts were performed on surface samples only. All water was collected using 5 l Niskin bottles and transported ashore in dark containers within 1 h of collection. Incubations and nutrient and chl a analyses were performed ashore in Lambert’s Bay, whereas the more time-consuming analyses (e.g. NH$_4^+$ recovery and mass spectrometry) were carried out at a later date either in Cape Town or Southampton (UK). Wind data were obtained from a weather station exposed to maritime wind conditions, situated at 97 m altitude and 8.5 km from the sampling station (South African Weather Service).

Statistical data analysis. Where comparisons were made between groups of data (e.g. 2006 vs. 2007), Student’s t-tests were applied, provided that variances within each group were not significantly different (as determined by a 2-tailed F-test). Paired t-tests were used for comparing simultaneous surface and subsurface measurements or measurements of different parameters made on the same water sample. The non-parametric Mann-Whitney U-test was employed when variances were significantly different. The level of confidence used to determine significance was 95% ($p < 0.05$); therefore, the p-value is only shown when higher levels of confidence were achieved.

Nutrients. All nutrients were determined manually within 2 h of collection after filtration through 25 mm Whatman GF/F filters. NO$_3^-$ concentrations were determined colourimetrically after reduction to NO$_2^-$ on a cadmium column and corrected for ambient NO$_2^-$ (Nydahl 1976). Concentrations of Si, PO$_4^{3-}$, NH$_4^+$, NO$_3^-$ and urea were measured following Grasshoff et al. (1999) and scaled to 5 ml sample volumes.

Chl a and phytoplankton concentrations. Water samples (100 ml) collected for the determination of chl a concentrations were filtered onto 25 mm Whatman GF/F filters, ground and extracted in 9 ml of 90% acetone for at least 24 h at ~20°C in the dark, then centrifuged for 10 min. Duplicate measurements were carried out in association with nutrient uptake incubations. Fluorescence was determined using a Turner Designs 10-AU fluorometer calibrated with commercial chl a (Sigma). Fluorescence readings were taken before and after acidification with 2 drops 10% HCl to correct for phaeopigments (Parsons et al. 1984).

Phytoplankton samples (100 ml) were preserved in 2.5% buffered formalin and counted using inverted microscopy (Utermöhl 1958). Identification was to species level where possible. Three species of *Pseudo-nitzschia* were enumerated, including *P. australis* and 2 unidentified species. The most abundant of these 2 (*Species 1*) had an apical axis of 38 µm (±6 µm, n = 20) and a transapical axis of 3.4 µm (±0.6 µm, n = 20). *Species 2* only represented 0 to 16% of the total *Pseudo-nitzschia* concentrations and was a small species with a transapical axis of <3 µm. For the experiments in nutrient uptake kinetics, biomass estimates were made to determine the dominance of *Pseudo-nitzschia*, *Alexandrium catenella* and *Dinophysis acuminata* in the 3 experiments, respectively. Cell volumes were calculated from cell measurements and stereometric shapes (Hillebrand et al. 1999). Biovolume-to-carbon conversions were then applied following the equations of Menden-Deuer & Lessard (2000):

$$\text{Dinoflagellates: } C_{\text{cell}} = 0.760 \times V^{0.819} \quad (1a)$$

$$\text{Diatoms: } C_{\text{cell}} = 0.288 \times V^{0.811} \quad (1b)$$

where C_{cell} is cellular carbon content (pg C cell$^{-1}$) and V is cell volume (µm3).
Due to the low number of species in these experiments and their consistent cell sizes, these estimates were considered to be robust.

Multivariate analyses were performed on the count data using PRIMER (V. 5). Between-station similarities were calculated using the Bray–Curtis similarity index based on standardised cell concentrations after square root transformation. The similarity matrices obtained were then used to perform cluster analyses and multidimensional scaling (MDS). The last station in 2007 was distinct from all others at the 60% similarity level in the cluster analysis. Since the objective was to identify similarities within clusters of stations, it was excluded from the MDS analysis. Similarity percentage (SIMPER) analysis was performed on standardised count data after square root transformation, to determine species’ contribution to similarity within the clusters identified at the 60% similarity level. The Shannon diversity index (Shannon 1948) was calculated (using PRIMER) from:

\[
H' = -\sum_{i=1}^{S} p_i \ln p_i
\]

where \(S \) is the number of species and \(p_i \) is the proportion of each species \(i \) relative to total phytoplankton abundance.

Nutrient uptake. Standard nutrient uptake incubations: Two 1 l and one 2 l water samples taken from the surface and subsurface were dispensed into Nalgene polycarbonate bottles. The 1 l samples were inoculated with stock solutions of 1 mmol 15N l–1 (Prochem, BOC), as either K15NO3 (99.6 at.%%) or CO(15NH2)2 (99.1 at.%), whereas the 2 l sample was inoculated with 15NH4Cl (99.7 at.%). Aqueous enrichments after spike addition were, on average, 23.1% (±19.7%) in 2006 and 21.4% (±16.3%) in 2007. Samples were incubated in Perspex incubation tubes for 3 h (generally starting between 11:15 and 12:00 h) at simulated in situ temperatures (11 to 17°C) and irradiances (50% shading was achieved with neutral density filters [Lee] for the subsurface samples). Incubations were terminated by filtration onto 47 mm precombusted GF/F filters (Whatman), which were then rinsed with artificial seawater and dried (75°C, overnight). Between 5 and 10 small (5 mm diameter) discs were punched out of each filter, depending on the amount of material present, and pelleted into tin capsules (Pellican Scientific 5 × 9 mm).

Isotopic composition and particulate nitrogen (PN) concentrations were determined on a GV Instruments IsoPrime stable isotope mass spectrometer interfaced with a EuroVector Euro EA elemental analyser.

Uptake rates were calculated from Eqs. (1) to (3) of Dugdale & Wilkerson (1986), corrected for isotopic dilution of 15NH4+ by regenerated 14NH4+ according to Glibert et al. (1982b).

Filtrates from the start and end of each incubation were returned frozen to the Marine & Coastal Management laboratory in Cape Town, where aqueous NH4+ was recovered by diffusion onto ashed and halved 25 mm GF/F filters (Probyn 1987) with KHSO4 as the trapping agent. Filters were processed and analysed in the same way as the 15N uptake samples to determine aqueous enrichment at the start (\(R_0 \)) and end (\(R_t \)) of the incubations.

Nutrient uptake kinetics: On 16 March 2006, an experiment was undertaken on a sample from 5 m water depth dominated by *Pseudo-nitzschia* (80% total estimated phytoplankton carbon biomass, ~57% of...
which was *P. australis*. In 2007, experiments were undertaken on surface samples dominated by *Alexandrium catenella* (77%) on 21 March and by *Dinophysis acuminata* (91%) on 8 April.

Subsamples were dispensed from a 5 l sample into eighteen 250 ml bottles (rinsed with sample water) and spiked with different volumes of 10% enriched KNO₃, NH₄Cl and urea solutions (1 mmol N l⁻¹). Ambient concentrations are shown in Table 2 and nutrient additions were as follows (mean ± SE, n = 3): 0.19 (0.11), 0.48 (0.27), 1.99 (1.55), 4.85 (2.66), 8.73 (3.25) and 20.16 (3.65) µmol N l⁻¹ for NO₃⁻; 0.13 (0.04), 0.28 (0.06), 0.63 (0.20), 2.13 (0.04), 5.32 (0.11) and 19.58 (2.14) µmol N l⁻¹ for NH₄⁺; and 0.13 (0.04), 0.28 (0.06), 0.63 (0.19), 2.15 (0.06), 5.39 (0.15) and 16.90 (2.68) µmol N l⁻¹ for urea. The aqueous enrichment was <10% at the lowest concentrations, which was sometimes problematic when the ambient nutrient concentration was high (see ‘Results’). Replication and a greater number of treatments (particularly in the range of subsaturating concentrations) would have been preferable; however, this was not possible due to logistical constraints. Notwithstanding these shortcomings, the r² values obtained for the regressions (0.88 to 1.00) and the p-values for the parameters (Table 3) provide confidence in these estimates.

Samples were incubated for 3 h under surface temperature and light conditions, then filtered onto 25 mm precombusted GF/F filters. The proportion of added 15N incorporated into the particulate phase during the incubations ranged from 18 to 52% (Expt 1), 37 to 55% (Expt 2) and 6 to 23% (Expt 3) at the lowest nitrogen addition; therefore, substrate depletion was not an issue. Samples were analysed in the same way as the standard uptake samples, except that no correction was made for isotope dilution in the NH₄⁺ experiments. According to Dugdale & Wilkerson (1986), this should only be problematic (i.e. lead to an overestimation of K_s) for incubation lengths >6 h.

Plots of nutrient uptake versus concentration were fitted to the Michaelis–Menten equation (Dugdale 1967) by iterative, non-linear least-squares regression (SigmaPlot, Jandel Scientific) such that:

$$
\nu = \frac{\nu_{\text{max}} S}{(K_s + S)}
$$

where ν is the particulate nitrogen (PN)-specific uptake rate (h⁻¹), ν_{max} is the maximum PN-specific uptake rate (h⁻¹), S is the substrate concentration (µmol N l⁻¹) and K_s is the half-saturation constant (µmol N l⁻¹). The initial slope of the curve α, used as an indicator of nutrient affinity at concentrations $<K_s$, was calculated from $\alpha = \frac{\nu_{\text{max}}}{K_s}$ (Healey 1980).

<table>
<thead>
<tr>
<th>Expt</th>
<th>Dominant species</th>
<th>Cell conc. (×10⁵ cells l⁻¹)</th>
<th>PON (µmol N l⁻¹)</th>
<th>Ambient conc. (µmol N l⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>NO₃⁻</td>
<td>NH₄⁺</td>
</tr>
<tr>
<td>1</td>
<td>Pseudo-nitzschia</td>
<td>7980</td>
<td>13.7</td>
<td>0.18</td>
</tr>
<tr>
<td>2</td>
<td>Alexandrium catenella</td>
<td>304</td>
<td>34.8</td>
<td>0.16</td>
</tr>
<tr>
<td>3</td>
<td>Dinophysis acuminata</td>
<td>31</td>
<td>7.2</td>
<td>0.42</td>
</tr>
</tbody>
</table>

*a*Ambient concentration hindered estimation of the kinetics parameters

<table>
<thead>
<tr>
<th>PN specific</th>
<th>Expt</th>
<th>Dominant species</th>
<th>ν_{max} (×10⁻³ h⁻¹)</th>
<th>K_s (µmol N l⁻¹)</th>
<th>α (×10⁻³ h⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NO₃⁻</td>
<td>NH₄⁺</td>
<td>Urea</td>
<td>NO₃⁻</td>
</tr>
<tr>
<td>1</td>
<td>Pseudo-nitzschia</td>
<td>15.0 (0.4)*</td>
<td>18.0 (0.3)*</td>
<td>4.9 (0.3)*</td>
<td>1.21 (0.15)*</td>
</tr>
<tr>
<td>2</td>
<td>Alexandrium catenella</td>
<td>n.d.</td>
<td>14.9 (0.8)*</td>
<td>3.5 (0.2)*</td>
<td>n.d.</td>
</tr>
<tr>
<td>3</td>
<td>Dinophysis acuminata</td>
<td>3.5 (0.2)*</td>
<td>13.9 (0.2)*</td>
<td>6.2 (0.6)*</td>
<td>0.79 (0.26)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cell specific</th>
<th>Expt</th>
<th>Dominant species</th>
<th>ν_{max} (µmol N cell⁻¹ h⁻¹)</th>
<th>K_s (µmol N l⁻¹)</th>
<th>α (µmol N cell⁻¹ h⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NO₃⁻</td>
<td>NH₄⁺</td>
<td>Urea</td>
<td>NO₃⁻</td>
</tr>
<tr>
<td>1</td>
<td>Pseudo-nitzschia</td>
<td>0.02</td>
<td>0.03</td>
<td>0.01</td>
<td>1.21</td>
</tr>
<tr>
<td>2</td>
<td>A. catenella</td>
<td>n.d.</td>
<td>1.30</td>
<td>0.31</td>
<td>n.d.</td>
</tr>
<tr>
<td>3</td>
<td>D. acuminata</td>
<td>0.74</td>
<td>2.90</td>
<td>1.30</td>
<td>0.79</td>
</tr>
</tbody>
</table>

*a*Estimated from the mean of ν_{urea} at 4 saturating concentrations
In Expt 1, calculations of \(\nu_{\text{urea}} \) at the 2 lower urea concentrations were not reliable due to a high ambient concentration (1.7 \(\mu \text{mol N l}^{-1} \)), which resulted in very low enrichments (1 to 2\%) in these treatments; therefore, it was not possible to estimate \(K_s \) in this case. However, since no increase in \(\nu \) was observed at 4 concentrations between 2.7 and 17.0 \(\mu \text{mol N l}^{-1} \), \(\nu_{\text{max}} \) of urea could be estimated from the mean of these 4 measurements. The ambient \(\text{NO}_3^- \) concentration in Expt 2 was very high (16.9 \(\mu \text{M} \)); therefore, no estimate could be made for either \(K_s \) or \(\nu_{\text{max}} \) of \(\text{NO}_3^- \).

Cell-specific maximum uptake rates (\(\mu \text{mol N cell}^{-1} \text{ h}^{-1} \)) were estimated from:

\[
\nu_{\text{max(cell)}} = \nu_{\text{max}} \times \frac{\text{PN}}{n}
\]

where PN is the estimated nitrogen biomass (\(\mu \text{mol N l}^{-1} \)) of the dominant species (total PN \(\times \) % dominance) and \(n \) is the cell concentration of the dominant species (cells l\(^{-1}\)). The dominance of the species of interest was never 100\%; therefore, these conversions to cellular \(\nu_{\text{max}} \) are only estimates. Given the high proportion of the dominant species, we consider our calculations to be reasonable estimates that will allow us to make some inferences on the effect of cell size.

RESULTS

Hydrographic conditions

Temperatures in both years fluctuated (\(-11\) to \(17^\circ \text{C}\)) as cold (11 to \(12^\circ \text{C}\)) upwelling pulses alternated with warmer (14 to \(17^\circ \text{C}\)) relaxation/downwelling cycles.

In 2006, the sampling period was characterised on 3 occasions by surface warming (to \(16^\circ \text{C}\) on the first occasion, then \(14^\circ \text{C}\)), with a thermocline apparent at 5 to 10 m depth (Fig. 2a). In between these periods, upwelling pulses introduced colder (11 to \(12^\circ \text{C}\)) water to the surface and the water column was well mixed. Strong southerly winds corresponded to upwelling events and northerly or weaker southerly winds were concurrent with downwelling and stratification (Fig. 2c). Most of the sampling period was characterised by southerly winds, with the exception of 18 to 19 March. Southerly winds were strongest immediately after this period, when water temperatures were lowest (\(<11^\circ \text{C}\)) and the water column was very well mixed.

In 2007, recently upwelled water (\(-11^\circ \text{C}\)) was present at the surface at the start of the survey. Northerly winds prevailed until 23 March, allowing surface tem-
temperatures to warm to 14°C before wind reversal caused another pulse of upwelling to decrease surface temperatures to 11°C (Fig. 2b). Northerly winds then prevailed for most of the remaining period (Fig. 2d), and the water column became strongly stratified with surface temperatures increasing from 12 to 17°C over ~8 d and remaining between 16 and 17°C thereafter.

Nutrients

Similar patterns were observed in both years, with surface nutrients fluctuating between high concentrations (17 to 25 µM NO$_3^-$, 17 to 49 µM Si, 2 to 3 µM PO$_4^{3-}$) during the upwelling periods and very low concentrations (<0.8 µM NO$_3^-$, <4.0 µM Si, <1.2 µM PO$_4^{3-}$) during the stratified periods (Fig. 3). Overall, NO$_3^-$, PO$_4^{3-}$ and Si concentrations were significantly higher (119, 75 and 45%, respectively) in 2006 than in 2007 (Student’s t-test for NO$_3^-$ and PO$_4^{3-}$, Mann-Whitney U-test for Si, p < 0.01). On the other hand, NH$_4^+$ concentrations were, on average, 74% higher in 2007 than in 2006, although this difference was due to the presence of a few very high concentrations in 2007 and was not statistically significant. On average, urea concentrations were similar in both years.

NH$_4^+$ concentrations ranged from 0.1 to 1.5 µM at the surface and from 0.3 to 1.7 µM at the subsurface in 2006 (Fig. 3e,g), and from 0.1 to 4.2 µM at 0 m and from 0.05 to 4.4 µM at 5 m in 2007 (Fig. 3f,h). Concentrations were significantly higher (52%) at the subsurface than at the surface in 2006 (paired t-test); however, the difference (15%) was not significant in 2007.

Urea concentrations ranged from 0.2 to 1.0 µmol N 1$^{-1}$ at the surface and from 0.5 to 3.1 µmol N 1$^{-1}$ in the subsurface in 2006 (Fig. 3e,g) and from 0.2 to 1.3 µmol N 1$^{-1}$ at the surface and from 0.4 to 3.7 µmol N 1$^{-1}$ in the subsurface in 2007 (Fig. 3f,h). Concentrations in both years were significantly higher (250 and 254%, respectively) at the subsurface than at the surface (paired t-test, p < 0.01).

Chl a

In both years, chl a usually displayed a maximum at 5 to 10 m depth, although the highest concentration of 57 µg l$^{-1}$ in 2006 was measured at the surface (Fig. 4a,b). Maximum concentrations at 5 m were 44 µg l$^{-1}$ in 2006 and 64 µg l$^{-1}$ in 2007.

Generally, chl a concentrations increased during periods of stratification following wind reversal (Figs. 2 & 4a,b). However, in April 2007, the persistence of warm, stratified conditions led to a decline in chl a, which remained at <5 µg l$^{-1}$ for the last 10 d of the survey (Fig. 4b). In 2006, stratification did not persist for longer than 4 d and chl a concentrations were always >8 µg l$^{-1}$, whereas in 2007, concentrations dropped occasionally below 1 µg l$^{-1}$. Overall, chl a concentrations were significantly higher (98%) in 2006 than in 2007 (Student’s t-test, p < 0.01).

Phytoplankton community structure

In 2006, diatoms were always dominant, representing 96 to 100% of the total phytoplankton numerical abundance (Fig. 4c), whereas in 2007, dinoflagellate dominance (65% on 21 March, 100% on 4 to 5 and on 8 to 10 April), alternated with diatom dominance (71 to 100% on 20 and 22 to 25 March, on 29 March to 3 April and 6 to 7 April) (Fig. 4d). Cluster analysis performed on both years’ data combined revealed that, at the 60% similarity level, all 2006 stations clustered together, whereas the 2007 stations were divided into 4 clusters or assemblage types (Fig. 5).

In 2006, the dominant diatom species were *Pseudo-nitzschia* (up to 85%) and *Chaetoceros* spp. (up to 41%) (Fig. 4e), and these 2 taxa together were responsible for 96% of similarity between the 2006 stations (assemblage Type V; Table 1). *Pseudo-nitzschia ‘Species 1’* was the most abundant, representing 45 to 93% of the total *Pseudo-nitzschia* concentrations, followed by *P. australis* with 0 to 50%. The contribution of dinoflagellates was low (maximum 4% of the total cell concentration on 20 March), and these were composed mainly of *Prorocentrum micans*, *P. triestinum* and *Scripssiella trochoidea* (Fig. 4g).

In 2007, the dominant diatom species were *Skeletonema costatum* (28 to 85%), *Chaetoceros* spp. (8 to 93%) and *Pseudo-nitzschia* (2 to 30%) (Fig. 4f). These 3 taxa were collectively responsible for 76% similarity within assemblage Type III, whereas *Pseudo-nitzschia* spp. and *Chaetoceros* spp. alone were responsible for 83% similarity within Type IV (Table 1). The dominant dinoflagellate species was *Alexandrium catenella* at the start of the survey (48% cell concentration, 77% biomass on 21 March); however, the cluster that was characterised by *A. catenella* (Type I) was also defined by the presence of *S. costatum* (Table 1). *Gymnodinium* spp. were dominant on 4 to 5 and on 9 to 10 April (92 to 100% total cell numbers), and these stations formed assemblage Type II together with 8 April, which was numerically co-dominated by *Dinophysis acuminata* (44%) and *Gymnodinium* sp. (54%) (Fig. 4h), although in terms of biomass it was dominated by *D. acuminata* (91%).

The Shannon diversity index (H') was broadly related to the upwelling/relaxation cycles, with the highest values occurring in nutrient-rich, newly upwelled
waters (assemblage Types I, III & V) and the lowest occurring in nutrient-poor, stratified waters (Table 1).

Type I assemblages were associated with the lowest average temperatures, which were 9 to 29% lower than for the other types (these differences were significant in all cases except with Type V, as shown by either Student’s t-test or Mann-Whitney’s U-test), and with average NO$_3^-$ concentrations up to 2 orders of magnitude higher than those of the other types (Table 1). Type II was associated with the warmest temperatures and the lowest NO$_3^-$ concentrations (significantly different from all other types except IV). Types III and V occurred at intermediate temperatures and NO$_3^-$ concentrations (Table 1).
Nutrient uptake

Rates of nutrient uptake broadly followed the upwelling/relaxation cycles, where absolute nitrogen uptake (ρ_N) was dominated by $\rho_{\text{NO}_3^-}$ during upwelling and by $\rho_{\text{NH}_4^+}$ and ρ_{urea} during stratified, NO$_3^-$-depleted periods. On average, $\rho_{\text{NO}_3^-}$ was significantly higher (142%) in 2006 than in 2007, whereas $\rho_{\text{NH}_4^+}$ was significantly lower (17%, $p < 0.01$).

In 2006, $\rho_{\text{NO}_3^-}$ was 0.02 to 0.40 µmol N l$^{-1}$ h$^{-1}$ at the surface and 0.01 to 0.55 µmol N l$^{-1}$ h$^{-1}$ at the subsurface, whereas $\rho_{\text{NH}_4^+}$ was 0.04 to 0.15 at 0 m and 0.03 to
were observed between the different assemblage depths (paired t-test or Mann-Whitney’s U-test as appropriate) (Fig. 6b,d). Overall, f-ratios [= urea (paired t-test, p < 0.01)] was significantly higher (137%) than ρurea at both depths, and ρNH4+ was significantly (79%) higher than ρurea (paired t-test, p < 0.01).

In 2007, ρNO3– was particularly high for the Alexandrium catenella-dominated assemblage on 21 March (0.61 µmol N l−1 h−1 at the surface, 0.53 µmol N l−1 h−1 at the subsurface), but was generally low for the rest of the survey (<0.25 µmol N l−1 h−1 at the surface, <0.29 µmol N l−1 h−1 at the subsurface) (Fig. 6b,d). NH4+ uptake was <0.23 µmol N l−1 h−1 at the surface and <0.24 µmol N l−1 h−1 at the subsurface, and ρurea was <0.08 µmol N l−1 h−1 at the surface and <0.18 µmol N l−1 h−1 at the subsurface (Fig. 6b,d). Overall, ρNH4+ was significantly higher (137%) than ρurea at both depths (paired t-test, p < 0.001).

The alternating dominance of new (NO3–) and regenerated (NH4+ and urea) nitrogen uptake during the upwelling/downwelling cycles was reflected in the variable f-ratios [= ρNO3– / (ρNO3– + ρNH4+ + ρurea)] (Eppley & Peterson 1979)] of 0.11 to 0.84 at the surface and 0.10 to 0.80 at the subsurface in 2006 (Fig. 6e) and 0.06 to 0.87 at the surface and 0.03 to 0.79 at the subsurface in 2007 (Fig. 6f). Overall, f-ratios were significantly higher in 2006 than in 2007 (Student’s t-test, p < 0.01). There was a significant linear correlation with wind (previous day northward component) at both depths in 2006 (n = 26, p < 0.01) and in 2007, after removal of 21 to 22 March, which represented the unusual combination of high f-ratio and northerly wind (n = 28) (Fig. 7).

Some significant differences in ρN (as shown by Student’s t-test or Mann-Whitney’s U-test as appropriate) were observed between the different assemblage types. Type I had the lowest average ρNH4+ (2- to 3-fold lower than other types) and the highest ρNO3– (2- to 30-fold higher), although with only 2 measurements in that group it was not possible to prove the significance of these differences. Type II assemblages displayed on average 2.5-fold higher ρNH4+ than Type I and significantly lower ρNO3– than Types III, IV and V (3- to 18-fold). Consequently, Type II assemblages displayed significantly (3- to 7-fold) lower f-ratios than Assemblage Types III and V. Type III assemblages displayed 50% lower f-ratios than did Type V.

Nutrient uptake kinetics

Maximum specific uptake rates (vmax) for both Pseudo-nitzschia- and Dinophysis acuminata-dominated assemblages were higher for NH4+ than for NO3– (21 % and 4-fold, respectively) (Fig. 8, Table 3). For Pseudo-nitzschia, the estimate of vmax for urea derived from averaging urea at the 4 highest (saturating) concentrations was ~3-fold lower than vmax for NH4+ and NO3–. D. acuminata also displayed lower (2-fold) vmax for urea than for NH4+, but 2-fold higher than for NO3–. All 3 species displayed similar vmax for NH4+ (13.9 × 10−3 to 18.0 × 10−3 h−1), and Pseudo-nitzschia displayed a 5-fold higher vmax for NO3– than D. acuminata. On the other hand, D. acuminata displayed the highest vmax for urea, 27 and 77 % higher than for Pseudo-nitzschia and A. catenella, respectively.

On a per cell basis, vmax increased with size, from Alexandrium catenella to Dinophysis acuminata for NH4+ and urea, and was higher in D. acuminata than in Pseudo-nitzschia for NO3– (Table 3).

Half-saturation constants (Ks) were lowest for Dinophysis acuminata for all 3 nutrients and for urea in Alexandrium catenella (<1 µmol N l−1), whereas they were >1 µmol N l−1 for Pseudo-nitzschia and NH4+ in A. catenella (Table 3). Furthermore, Ks was higher for NH4+ than for NO3– in Pseudo-nitzschia, whereas the opposite was observed for D. acuminata; Ks was lower for urea than for NH4+ in A. catenella, whereas the opposite was observed in D. acuminata. These values are given for comparison with earlier studies that did not report α (the initial slope of the curve); however, the present study focussed on α-values as a measure of affinity.

Pseudo-nitzschia and Alexandrium catenella displayed little variability in α between N sources. On a nitrogen basis, α for NH4+ was ~2-fold higher for Pseudo-nitzschia than for A. catenella, but on a per cell basis, α was 1 order of magnitude higher for A. catenella (Table 3). The highest α-value was measured for NH4+ in Dinophysis acuminata and, on a per cell basis, the highest α-values were those measured for all nitrogen sources in D. acuminata.
DISCUSSION

Although the occurrence of HABs along the west coast of South Africa is clearly linked to wind forcing and water column stability (Pitcher et al. 1998, Probyn et al. 2000, Pitcher & Nelson 2006, Fawcett et al. 2007), little is known about the nitrogen nutrition of HAB species during upwelling/quiescent cycles.

The different assemblage types identified by cluster analysis could, to a certain extent, be linked with nutrient regime. For example, Type I (*Alexandrium catenella*/*Skeletonema costatum*) was associated with recently upwelled water, i.e. lower temperatures and generally higher NO$_3^-$ concentrations. Although Type V (*Pseudo-nitzschia*) assemblages appeared to be favoured by high NO$_3^-$ concentrations, they were still able to sustain their growth by utilising recycled nitrogen when NO$_3^-$ became limiting and occurred at temperatures ranging from 11 to 14°C. Types II (*Gymnodinium spp.*/*Dinophysis acuminata*) and IV (*Chaetoceros spp.*), on the other hand, were associated with warm, stratified conditions, low NO$_3^-$ concentrations and low f-ratios. Type III (mixed diatoms) was present under intermediate temperature and NO$_3^-$ conditions.

Alexandrium catenella

The *Alexandrium catenella* bloom was present before the start of our survey in 2007; therefore, we do not
know under which conditions it was initiated. However, it displayed a very high ρ_{NO_3} (0.61 µmol N l$^{-1}$ h$^{-1}$) and f-ratio (0.87), and the concentration of *A. catenella* cells dropped rapidly when NO$_3^-$ became depleted, indicating that high NO$_3^-$ concentrations would have been required to sustain this bloom concentration. Also, the second pulse of upwelling (25 March) reintroduced *A. catenella* cells, confirming the link between upwelling/high NO$_3^-$ and the presence of *A. catenella*. Although it became more abundant over the next 3 d, it then disappeared from the community, possibly because of competitive exclusion by diatoms but most likely due to alongshore (and to a lesser extent onshore) advection and decreasing NO$_3^-$ concentrations. *A. catenella* is known to form cysts in the Lambert's Bay area (Joyce & Pitcher 2004), and encystment can occur in response to nutrient starvation (Anderson et al. 1984), so its disappearance could be attributable to encystment and sinking in response to nutrient depletion. Nitrate uptake by the *A. catenella* bloom (measured on 21 March 2007) was the highest measured in both years, higher than the maximum measured rate in the Benguela for the period from 1983 to 1991 (Probyn 1992) and within the range (0.6 to 1.1 µmol N l$^{-1}$ h$^{-1}$) of theoretical maximum uptake rates calculated by Probyn (1992). Nitrate uptake was also higher than maximum values measured in the Californian, Peruvian and northwestern African upwelling systems (Dugdale et al. 1990). However, our maximum ρ_{NO_3} was only ~17% of that measured in the Ría de Ferrol within the Iberian upwelling system (Bode et al. 2005).

Studies of *Alexandrium catenella* blooms and cultures have yielded contradictory results with respect to their nitrogen requirements. For example, very high NO$_3^-$ requirements (>880 µM) (Siu et al. 1997) and high K_s for growth (3.3 to 7.7 µM) (Matsuda et al. 1999) have been measured in cultures of *A. catenella*. In the Mediterranean, blooms were associated with high NO$_3^-$ and NH$_4^+$ concentrations on the northeast Spanish coast (Bravo et al. 2008), whereas NH$_4^+$ and urea were the main nitrogen sources fuelling a bloom in the Thau Lagoon on the French coast (Collos et al. 2007). A similar dichotomy exists for *A. minutum*: a bloom in Cape Town harbour displayed extremely high $\rho_{\text{NH}_4^+}$ (up to 1.1 µmol N l$^{-1}$ h$^{-1}$) but very low ρ_{NO_3} (<0.05 µmol N l$^{-1}$ h$^{-1}$) (Pitcher et al. 2007), whereas the NO$_3^-$ requirement of an *A. minutum* bloom in the Penze Estuary (northwest France) was calculated at 184 µM, with an NH$_4^+$ requirement of only 25 µM (Maguer et al. 2004).
Measurements of ρ_N in the field provide limited information on nutritional preference because in upwelling systems, $\rho_{NO_3^-}$ increases as a ‘shift-up’ response to increased NO$_3^-$ concentrations supplied by upwelling (Dugdale et al. 1990, 2006). This is demonstrated in our study by the significant correlation between f-ratios and wind direction, used as an indicator of upwelling, hence NO$_3^-$ concentration (Fig. 7). Furthermore, the relative preference index (RPI, McCarthy et al. 1977) is also biased by ambient concentrations, particularly in upwelling systems where NO$_3^-$ can be much more abundant than NH$_4^+$ (Stolte & Riegman 1996). The parameters of uptake kinetics can provide valuable information on the nutritional preferences of a given species (Dugdale 1967, Dortch 1990) and the potential outcome of interspecific competition for nutrients (Eppley et al. 1969), although they too can vary in response to nitrogen starvation (MacIsaac & Dugdale 1969, Collos 1980) and to elevated ambient nitrogen concentrations (Caperon & Meyer 1972, Collos et al. 2005).

In our study, ν_{max} was at least 17% higher for NO$_3^-$ than for NH$_4^+$ (based on $\nu_{\text{NO}_3^-}$ measured at ambient concentration) and 5-fold higher than for urea, whereas α for NH$_4^+$ and urea were low, indicating that *Alexandrium catenella* was a poor competitor for those substrates at low concentrations ($<K_c$) measured during the bloom. In the Thau Lagoon, on the other hand, *A. catenella* displayed a preference for NH$_4^+$, as shown by higher ν_{max} and α for NH$_4^+$ than for NO$_3^-$ (Collos et al. 2004). Although ν_{max} in our study was 4- and 17-fold lower than that in the Thau for NH$_4^+$ and urea, respectively, K_c was also lower and as a result α was similar for NH$_4^+$ and 4-fold higher for urea in our study, indicating that *A. catenella* was a relatively poor competitor for low ambient nitrogen in both regions (including NO$_3^-$ in the Thau). The lower ν_{max} and K_c for NH$_4^+$ and urea in the Benguela could be a result of natural selection for low-nutrient-adapted cell lines (Doyle 1975) in an environment where NH$_4^+$ and urea concentrations are often <1 µmol N l$^{-1}$, whereas they can be as high as 8 and 4 µmol N l$^{-1}$ in the Thau (Collos et al. 2007).

Of the 5 studies carried out on HAB dinoflagellates in the upwelling systems presented in Table 4 (Kudela & Cochlan 2000, Kudela et al. 2008a,b), *Alexandrium catenella* in the present study was the only one that expressed a preference for NO$_3^-$ over NH$_4^+$, and its ν_{max} for NO$_3^-$ was higher than those of the other species. The ν_{max} of *A. catenella* for NH$_4^+$ was similar to that of *Akashiwo sanguinea*, which was the highest out of the 6 studies, although its α value for NH$_4^+$ was at the low end of the spectrum, indicating that it was a better competitor for NH$_4^+$ at high concentrations. On the other hand, *A. catenella* displayed low values for both ν_{max} and α for urea, indicating that it was a poor competitor for urea.
competitor for urea at both high and low concentrations. Higher v_{max} for NH_4^+ and similar (if not lower) v_{max} for NO_3^- and urea were measured in cultures of the raphidophyte *Heterosigma akashiwo* isolated from the California upwelling system (Herndon & Cochlan 2007) (Table 4). The higher α measured for *H. akashiwo* indicated that it was also a better competitor for NH_4^+ at limiting concentrations, which is consistent with the hypothesis that small flagellates express a preference for NH_4^+ (Gilbert et al. 1982a, Probyn 1985). Overall, *A. catenella* in the present study displayed characteristics typically attributed to diatoms.

Nitrate concentrations in the other studies were low; therefore, the higher v_{max} for NO_3^- in the Benguela could be explained by acclimation to a higher ambient concentration, which is mediated by an increase in the number of uptake sites on a cell’s surface (Caperon & Meyer 1972).

Temperature can also influence variability in the uptake kinetics of NH_4^+ and NO_3^-, whereby v_{max} and α for NH_4^+ are positively correlated with temperature and α for NO_3^- is negatively correlated with temperature (Lomas et al. 1996, Fan et al. 2003). The lower temperature in the Benguela compared to that in the other studies (Table 4) could contribute to lowering v_{max} and α for NH_4^+; however, the large differences in α for urea were due to other factors, since urea uptake is thought to be independent of temperature (Fan et al. 2003). In the latter case, interspecific differences were probably the most significant.

Pseudo-nitzschia

Pseudo-nitzschia Species 1 was dominant throughout the 2006 survey and present in very high concentrations ($>10^6$ cells l$^{-1}$ except on the last 3 d), whereas *P. australis* was less abundant, although reaching concentrations $>10^6$ cells l$^{-1}$ on several occasions and representing up to 50% of the total *Pseudo-nitzschia* cell numbers when total concentrations were lowest. Upwelling-induced high NO_3^- concentrations (>10 µM) supported high uptake rates, up to 0.40 µmol N l$^{-1}$ h$^{-1}$ at the surface, with maximum uptake ~30% higher than that measured in *Pseudo-nitzschia* populations in the Juan de Fuca eddy (Washington coast, USA) (Marchetti et al. 2004). Highest cell concentrations were reached during periods of wind relaxation/reversal, during which NO_3^- became depleted in the surface layer. *Pseudo-nitzschia* was able to maintain its population size (5×10^6 to 9×10^6 cells l$^{-1}$) and to remain dominant despite the depletion of NO_3^- and Si and the increase in dinoflagellate abundance. This could be due to the lower cellular nitrogen requirements owing to its smaller cell size relative to that of dinoflagellates, as predicted by the positive correlation between the minimum cell-specific nitrogen quota and cell volume (Aksnes & Egge 1991, Litchman et al. 2007). In addition, the ability to take up NH_4^+ (up to 0.15 µmol N l$^{-1}$ h$^{-1}$) would have increased its competitive advantage when NO_3^- became limiting.

PN-specific v_{max} was higher for NH_4^+ relative to both dinoflagellate species and for NO_3^- relative to *Dinophysis acuminata*, although, on a per-cell basis, v_{max} was lower relative to the dinoflagellate species due to its smaller cell size (Table 3), consistent with the V_{cell}-v_{max} relationship derived by Litchman et al. (2007). This trend of lower cell-specific but higher biomass-specific v_{max} seems to hold true for diatoms as a whole relative to dinoflagellates (Litchman et al. 2007). The higher biomass-specific v_{max} may be due to an increased number of smaller uptake sites per unit cell surface area (Caperon & Meyer 1972, Aksnes & Egge 1991). Thus, when cell size effects are eliminated, *Pseudo-nitzschia* appears to be a ‘velocity’ strategist (Sommer 1984), as is generally the case for small, r-selected diatoms (Litchman et al. 2007).

Pseudo-nitzschia had a high v_{max} and high α for both NO_3^- and NH_4^+ relative to the dinoflagellate species in Table 4, indicating that *Pseudo-nitzschia* was a good competitor at both high and low concentrations, and this was reflected in its ability to thrive during both upwelling and relaxation. However, v_{max} and α for NO_3^- were lower in our study than in a *Pseudo-nitzschia australis* culture isolated from the Californian upwelling system (Cochlan et al. 2008) (Table 4). This could be explained by the nutrient history of the culture (Fan et al. 2003), which was grown on 70 µM NO_3^- as the sole nitrogen source. Although the medium was NO_3^--depleted prior to starting the experiments, the cells were not nitrogen-starved; therefore, regulation of v_{max} and α in response to nitrogen depletion had most likely not yet taken place. The same order of preference was observed in the present study and in culture experiments using *P. multiseries* (Radan 2008) and *P. cus!pida!ta* (Auro 2007), showing a general trend in preference for NH_4^+, as is often observed in phytoplankton due to the lower energetic cost of NH_4^+ assimilation relative to NO_3^- (Dohrt 1990).

The Californian *Pseudo-nitzschia australis* also had a higher v_{max} for NH_4^+ than that in our study, even though it was not preconditioned with NH_4^+. If *Pseudo-nitzschia* in the California system responds as well to high NH_4^+ concentrations as it does in culture, this would support the hypothesis that high anthropogenic NH_4^+ concentrations (>12 µM) are responsible for blooms of *P. pseudodelicatissima* on the Washington coast (Trainer et al. 2007). The *P. australis* culture had
a similar α to that in our study, indicating that the Californian strain was more competitive at high NH$_4^+$ but not at limiting NH$_4^+$ concentrations.

Dinophysis acuminata

Although *Gymnodinium* spp. were responsible for 93% similarity within Type II, *Dinophysis acuminata* co-occurred with it at 3 of the 5 stations; hence, we assume that the 2 taxa were adapted to similar environmental conditions. Type II communities occurred under highly stratified, NO$_3^-$-depleted (0.1 to 0.5 μM) conditions and were even more dependent on recycled nitrogen than Types III and IV (mixed diatoms), with f-ratios of \sim0.1. These species conform with the traditional concept of dinoflagellates being adapted to low nutrient concentrations and turbulence (Margalef 1978). *D. acuta* and *G. catenatum*–dominated communities present during the downwelling season in the Iberian upwelling system also rely on NH$_4^+$ (Rios et al. 1995).

Dinophysis acuminata displayed a higher v_{max} and α for NH$_4^+$ and urea than for NO$_3^-$, as did most dinoflagellate species in Table 4. These species expressed a preference for recycled nitrogen and were better competitors for it at both saturating and limiting concentrations.

Dinophysis acuminata displayed lower v_{max} for NO$_3^-$ than all other species in Table 4 except *Cochlodinium* spp. (Kudela et al. 2008b), indicating that *D. acuminata* was not able to compete for high concentrations of NO$_3^-$, hence its appearance in the phytoplankton community after a long period of NO$_3^-$ depletion. Maximum uptake of NH$_4^+$ and urea was towards the middle of the range for dinoflagellates, whereas α was higher for NH$_4^+$ than in all other species including most diatoms. This suggests that *D. acuminata* is an ‘affinity strategist’ (Sommer 1984), well adapted to growing at diatoms. This suggests that maximum uptake of NH$_4^+$ for NH$_4^+$ of the range for dinoflagellates, whereas preferences for recycled nitrogen and were better competitors at both saturating and limiting NO$_3^-$ and NH$_4^+$ concentrations.

CONCLUSIONS

The southern Benguela is a highly dynamic region influenced by local wind patterns that drive upwelling/relaxation cycles on timescales of days. This, in turn, influences community structure and the occurrence of HABs (Pitcher et al. 1998). The present study revealed extremely high variability in phytoplankton community structure in response to changes in the upwelling regime. We have sought to elucidate the nutritional characteristics of different HAB species and their link to variable nutrient regimes.

The toxic diatom *Pseudo-nitzschia* was favoured by upwelling and was able to rapidly utilise the high NO$_3^-$ concentrations supplied by upwelling. Biomass accumulation occurred during wind relaxation, and *Pseudo-nitzschia* switched to NH$_4^+$ as its main source of nitrogen as NO$_3^-$ became depleted. Due to its small size, PN-specific v_{max} was high, as was α; therefore it was competitive at both saturating and limiting NO$_3^-$ and NH$_4^+$ concentrations.

Alexandrium catenella bloomed at high NO$_3^-$ concentrations, displayed high f-ratios and appeared to have a high requirement for NO$_3^-$ since it disappeared when NO$_3^-$ became depleted. The higher v_{max} for NO$_3^-$ indicated a preference for NO$_3^-$ over recycled nitrogen, while the opposite has been observed in other dinoflagellate species in the California upwelling system, as well as for *A. catenella* blooms in the Thau Lagoon. We hypothesise that these differences were most likely due to differences in nutrient history and/or interspecific differences, although temperature differences were also considered.

Dinophysis acuminata bloomed under low NO$_3^-$ concentrations and had low f-ratios and a higher v_{max} for NH$_4^+$ and urea than for NO$_3^-$, indicative of a preference for recycled nitrogen. Its high α values indicated a high affinity for recycled nitrogen sources, particularly NH$_4^+$, but a low affinity for NO$_3^-$, when compared with a range of HAB species. This high affinity for NH$_4^+$ would have given it a competitive advantage under stratified conditions, despite its low affinity for NO$_3^-$.

Acknowledgements. We thank D. Calder for chl a analyses and phytoplankton counts, A. du Randt for sample collection and M. Bolshaw for technical support with the stable isotope mass spectrometer. This work was funded by Marine & Coastal Management (MCM, South Africa), the Natural Environment Research Council (NERC, UK) (PhD Grant No. NER/S/A/2005/13479) and the Abalone Farmer’s Association of South Africa (AFASA). We also thank 4 anonymous reviewers for their helpful comments and suggestions.

LITERATURE CITED

Auro ME (2007) Nitrogen dynamics and toxicity of the pennate diatom *Pseudo-nitzschia cuspidata*. A field and labo-
ratory based study. MSc thesis, San Francisco State University, CA

Kudela RM, Lane JQ, Cochlan WP (2008a) The potential role of anthropogenically derived nitrogen in the growth of harmful algae in California, USA. Harmful Algae 8: 103–110

Siu GKY, Young MLC, Chan DKO (1997) Environmental and nutritional factors which regulate population dynamics and toxin production in the dinoflagellate *Alexandrium catenella*. Hydrobiologia 352:117–140

Seeyave et al.: Nitrogen nutrition of HAB species

Proofs received from author(s): March 14, 2009

Submitted: July 8, 2008; Accepted: December 19, 2008