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INTRODUCTION

The ecological world is patterned and patchy (Spar-
row 1999, Wiens 2000); however, there are large differ-
ences in the physical appearance of this environmental
heterogeneity. For example, arable farmland, with
intensively managed fields separated by semi-natural
field margins, comprises a heterogeneous mosaic of
habitat types (Stewart et al. 2000). Woodland, as de-

picted in detail by Elton (1966), also is characterized by
many different habitat types. Arguably, at the other
end of the range are soft-sediment seafloors. They are
fairly homogeneous and featureless, without sharp
boundaries between habitat types, only limited in
extent by the low-water mark (e.g. Verwey 1952, Pe-
terson 1991). The animal assemblages of such flats are
dominated by invertebrates that live hidden beneath
the muddy or sandy surface (Peterson 1991, Thrush
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ABSTRACT: Many terrestrial habitats, and certainly man-made systems such as woodland and agri-
cultural habitats, are characterised by a mosaic of different habitat types. In contrast, most seafloors
have a rather uniform visual appearance which is enhanced by the cryptic nature of many of their
inhabitants. The present study aimed to: (1) describe landscape scale spatial patterns of benthic
infauna after evaluating 3 methods for analyzing autocorrelations (Moran’s I, semivariance and frac-
tals), (2) compare the benthic patterns with patterns described for other organisms, and (3) highlight
shared characteristics. During 4 consecutive years (2002 to 2005) we assessed spatial structuring of
4 intertidal benthic invertebrates (Cerastoderma edule, Macoma balthica, Nereis diversicolor and
Nepthys hombergii) in the Wadden Sea, The Netherlands. We annually sampled ~2750 stations
based on a 250 m grid, covering an area of ca. 225 km2. On the basis of simulated spatial distributions,
we selected Moran’s I to analyze spatial patterns for the following reasons: (1) due to standardization,
results can be directly compared, (2) Moran’s I is the least difficult to evaluate, since it is related to the
familiar Pearson’s correlation coefficient, and (3) significance can readily be assessed. The 4 benthic
species were all spatially structured at the landscape scale, with spatial features being smaller than
the physical structure of the intertidal environment, i.e. the intertidal extent. During the 4 yr, some
species changed their distribution, but spatial characteristics, i.e. patch size and amplitude of auto-
correlation, remained similar. Higher overall density resulted in stronger autocorrelation with no dif-
ferences between species. A comparison between spatial structuring of benthic fauna with patterns
encountered in other habitats, whether marine or terrestrial, was unsuccessful due to differences in
extent and grain. We argue that future research should focus on spatial structure in species’ distrib-
utions as an ecological relevant parameter.
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1991). Other features also separate coastal marine
habitats from terrestrial habitats, amongst others the
spatial scale of gene flow and the openness of commu-
nities (Carr et al. 2003).

An element that most habitats have in common is
anthropogenic interference (associated with resource
extraction, land use and development) as the dominant
form of landscape disturbance. When these activities
occur on a large scale they often tend to homogenize
landscape patterns (Watling & Norse 1998, Wiens
2000). For example, mussel beds (Mytilus edulis) pro-
vide some structural heterogeneity on intertidal mud-
flats in the Dutch Wadden Sea (Verwey 1952, Dankers
& Zuidema 1995). However, these beds were me-
chanically harvested between 1989 and 1991 (Piersma
et al. 1993) and have not yet returned, which can be
credited partially to another benthic fishery, i.e.
cockle-dredging (Kraan et al. 2007).

The intertidal flats of the Wadden Sea are well stud-
ied with respect to species, numbers and biomass of
macrobenthic fauna (Beukema et al. 1993, Piersma et
al. 1993, Zwarts & Wanink 1993, Flach 1996, Dekker &
Beukema 1999) and to a lesser extent with respect to
the impacts of industrial harvesting of shellfish (but see
Piersma et al. 2001, van Gils et al. 2006a, Kraan et al.
2007). However, a spatially explicit description of
macrobenthic species’ distributions, using tools from
landscape ecology in an integrative and interdiscipli-
nary approach (Wu & Hobbs 2002), has not been con-
ducted.

Based on a large-scale benthic research effort in the
Dutch Wadden Sea (see Piersma et al. 2001, Kraan et
al. 2007), we here describe spatial patterns of macro-
zoobenthic species in homogenized intertidal sandflats
at an ecologically relevant landscape scale and des-
cribe shape and size of patches, as well as consistency
of patches in time. Four abundant macrozoobenthic
species, 2 bivalves (Macoma balthica and Cerastoder-
ma edule) and 2 polychaete worms (Nereis diversicolor
and Nephtys hombergii ), were chosen to illustrate hid-
den spatial patterning within intertidal sands.

A literature survey, based on ecological studies that:
(1) sample a grid, (2) apply one of 3 methods for spatial
analysis tested below, and (3) do not use remote sensing
or satellite data, indicates that our study effort belongs to
the few that combine a large sampling area (>1 km2)
with a large number of samples (>1000 samples) (Fig. 1,
Table 1). Usually, spatial research is performed at either
a large scale with few sampling stations (e.g. Morrisey et
al. 1992, Thrush et al. 1994, Fauchald et al. 2002) or a
small scale with close-range coring (e.g. Reise 1979, He-
witt et al. 1997b, Legendre et al. 1997).

To decide which of 3 different methods best describes
spatial structures of benthic infauna, we simulated a
range of distributions to create a spectrum of spatial

patterns. The simulated patterns were used to examine
the behaviour of Moran’s I (Moran 1950, Sokal & Oden
1978, Cliff & Ord 1981), semivariance (e.g. Rossi et al.
1992) and fractals (Burrough 1981, Palmer 1988), not
only to develop a better understanding of the transla-
tion from process to pattern, but also to note possible
differences between the methods applied. So far,
Moran’s I has been scarcely used in marine ecological
research (e.g. Volckaert 1987, Hewitt et al. 1997a,b, Le-
gendre et al. 1997); the remaining two are popular in
plant and landscape ecology (Rossi et al. 1992, He et al.
1994, Fortin & Dale 2005).

MATERIALS AND METHODS

Study area. The surveyed intertidal areas in the
western part of the Dutch Wadden Sea (53° N, 4 to 5° E)
(Fig. 2) covered a surface of approximately 225 km2.
The area mainly consists of gullies, intertidal and sub-
tidal mudflats, and is bordered to the west and north
by the barrier islands of Texel, Vlieland and Ter-
schelling. The western Wadden Sea has a semi-diurnal
tide and tidal amplitude varying between 1.5 m at
neap tides to 2.5 m at spring tides. About three-quar-
ters of this area consists of soft-sediment flats, exposed
at low tides. The sediment composition of the intertidal
flats can be characterized as sands and muddy sands,
with median grain sizes ranging from 140 to 200 µm
(Piersma et al. 1993, Zwarts et al. 2003).
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Sampling. Benthic samples were collected in August
and September 2002 to 2005 and were part of long-
term benthic research efforts that began in 1988
(Piersma et al. 1993, 2001, van Gils et al. 2006a). Mea-
sured densities of benthic fauna do not demonstrably
change over this 2 mo sampling period (Piersma et al.
1993). We collected samples over a predetermined
250 m grid that covered the intertidal mudflats (Fig. 2),
using hand-held GPS (Garmin 12 and 45) to locate
sampling sites. These sampling positions were as-
signed in the first year and revisited in the years after
(van der Meer 1997). On average we sampled 2750 sta-
tions annually with maximum of 2784 stations in 2005
and a minimum of 2732 stations in 2002.

Some of the sampling stations were visited on foot
during low tide, others by boat during incoming, high
or outgoing tides. On foot, 1 sediment core of 0.018 m2

down to a depth of 20 cm was taken at each station. By
boat, a total surface of 0.017 m2 divided over 2 cores,
also to a depth of 20 cm, was sampled at each station.
Maximum water coverage to allow boat sampling was
approximately 2 m. A comparison between both sam-

pling methods, based on neighbouring sampling sta-
tions, showed no differences (Kraan et al. 2007). After
sieving over a 1 mm mesh, all fauna were counted and
recorded. All crustaceans and molluscs were collected
in plastic bags and stored at –20°C for later analyses in
the laboratory (for details see Piersma et al. 1993, van
Gils et al. 2006a,b).

Simulations. Spatial structures were simulated using
a 20 × 20 lattice with cell values ranging between 1 and
10 (see Fig. 3). Note that simulation entailed manually
rearranging cell values to create the desired spatial
structure. Structures varied from complete random-
ness, via a gradient, to different sized random patches,
effectively covering the most extreme and instructive
results of spatial partitioning (see Fig. 3). Geographical
coordinates were assigned by using column and row
number, respectively. All simulations were done in
Excel, and spatial patterns were analyzed with GS+
(Robertson 2000).

Spatial analysis. To rule out the possibility that the
patterns we describe are identical to the physical
structure of intertidal mudflats, a grid with an equal
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Table 1. Literature overview, showing studies that based their spatial analysis on Moran’s I, semivariance or fractals, sampled an 
evenly spaced grid and did not use remote sensing or satellite data

Topic Environment Country Site size (km2) Samples (n) Source

Macrozoobenthos Marine The Netherlands 1.75 × 102 2750 Present study
Zoobenthos Marine Sweden 1.50 × 10–5 432 Bergström et al. (2002) 
Meiofauna & microalgae Marine USA 5.42 × 10–8 288 Pinckney & Sandulli (1990) 
Meiofauna & microalgae Marine USA 5.42 × 10–8 288 Sandulli & Pinckney (1999) 
Bivalves Marine New Zealand 3.60 × 10–5 230 Hewitt et al. (1996) 
Bivalves Marine New Zealand 1.25 × 10–1 200 Legendre et al. (1997)
Polychaetes Marine Canada 2.50 × 10–7 175 Volckaert (1987) 
Ecklonia radiata Marine New Zealand 5.00 × 10–3 121 Cole & Syms (1999) 
Macrozoobenthos Marine USA 6.45 × 10–6 100 Jumars et al. (1977) 
Chione stutchburyi Marine New Zealand 1.80 × 10–3 90 McArdle & Blackwell (1989) 
Macrozoobenthos Marine New Zealand 9.00 × 10–3 72 Thrush et al. (1994)
Bivalves Marine Scotland 1.23 × 10–3 64 Huxam & Richards (2003) 
Macrozoobenthos Marine New Zealand 5.50 × 10–3 55 Hewitt et al. (1997b) 
Mactra ordinaria Marine New Zealand 1.00 × 100 15 Cole et al. (2001) 
Tree diversity Other Malaysia 5.00 × 10–1 20000 He et al. (1994)
Freshwater turtles Other Spain & Portugal 2.77 × 105 2772 Segurado et al. (2006) 
Plants Other China 2.50 × 10–1 2500 He et al. (2007)
Bird diversity Other South Africa 1.26 × 106 1858 van Rensburg et al. (2002) 
Perennial vegetation Other Spain 2.50 × 10–3 1600 Maestre et al. (2005) 
Ambrosia dumosa Other USA 1.00 × 10–2 400 Perry et al. (2002) 
Soil seedbank Other Spain 1.00 × 10–4 400 Reiné et al. (2006) 
Plant abundance Other Spain 1.00 × 10–4 400 Reiné et al. (2006) 
Cattle Other Switzerland 2.32 × 10–1 393 Kohler et al. (2006)
Plant abundance Other USA 8.40 × 10–3 336 Fortin (1999) 
Erythronium grandiflorum Other USA 1.02 × 10–3 256 Thomson et al. (1996) 
Dyschirius globosus Other The Netherlands 3.20 × 10–1 252 Rossi et al. (1992)
Silene latifolia Other USA 2.20 × 10–4 220 Real & McElhany (1996) 
Acer saccharum Other Canada 5.00 × 10–1 200 Fortin et al. (1989) 
Tsuga canadensis Other Canada 5.00 × 10–1 200 Legendre & Fortin (1989) 
Potamogeton pectinatus Other The Netherlands 1.00 × 10–4 100 Klaassen et al. (2006) 
Balanus balanoidus Other The Netherlands 5.63 × 10–7 100 Rossi et al. (1992)
Liatris cylindracea Other USA 5.94 × 10–4 66 Sokal & Oden (1978) 
Macaranga lowii Other Malaysia 5.00 × 10–1 50 Bellehumeur & Legendre (1998)
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extent (i.e. the total area covered) and grain (i.e. the
sampling interval, e.g. Hewitt et al. 1998) as the re-
search programme was created in a GIS environment.
Stations that overlapped with sampled positions were
given a value of 1 and stations outside the sampled
positions were set at 0, followed by an analysis of spa-
tial patterns. This allowed a direct comparison be-
tween all-directional autocorrelation patterns of the
benthic species — based on abundances at sampled
stations only, and the physical environment — using
the imposed grid. This background autocorrelation is
presented as dashed lines in Figs. 4 to 7.

Moran’s I estimates the autocorrelation coefficient of
a variable for all pairs of sampling stations at a given
spatial interval (Cliff & Ord 1981, Fortin & Dale 2005).
Like its close relative, the Pearson’s product-moment
correlation, Moran’s I is sensitive to deviations from the
mean and asymmetry in the distribution (Legendre &
Fortin 1989, Legendre & Legendre 1998). These devia-
tions may result in violation of stationarity, implying
that the mean and variance are not stable across the
extent studied. To stabilize the mean and variance as
much as possible, prior to analysis all abundance data

were log-transformed, x’ = log(x + 1) (Zar 1996). The
null hypothesis of no autocorrelation was tested with a
Monte Carlo procedure using 999 runs (see Manly
1997, Rangel et al. 2006). Patch sizes are normally set
at the point where Moran’s I is no longer different
from random (Sokal & Oden 1978). In our case, how-
ever, due to the very large number of pairs in each lag,
almost all values were statistically significantly differ-
ent from random. To be able to assign meaningful
patch sizes, we chose to set the threshold value of what
we consider biologically meaningful at I = 0.1, since all
but the most extreme values occurred between –0.1
and 0.1. To evaluate the robustness of this admittedly
arbitrary choice, we also determined patch sizes using
I = 0.08, 0.12, 0.14 and 0.16 as threshold values. Exactly
the same patterns were derived, since patch sizes just
shifted some distance classes up or down. Generally,
the shape of a correlogram is regarded as the key char-
acteristic, since this is associated with a certain spatial
structuring of the data (Legendre & Fortin 1989).

Another way to capture spatial structure is to use
semivariance, which is also calculated per distance
class (Rossi et al. 1992). A plot of semivariance values
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Fig. 2. Benthic sampling stations (d) on a 250 m grid in the western Dutch Wadden Sea. White areas indicate mudflats exposed 
during low low-water at spring tides, light grey areas indicate water and the dark grey area indicates land
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against the spatial lags is called a (semi-)variogram.
Spatial interpolation, e.g. kriging, uses the information
captured by a variogram to interpolate a surface (e.g.
van der Meer & Leopold 1995). The derived parame-
ters ‘nugget’, ‘sill’ and ‘range’ give information on vari-
ation captured by the model, unexplained variation
and the range of autocorrelation, respectively (Belle-
humeur & Legendre 1998). Unlike Moran’s I, semivari-
ance is not standardized and is in the same units as the
original data.

When plotting semivariances for the different dis-
tance intervals on a log–log scale, the slope can be
used to calculate the fractal dimension (Burrough
1981). This is a mathematical coefficient that measures
the fractal geometry (non-integer dimension) of objects
in space. The double-log semi-variogram need not be
linear and may display so-called spatial breaks with
differing fractal dimensions (Johnson et al. 1995, Fortin
& Dale 2005). Self-similarity thus occurs within a cer-
tain scale range, indicating that the fractal dimension
is not necessarily a constant function of scale (Palmer
1988), and points at different levels of organization in
space and a change in structuring ecological pro-
cesses. Double-log variograms and fractals are illus-
trated by Burrough (1981), Palmer (1988) and Fortin &
Dale (2005). Analyses were done with GS+ (Robertson
2000) or SAM (Rangel et al. 2006).

RESULTS

Simulations

For a randomly distributed mosaic of differing values
without clear patches (Fig. 3a), none of the 3 methods
showed significant autocorrelation, indicating the
absence of spatial structure. The double-log variogram
(Fig. 3a) indicated that species distribution was a con-
stant function of scale; it was completely self-similar.
When values were structured along a gradient
(Fig. 3b), short-distance positive autocorrelations typi-
cally were coupled with very negative autocorrelations
at the largest distances in the correlogram. The
strength of structuring processes gradually decreased
with increasing distance, shown by points farther
apart having very different abundances. The semi-
variogram, as well as the double-log variogram,
showed increased semi-variance values with increased
distance classes, the same as given by the correlogram.

Arrangements of values in a way that generated one
large patch (Fig. 3c) gave significant positive auto-
correlations at the shortest and longest intervals and
negative values at intermediate distances in the cor-
relogram. The patch size was approximately 7 units;
this is the point where the correlogram crosses the

0-line. The variogram is a mirror image of the corre-
logram, with highest values at intermediate distances,
showing the same spatial range. The double-log
variogram contained no linear part; there were no spa-
tial breaks or spatial ranges with a constant fractal
dimension D.

Evenly spaced multiple small patches of equal size
(Fig. 3d) were represented by a repetition of patterns
in the correlogram, variogram and double-log vari-
ogram. The distance between the first peak and the
first trough in the correlogram indicates the patch size
(~2.0 units), and the continuing oscillation with de-
creasing amplitude revealed a repetitive pattern of
patches. The 2 other methods also gave the same
repetitive pattern. The fractal dimension therefore was
only constant until a distance of 2 units; the rest can be
considered noise.

When repeating the same simulated patches as
above, but now randomly distributed across the area
(Fig. 3e), the only obvious pattern was that of positive
autocorrelations over small distances in the correlo-
gram, the maximum semivariance value already at a
small spatial range in the variogram and the absence of
a linear part in the double-log variogram. The repeti-
tion of patches, though of the same size as in the previ-
ous simulation, was not clearly captured by any of the
methods.

Differently sized random patches (Fig. 3f) created a
pattern that was characterized by strong short-
distance positive autocorrelations, followed by non-
significant random variation with increasing distance.
This variation is due to the differing patch sizes and
differing inter-patch distances. Again there was no lin-
ear element in the double-log variogram.

The correlogram and the variogram showed similar
spatial structuring on the basis of simulated distribu-
tions (Fig. 3a–f), but the correlogram was easier to
understand, being so similar to the Pearson’s product-
moment correlation. The double-log variogram, used
to determine the fractal dimension D, added the least
information to the outcome of the analyses. Due to the
absence of a linear relationship between log-distance
interval and log-semivariance, D often did not capture
the spatial characteristics. Based on these results, we
carried out the spatial analysis of census data with
Moran’s I only.

Intertidal macrozoobenthos

The intertidal mudflat habitat itself has a certain
physical structure in space, and this spatial structure
was shown with Moran’s I values and presented in
Figs. 4 to 7 for comparison with the spatial characteris-
tics of the distribution of benthic species (see ‘Materi-
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Fig. 4. Cerastoderma edule. Distribution from 2002 to 2005 (left panels) and the correlogram (solid line) of their spatial pattern; on
the x-axis the distance (in m) and on the y-axis Moran’s I. The dotted, horizontal lines in the correlogram indicate the 95% CI. 

The background autocorrelation, determined by the extent of intertidal flats, is represented by the dashed line
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Fig. 5. Macoma balthica. Distribution from 2002 to 2005 (left panels) and the correlogram (solid line) of their spatial pattern;  
on the x-axis the distance (in m) and on the y-axis Moran’s I.. See Fig. 4 for further explanation
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Fig. 6. Nereis diversicolor. Distribution from 2002 to 2005 (left panels) and the correlogram (solid line) of their spatial pattern; 
on the x-axis the distance (in m) and on the y-axis Moran’s I. See Fig. 4 for further explanation
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Fig. 7. Nepthys hombergii. Distribution from 2002 to 2005 (left panels) and the correlogram (solid line) of their spatial pattern; 
on the x-axis the distance (in m) and on the y-axis Moran’s I. See Fig. 4 for further explanation
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als and methods’). On average, the patch size of these
intertidal habitats was 4000 m.

The edible cockle Cerastoderma edule was distrib-
uted patchily across the intertidal areas (Fig. 4). In-
deed, densities showed positive autocorrelations at the
smallest distance-classes, followed by random oscilla-
tions around zero. In 2005, a year with higher than
average densities due to spatfall, not only were the
autocorrelations stronger than in other years (as shown
by the higher value of Moran’s I in the first distance
class), but there was also a second peak at a distance of
9 km that indicated repetition of patches. Cockles
more or less displayed the same distribution across the
intertidal areas for all years, as shown by the distribu-
tion maps, with a gravitational centre of occurrence in
the eastern part of the western Dutch Wadden Sea
(Fig. 4). The maps show that the areas with the highest
occurrence of cockles remained in place; only the den-
sity changed. In general, the spatial range or patch size
was approximately 2000 m.

Macoma balthica was undergoing a decline in the
western Dutch Wadden Sea during the 4 study years
(left panels, Fig. 5), something that is also reflected in
the spatial structuring. With decreasing abundance
and an increasingly homogeneous distribution, the
amplitude of Moran’s I in the first distance class de-
creased between 2002 (I = 0.4) and 2005 (I = 0.3)
(Fig. 5), with patch sizes of M. balthica decreasing from
8000 m in 2002 to 3500 m in 2005, a value only margin-
ally lower than the overall physical patch size (dashed
line).

Ragworms Nereis diversicolor, as shown by the
maps, showed high densities and variation in their dis-
tribution across the western Dutch Wadden Sea be-
tween years (Fig. 6). In 2002 they were most common
in the western part of our research area; in 2005 the
highest densities were found in the middle and east of
our sampling grid. The correlograms were quite simi-
lar throughout, with a spatial structure that ranged
between 3000 and 4000 m, although there was a sec-
ond peak at ~20 km in 2002 and not afterwards.

The predatory polychaete Nepthys hombergii gen-
erally occurred in low densities throughout our sam-
pling area (Fig. 7), with the highest abundances in
more sandy areas (pers. obs.). N. hombergii, besides
short-distance autocorrelation, showed no other spatial
structure. Especially in 2004, the distribution ap-
proached randomness.

Overall comparison

In general, the more striking spatial structures are
shown by the most abundant species. Not only is patch
size larger in these species (Fig. 8), they also reveal
higher amplitudes in the correlograms (Figs. 4 to 7). An
ANCOVA (Systat Software) confirmed that slope and
intercept were not statistically different between spe-
cies (slope, F3,11 = 2.052, p = 0.17; intercept, F1,11 = 1.95,
p = 0.19). Regression analysis showed a significant
relationship between density and patch size (F1,14 =
9.531, p < 0.01, R2 = 0.44). This pattern was maintained
when the threshold value for significance was varied
(see ‘Materials and methods’). Overall, the correlo-
grams visually best resembled the simulated patterns
of randomly distributed and differently sized patches
(Fig. 3f) and multiple random small patches (Fig. 3e),
both characterized by short-distance positive autocor-
relation and noise at larger distances.

DISCUSSION

Although spatially explicit analytical methods are
common practice in plant and landscape ecology (e.g.
Sokal & Oden 1978, Cliff & Ord 1981), with notable
exceptions (Thrush et al. 1989, Hewitt et al. 1997a,b,
Legendre et al. 1997) they seem underexplored in
marine science. The multitude of different techniques
available (e.g. Fortin & Dale 2005), ranging from
Moran’s I to the Mantel statistic, can be daunting. We
tested and compared 3 methods to determine spatial
structuring on artificial data, i.e. Moran’s I, semivari-
ance and fractals.

Calculating the fractal dimension is informative
when the variogram is linear (Fortin & Dale 2005),
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Fig. 8. Patch size in relation to the density of the 4 benthic
species studied (Cerastoderma edule, Macoma balthica,
Nereis diversicolor and Nepthys hombergii ) from 2002 to 

2005 (see Figs. 4–7)
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which only occurs when species are distributed ran-
domly or as gradients across the area under study.
Analysis of the simulated spatial patterns showed that
the presence of structure dismissed fractals as a rele-
vant statistic. A posteriori our decision was validated
by patterns encountered in the benthic data; gradients
and random distributions were never encountered
(Figs. 4 to 7). The 2 other methods were able to capture
all computer-generated patterns. However, Moran’s I,
unlike semivariance, is standardized and all correlo-
grams are therefore expressed on the same scale and
allow direct comparison. Consequently, we choose
Moran’s I as the most appropriate method to analyze
spatial patterns of intertidal benthos.

The 4 macrobenthic species displayed spatial struc-
turing at the scale of our benthic monitoring pro-
gramme, i.e. the western Dutch Wadden Sea. This
landscape-scale description of spatial patterns, as
shown by the literature survey (Fig. 1, Table 1), is only
rivalled by a limited number of studies, none of which
were marine. The most obvious structures were small-
scale patches, with a range of a few distance classes
(Figs. 4 to 7), reaching a diameter of up to 9000 m.
These patterns, comparable to the simulated multiple
random patches (Fig. 3f), persisted across the years,
although some species (e.g. Nereis diversicolor)
changed their distribution from west to east. The only
noticeable change was the amplitude that increased
with the occurrence of successful recruitment or
decreased due to mortality and/or a more even distrib-
ution (Figs. 4 to 7). Apart from McArdle & Blackwell
(1989), also a marine study, the present study is the
only one extending the analysis beyond a single snap-
shot in time, which allowed us to show the temporal
constancy of spatial patterns.

Patterns also differed from the intrinsic autocorrela-
tion imposed by the monitored points (reflecting the
physical structure of the mudflats), showing that spe-
cies distributions are shaped by processes other than
the extent of mudflats. To the best of our knowledge
this is the first attempt to disentangle species’ spatial
patterns from those of the physical extent of their envi-
ronment. It is likely that a combination of factors such
as sediment composition, inundation time, spatial vari-
ation in recruitment or interspecific interactions deter-
mines spatial patterning of benthic infauna (Thrush
1991, Legendre et al. 1997). This, however, still awaits
verification within a framework that also explicitly
takes the spatial variation of environmental parame-
ters into account. Generalised Estimation Equations
(GEE) seem to offer an elegant solution (Dormann et
al. 2007).

Currently, in every study a sampling design is cho-
sen, with a certain extent and grain that matches its
questions or funding. However, patterns change with

scale, and what appears a gradient on a large scale can
be described as patchy on smaller scales (Levin 1992).
Therefore, every study is reduced to a description of
spatial pattern for a specific area with a specific sam-
pling scheme. However, what unifies all studies is the
occurrence of spatial heterogeneity in the distribution
of their study organism ranging from a few meters to
landscape-scale patterns (Table 1).

It is obvious that the ecological world is spatially
structured (Sparrow 1999, Wiens 2000). Currently, 2
approaches exist to deal with this spatial variability.
One focuses on the mathematical aspects of spatial
structure (e.g. He et al. 2007), whereas another views
autocorrelation as an ecological parameter (e.g. Kohler
et al. 2006). It is this last approach which is the most
rewarding, since it could potentially enhance the
ecological understanding of, for example, benthos–
sediment relationships in intertidal areas within a spa-
tially explicit framework.

Acknowledgements. We were based on the Royal NIOZ RV
‘Navicula’ for the larger part of our research, and we thank
Capt. K. van de Star, H. de Vries and J. Tuntelder for their
help on-board and during sampling. Special thanks to crew
member T. van der Vis for sampling efforts beyond the call of
duty. We thank V. Natuurmonumenten for permission to work
around the island of Griend and to use their warden’s hut. A
large number of volunteers and students contributed to the
collection of the field data. C. Raaijmakers made a large con-
tribution to the work in the laboratory. We thank H. Olff for
ideas and encouragement, and E. O. Folmer, J. A. van Gils
and R. Dapper for feedback and help with databases.

LITERATURE CITED

Bellehumeur C, Legendre P (1998) Multiscale sources of vari-
ation in ecological variables: modeling spatial dispersion,
elaborating sampling designs. Landscape Ecol 13:15–25

Bergström U, Englund G, Bonsdorff E (2002) Small-scale spa-
tial structure of Baltic Sea zoobenthos: inferring processes
from patterns. J Exp Mar Biol Ecol 281:123–136

Beukema JJ, Essink K, Michaelis H, Zwarts L (1993) Year-to-
year variability in the biomass of macrobenthic animals on
tidal flats of the Wadden Sea: How predictable is this food
source for birds? Neth J Sea Res 31:319–330

Burrough PA (1981) Fractal dimensions of landscapes and
other environmental data. Nature 294:240–242

Carr MH, Neigel JE, Estes JA, Andelman S, Warner RR,
Largier JL (2003) Comparing marine and terrestrial eco-
systems: implications for the design of coastal marine
reserves. Ecol Appl 13(Suppl.):90–107

Cliff AD, Ord JK (1981) Spatial processes: models and appli-
cations. Pion Limited, London

Cole RG, Syms C (1999) Using spatial pattern analysis to dis-
tinguish causes of mortality: an example from kelp in
north-eastern New Zealand. J Ecol 87:963–972

Cole RG, Healy TR, Wood ML, Foster DM (2001) Statistical
analysis of spatial pattern: a comparison of grid and hierar-
chical sampling approaches. Environ Mon Assess 69:85–99 

Dankers N, Zuidema DR (1995) The role of the mussel
(Mytilus edulis L.) and mussel culture in the Dutch Wad-
den Sea. Estuaries 18:71–80

222



Kraan et al.: Cryptic patchiness at a landscape scale

Dekker R, Beukema JJ (1999) Relations of summer and winter
temperatures with dynamics and growth of two bivalves,
Tellina tenuis and Abra tenuis, on the northern edge of
their intertidal distribution. Neth J Sea Res 42:207–220

Dormann CF, McPherson JM, Araújo MB, Bivand R and oth-
ers (2007) Methods to account for spatial autocorrelation
in the analysis of species distributional data: a review.
Ecography 30:609–628

Elton CS (1966) The pattern of animal communities. Methuen
& Company, London

Fauchald P, Erikstad KE, Systad GH (2002) Seabirds and
marine oil incidents: Is it possible to predict the spatial dis-
tribution of pelagic seabirds? J Appl Ecol 39:349–360

Flach EC (1996) The influence of the cockle, Cerastoderma
edule, on the macrozoobenthic community of tidal flats in
the Wadden Sea. PSZN I: Mar Ecol 17:87–98

Fortin MJ (1999) Effects of sampling unit resolution on the
estimation of the spatial autocorrelation. Ecoscience 6:
636–641

Fortin MJ, Dale M (2005) Spatial analysis: a guide for ecolo-
gists. Cambridge University Press, Cambridge

Fortin MJ, Drapeau P, Legendre P (1989) Spatial autocorrela-
tion and sampling design. Vegetatio 83:209–222

He F, Legendre P, Bellehumeur C, LaFrankie JV (1994) Diver-
sity pattern and spatial scale: a study of a tropical rain for-
est of Malaysia. Environ Ecol Stat 1:265–286

He Z, Zhao W, Chang X (2007) The modifiable areal unit
problem of spatial heterogeneity of plant community in
the transitional zone between oasis and desert using semi-
variance analysis. Landscape Ecol 22:95–104

Hewitt JE, Thrush SF, Cummings VJ, Pridmore RD (1996)
Matching patterns with processes: predicting the effect of
size and mobility on the spatial distributions of the
bivalves Macomona liliana and Austrovenus stutchburyi.
Mar Ecol Prog Ser 135:57–67

Hewitt JE, Legendre P, McArdle BH, Thrush SF, Bellehumeur
C, Lawrie SM (1997a) Identifying relationships between
adult and juvenile bivalves at different spatial scales.
J Exp Mar Biol Ecol 216:77–98

Hewitt JE, Pridmore RD, Thrush SF, Cummings VJ (1997b)
Assessing the short-term stability of spatial patterns of
macrobenthos in a dynamic estuarine system. Limnol
Oceanogr 42:282–288

Hewitt JE, Thrush SF, Cummings VJ, Turner SJ (1998) The
effect of changing sampling scales on our ability to detect
effects of large-scale processes on communities. J Exp
Mar Biol Ecol 227:251–264

Huxam M, Richards M (2003) Can postlarval bivalves select
sediment type during settlement? A field test with
Macoma balthica (L.) and Cerastoderma edule (L.). J Exp
Mar Biol Ecol 288:279–293

Johnson GD, Tempelman A, Patil GP (1995) Fractal based
methods in ecology: a review for analysis at multiple spa-
tial scales. Coenoses 10:123–131

Jumars PA, Thistle D, Jones ML (1977) Detecting two-dimen-
sional spatial structure in biological data. Oecologia 28:
109–123

Klaassen RHG, Nolet BA, Bankert D (2006) Movement of for-
aging tundra swans explained by spatial pattern in cryptic
food densities. Ecology 87:2244–2254

Kohler F, Gillet F, Reust S, Wagner HH, Gadallah F, Gobat
JM, Buttler A (2006) Spatial and seasonal patterns of cat-
tle habitat use in a mountain wooded pasture. Landscape
Ecol 21:281–295

Kraan C, Piersma T, Dekinga A, Koolhaas A, van der Meer J
(2007) Dredging for edible cockles Cerastoderma edule on
intertidal flats: short-term consequences of fishermen’s

patch-choice decisions for target and non-target benthic
fauna. ICES J Mar Sci 64:1735–1742

Legendre P, Fortin MJ (1989) Spatial patterns and ecological
analysis. Vegetatio 80:107–138

Legendre P, Legendre L (1998) Numerical ecology. Elsevier,
Amsterdam

Legendre P, Thrush SF, Dayton PK, Grant J and others (1997)
Spatial structure of bivalves in a sandflat: scale and gener-
ating processes. J Exp Mar Biol Ecol 216:99–128

Levin SA (1992) The problem of pattern and scale in ecology.
Ecology 73:1943–1967

Maestre FT, Rodríguez F, Bautista S, Cortina J, Bellot J (2005)
Spatial associations and patterns of perennial vegetation
in a semi-arid steppe: a multivariate geostatistics ap-
proach. Plant Ecol 179:133–147

Manly BFJ (1997) Randomization, bootstrap and Monte Carlo
methods in biology. Chapmann & Hall, London

McArdle BH, Blackwell RG (1989) Measurement of density
variability in the bivalve Chione stutchburyi using spatial
autocorrelation. Mar Ecol Prog Ser 52:245–252

Moran PAP (1950) Notes on continuous stochastic phenom-
ena. Biometrika 37:17–23

Morrisey DJ, Howitt L, Underwood AJ, Stark JS (1992) Spatial
variation in soft-sediment benthos. Mar Ecol Prog Ser 81:
197–204

Palmer MW (1988) Fractal geometry: a tool for describing spa-
tial patterns of plant communities. Vegetatio 75:91–102

Perry JN, Liebhold AM, Rosenberg MS, Dungan J, Miriti M,
Jakomulska A, Citron-Pousty S (2002) Illustrations and
guidelines for selecting statistical methods for quantifying
spatial pattern in ecological data. Ecography 25:578–600

Peterson CH (1991) Intertidal zonation of marine inverte-
brates in sand and mud. Am Sci 79:236–249

Pinckney J, Sandulli R (1990) Spatial autocorrelation analysis
of meiofaunal and microalgal populations on an intertidal
sandflat: scale linkage between consumers and resources
Estuar Coast Shelf Sci 30:341–353

Piersma T, Hoekstra R, Dekinga A, Koolhaas A, Wolf P, Batt-
ley P, Wiersma P (1993) Scale and intensity of intertidal
habitat use by knots Calidris canutus in the western wad-
den sea in relation to food, friends and foes. Neth J Sea
Res 31:331–357

Piersma T, Koolhaas A, Dekinga A, Beukema JJ, Dekker R,
Essink K (2001) Long-term indirect effects of mechanical
cockle-dredging on intertidal bivalve stocks in the Wad-
den Sea. J Appl Ecol 38:976–990

Rangel TFLVB, Diniz-Filho JAF, Bini LM (2006) Towards an
integrated computational tool for spatial analysis in
macroecology and biogeography. Glob Ecol Biogeogr 15:
321–327

Real LA, McElhany P (1996) Spatial pattern and process in
plant — pathogen interactions. Ecology 77:1011–1025

Reiné R, Chocarro C, Fillat F (2006) Spatial patterns in seed
bank and vegetation of semi-natural mountain meadows.
Plant Ecol 186:151–160

Reise K (1979) Spatial configurations generated by mobile
benthic polychaetes. Helgol Mar Res 32:55–72

Robertson GP (2000) Geostatistics for the environmental sci-
ences. Gamma Design Software, Plainwell, MI, available
at www.gammadesign.com

Rossi RE, Mulla DJ, Franz EH (1992) Geostatistical tools for
modeling and interpreting ecological dependence. Ecol
Monogr 62:277–314

Sandulli R, Pinckney J (1999) Patch sizes and spatial patterns
of meiobenthic copepods and benthic microalgae in sandy
sediments: a microscale approach. Neth J Sea Res 41:
179–187

223



Mar Ecol Prog Ser 383: 211–224, 2009

Segurado P, Araújo MB, Kunin WE (2006) Consequences of
spatial autocorrelation for niche-based models. J Appl
Ecol 43:433–444

Sokal RR, Oden NL (1978) Spatial autocorrelation in biology.
1. Methodology. Biol J Linn Soc 10:199–228

Sparrow AD (1999) A heterogeneity of heterogeneities.
Trends Ecol Evol 14:422–423

Stewart AJA, John EA, Hutchings MJ (2000) The world is het-
erogeneous: ecological consequences of living in a patchy
environment. In: Hutchings MJ, Stewart AJA (eds) The
ecological consequences of environmental heterogeneity.
Blackwell Science, Oxford, p 1–8

Thomson JD, Weiblen G, Thomson BA, Alfaro S, Legendre P
(1996) Untangling multiple factors in spatial distributions:
lilies, gophers, and rocks. Ecology 77:1698–1715

Thrush SF (1991) Spatial patterns in soft-bottom communities.
Trends Ecol Evol 6:75–79

Thrush SF, Hewitt JE, Pridmore RD (1989) Patterns in the spa-
tial arrangements of polychaetes and bivalves on inter-
tidal sandflats. Mar Biol 102:529–535

Thrush SF, Pridmore RD, Hewitt JE (1994) Impacts on soft-
sediment macrofauna: the effects of spatial variation on
temporal trends. Ecol Appl 4:31–41

van der Meer J (1997) Sampling design of monitoring pro-
grammes for marine benthos: a comparison between the
use of fixed versus randomly selected stations. Neth J Sea
Res 37:167–179

van der Meer J, Leopold MF (1995) Assessing the population
size of the European storm petrel (Hydrobates pelagicus)
using spatial autocorrelation between counts from segments
of criss-cross ship transects. ICES J Mar Sci 52: 809–818

van Gils JA, Piersma T, Dekinga A, Spaans B, Kraan C (2006a)
Shellfish-dredging pushes a flexible avian top predator
out of a protected marine ecosystem. PLoS Biol 4:e376 

van Gils JA, Spaans B, Dekinga A, Piersma T (2006b) Forag-
ing in a tidally structured environment by red Knots
(Calidris canutus): ideal, but not free. Ecology 87:
1189–1202

van Rensburg BJ, Chown, SL, Gaston KJ (2002) Species rich-
ness, environmental correlates, and spatial scale: a test
using South African birds. Am Nat 159:566–577

Verwey J (1952) On the ecology of distributions of cockle and
mussel in the Dutch Waddensea, their role in sedimenta-
tion and the source of their food supply. Arch Neerl
Zool:171–239

Volckaert F (1987) Spatial pattern of soft-bottom Polychaeta
off Nova Scotia, Canada. Mar Biol 93:627–639

Watling L, Norse EA (1998) Disturbance of the seabed by
mobile fishing gear: a comparison to forest clearcutting.
Conserv Biol 12:1180–1197

Wiens JA (2000) Ecological heterogeneity: an ontogeny of con-
cepts and approaches. In: Hutchings MJ, John EA, Stewart
AJA (eds) The ecological consequences of environmental
heterogeneity. Blackwell Science, Oxford, p 9–31

Wu J, Hobbs R (2002) Key issues and research priorities in
landscape ecology: an idiosyncratic synthesis. Landscape
Ecol 17:355–365

Zar JH (1996) Biostatistical analysis. Prentice Hall, Upper
Saddle, NJ

Zwarts L, Wanink JH (1993) How the food supply harvestable
by waders in the wadden sea depends on the variation in
energy density, body weight, biomass, burrying depth and
behaviour of tidal-flat invertebrates. Neth J Sea Res 31:
441–476

Zwarts L, Dubbeldam W, van den Heuvel H, van de Laar E,
Menke U, Hazelhoff L, Smit CJ (2003) Bodemgesteldheid
en mechanische kokkelvisserij in de Waddenzee. RIZA,
Lelystad

224

Editorial responsibility: Romuald Lipcius,
Gloucester Point, Virginia, USA

Submitted: January 23, 2008; Accepted: February 3, 2009
Proofs received from author(s): April 30, 2009


	cite1: 
	cite2: 
	cite3: 
	cite4: 
	cite9: 
	cite10: 
	cite11: 
	cite12: 
	cite13: 
	cite14: 
	cite15: 
	cite17: 
	cite18: 
	cite21: 
	cite23: 
	cite24: 
	cite25: 
	cite32: 
	cite33: 
	cite34: 
	cite37: 
	cite38: 
	cite39: 
	cite41: 
	cite43: 
	cite44: 
	cite45: 
	cite46: 
	cite47: 
	cite48: 
	cite49: 
	cite50: 
	cite51: 
	cite52: 
	cite53: 
	cite54: 
	cite55: 
	cite56: 
	cite57: 
	cite22: 


