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INTRODUCTION

The world’s oceans face an increasing number and
severity of threats, including overexploitation of living
marine resources, habitat degradation and destruction,

pollution, and climate change impacts (Harley et al.
2006, UNEP 2006, Halpern et al. 2008, Jackson 2008).
These various stressors in turn lead to depleted popula-
tions of economically and culturally important species,
altered community structure, and compromised eco-
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ABSTRACT: The study and implementation of no-take marine reserves have increased rapidly over
the past decade, providing ample data on the biological effects of reserve protection for a wide range
of geographic locations and organisms. The plethora of new studies affords the opportunity to re-
evaluate previous findings and address formerly unanswered questions with extensive data synthe-
ses. Our results show, on average, positive effects of reserve protection on the biomass, numerical
density, species richness, and size of organisms within their boundaries which are remarkably simi-
lar to those of past syntheses despite a near doubling of data. New analyses indicate that (1) these
results do not appear to be an artifact of reserves being sited in better locations; (2) results do not
appear to be driven by displaced fishing effort outside of reserves; (3) contrary to often-made asser-
tions, reserves have similar if not greater positive effects in temperate settings, at least for reef
ecosystems; (4) even small reserves can produce significant biological responses irrespective of lati-
tude, although more data are needed to test whether reserve effects scale with reserve size; and
(5) effects of reserves vary for different taxonomic groups and for taxa with various characteristics,
and not all species increase in response to reserve protection. There is considerable variation in the
responses documented across all the reserves in our data set — variability which cannot be entirely
explained by which species were studied. We suggest that reserve characteristics and context, par-
ticularly the intensity of fishing outside the reserve and inside the reserve before implementation,
play key roles in determining the direction and magnitude of the reserve response. However, despite
considerable variability, positive responses are far more common than no differences or negative
responses, validating the potential for well designed and enforced reserves to serve as globally
important conservation and management tools.
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system functioning and delivery of services. The scope of
these changes spans many habitats, species, and dif-
ferent trophic levels, and thus may require more 
holistic, ecosystem-based management approaches
(Lubchenco et al. 2003, Browman & Stergiou 2004,
UNEP 2006). Because marine reserves protect all species
and habitats in an area from extractive activities, they
are a central tool for ecosystem-based management and
offer hope for mitigating some of the threats affecting
coastal and marine systems (Worm et al. 2006).

Marine reserves are defined here as ‘areas of the
ocean completely protected from all extractive and
destructive activities… except as necessary for moni-
toring or research’ (Lubchenco et al. 2003, p. S3).
Marine reserves are an important subset of Marine
Protected Areas (MPAs). MPAs vary greatly in their
regulations and their utility for conservation likely
varies considerably based on the level of protection
afforded, making it difficult to generalize about the
benefits of MPAs (Mora et al. 2006, Lester & Halpern
2008). Although MPAs with less restrictive regulations
are undoubtedly important management tools, no-take
marine reserves offer the greatest protection for
marine resources and ecosystems and thus are the sole
focus of the present study. Marine reserves have
received increasing attention over the last few decades
as an important management strategy for both conser-
vation and fisheries management goals (Halpern 2003,
Halpern & Warner 2003, Palumbi et al. 2003, Leslie
2005, Claudet et al. 2008, White et al. 2008).

Numerous syntheses of monitoring studies have
documented how population numbers and biomass, or-
ganism size, species richness, reproductive potential,
and/or community structure are affected by reserve
protection (Halpern & Warner 2002, Palumbi 2002, Gell
& Roberts 2003, Halpern 2003, Micheli et al. 2004).
Many of these studies suggest that beneficial effects of
reserve protection are common. This is particularly ev-
ident when comparing numerical density and biomass
of exploited species inside and outside reserves and/or
before and after reserve protection (Côté et al. 2001,
Gell & Roberts 2003, Halpern 2003). On the other hand,
some authors have suggested that the impacts of re-
serves may be idiosyncratic, varying with the goal(s) set
by the body or institution establishing the reserve,
whether the reserve is part of a network of reserves, the
location, size, and protection duration of the reserve,
and the characteristics of the species under considera-
tion (Jennings 2000, Mosqueira et al. 2000, Côté et al.
2001, Micheli et al. 2004, Kaiser 2005, Claudet et al.
2008). Therefore, although there is encouraging evi-
dence that reserves are an effective management
option for restoring and sustaining marine ecosystems
within their boundaries, some important questions
about the utility of reserves remain unresolved.

In particular, contention exists about whether
reserve effects will be different in temperate versus
tropical regions (Blyth-Skyrme et al. 2006). A number
of authors have suggested that temperate reserves
might result in smaller or no changes in exploited spe-
cies because of 2 primary reasons. (1) Exploited spe-
cies in temperate regions tend to be more mobile and
are thus less likely to benefit from a reserve (Shipp
2003, Kaiser 2004). If most individuals stray beyond
reserve borders, their populations will not be effec-
tively protected. (2) Temperate species and popula-
tions tend to have longer larval durations and thus
greater larval dispersal potential and gene flow than
their tropical counterparts (Laurel & Bradbury 2006,
O’Connor et al. 2006).

Given potentially higher rates of adult movement
and larval export, it has been suggested that reserves
in temperate systems may need to be larger than tropi-
cal reserves to achieve comparable results (Laurel &
Bradbury 2006). Comparisons across reserves in differ-
ent locations suggest that changes in biological metrics
do not vary appreciably with reserve size (Côté et al.
2001, Halpern 2003, Micheli et al. 2004, Guidetti &
Sala 2007, but see Claudet et al. 2008). However,
reserve size has not been examined with respect to
geographical differences among reserves. Addition-
ally, there is a perception that most of the positive
effects of marine reserves have been documented in
tropical systems or that tropical reserves have received
more attention in scientific studies (Blyth-Skyrme et al.
2006, Laurel & Bradbury 2006). In fact, there are many
scientific studies of temperate reserves, with peer-
reviewed publications from a variety of regions (see
Fig. 1) such as Australia, New Zealand, the Mediter-
ranean, North America, South America, and South
Africa (e.g. Paddack & Estes 2000, Manriquez &
Castilla 2001, Shears & Babcock 2003, Mayfield et al.
2005, Micheli et al. 2005). However, the present study
is the first meta-analysis explicitly comparing the
results from tropical and temperate reserves.

Marine reserve protection is also likely to affect indi-
vidual species differently, based on whether they are
exploited or otherwise affected by activities outside
the reserve; biological characteristics such as mobility,
dispersal ability, longevity, and fecundity; the nature of
density dependence; and indirect effects resulting
from interactions with other species that are directly
affected by reserve protection (Mosqueira et al. 2000,
Fisher & Frank 2002, Gaines et al. 2003, Micheli et al.
2004, Gaylord et al. 2005, Gerber et al. 2005, Kaiser
2005). Although different responses may be expected
for different taxonomic groups, this issue has primarily
been investigated for fish species (e.g. Micheli et al.
2004). However, there is a growing body of data not
only for fishes, but also for invertebrates and algae
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from a range of geographic locations. In the present
study, we investigate differences among broad taxo-
nomic groupings and among invertebrate and algal
functional groups in both tropical and temperate
reserves.

Impacts of marine reserves generally fall into 2
broad categories: changes occurring inside versus
those occurring outside the reserve. The latter includes
both spillover of individuals from the reserve to the
outside (Gell & Roberts 2003, Sale et al. 2005,
B. S. Halpern et al. unpubl. data) and export of larvae
from the reserve (Botsford et al. 2001, Palumbi 2003).
Because it is more straightforward to assess effects
inside reserves and data are therefore more compara-
ble and more readily available, this review will focus
exclusively on effects within reserves by expanding
the global assessment of reserve effects on basic bio-
logical measures. Specifically, we evaluate (1) the bio-
logical effects of marine reserves and whether these
effects are likely an artifact from using primarily inside
versus outside reserve comparisons, (2) whether
reserves in temperate waters perform similarly to
reserves in tropical systems, and (3) the magnitude of
the biological effects of marine reserves on different
taxonomic and functional groups.

METHODS

We conducted a comprehensive survey of the peer-
reviewed scientific literature to compile a database of
studies that document biological effects of marine

reserves (Table S1, available in MEPS Supple-
mentary Material at www.int-res.com/articles/suppl/
m384p033_app.pdf). We included only peer-reviewed
studies of fully-protected, no-take marine reserves and
only those studies for which effects were measured for
individual reserves. Studies must have measured at
least 1 of 4 key biological variables (numerical density
or biomass/area of organisms, individual organism
size, or species richness/area) and must have quanti-
fied the variable(s) either (1) inside and outside the
reserve, (2) before and after reserve implementation,
or (3) inside and outside the reserve both before and
after implementation. Throughout the text, tables, and
figures, density refers to numerical density, not other
density measures such as biomass.

The resulting database contains 149 peer-reviewed
scientific publications published between 1977 and
2006 of 124 different marine reserves located in 29
countries (Fig. 1). Because some reserves were studied
in more than one publication and some publications
studied multiple reserves, the database includes 221
‘studies.’ For most of the reserves in the database (n =
108), we were able to find a reliable estimate of its area
(km2). We classified each reserve as being located in
either a temperate (n = 53) or tropical (n = 71) ecosys-
tem based on latitude, region, and habitat.

For each study, we extracted quantitative data from
text, tables, and figures for the 4 biological variables
inside and outside the reserve, before and after imple-
mentation, or inside and outside the reserve before
and after implementation. Data were extracted at the
most aggregated taxonomic level available, even if the

35

Fig. 1. Marine reserves (d, n = 124) for which peer-reviewed scientific data are available (comment callouts indicate the number 
of reserves studied in different areas)
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level of taxonomic resolution differed within or among
studies. For example, if a study reported data for par-
ticular fish families in addition to species level data for
other fish families, all of these data were extracted (but
species-level data for a fish family for which family-
level data were reported would not be extracted). If a
study reported data in categories for both the reserve
and control area (e.g. by depth, habitat type, or organ-
ism size classes), these values were averaged into sin-
gle values. If multiple time steps of data were reported
for an Outside/Inside comparison, we used the most
recent data because they represent the longest dura-
tion of protection. In order to be used as a before/after
or Before/After/Inside/Outside comparison, ‘before’
data must have been collected no later than 3 mo after
reserve establishment. If data were collected at multi-
ple times before reserve implementation, the data from
the ‘before’ time steps were averaged unless there was
an obvious trend prior to implementation (in which
case the most recent data prior to implementation were
extracted). We always used the most recent ‘after’ data
to represent the longest duration of protection.

For algae and invertebrates, in addition to extracting
data at the most aggregated taxonomic level, we also ex-
tracted data at the least aggregated taxonomic level
available (i.e. ideally at the species level, but genera
level or higher if species data were not reported). We as-
signed each algal datum to a morphological functional
group, using a modified version of the categories devel-
oped by Steneck & Dethier (1994): crustose algae, fila-
mentous algae, articulated calcareous algae, corticated
foliose algae, corticated macrophytes, and leathery
macrophytes. For the invertebrate data, we assigned
each datum to a phylum and a lower taxonomic group
(Table 1). We also classified the invertebrates based on
characteristics that might influence the effect of reserve

protection on biological metrics, including target status,
trophic level, larval dispersal potential, and adult mobil-
ity (Table S2, available at www.int-res.com/articles/
suppl/m384p033_app.pdf). These data were examined
in algae-only and invertebrate-only analyses to deter-
mine characteristics of these taxa that may mediate a re-
serve effect.

To quantify the effect of reserve protection using a
comparable metric across studies, we calculated res-
ponse ratios of the 4 biological variables as (1) the ratio
of Inside to Outside, (2) the ratio of After to Before, or
(3) the ratio of After to Before within the reserve, con-
trolling for temporal changes outside the reserve
([After-Inside/Before-Inside]/[After-Outside/Before-
Outside]). Using the extracted data, we calculated
response ratios within each study for each biological
variable. When data were extracted for multiple taxa
in a given study, we then averaged these response
ratios to determine the overall (study) ratio for all taxa
examined, regardless of how many species/taxa were
studied. Overall (study) ratios represent from one to
several hundred species depending on the study. Fur-
thermore, if a study reported data separately for more
than one of our broad taxonomic groups (fishes, inver-
tebrates, and algae), we calculated an average for each
group first and then averaged these group values to
determine the overall ratio. This was done to give the
best estimates of community-level responses; although
in very few cases did this procedure yield a different
value than the value obtained by averaging all data
without calculating taxonomic group averages first.

Some reserves have been the subject of numerous
published studies. We did not want to bias our analyses
in favor of the most frequently studied reserves, so we
calculated the average reserve ratio from all of the
study ratios (and again for taxonomic group, algae-
only, and invertebrate-only study ratios) for reserves
that were the subject of more than one study. We chose
to calculate a reserve average rather than using the
most recent study because often different studies of the
same reserve varied in the taxa measured, the survey
methods used, or in the investigators conducting the
research. For reserves that were the subject of a single
study, the reserve ratio is equivalent to the study ratio.
We converted the ratios to percentage increases or
decreases to facilitate interpretation ([response ratio –
1] × 100; e.g. a density response ratio of 2.5 is equal to
a 150% increase). These procedures were repeated for
each of the 4 biological response variables.

The vast majority of the studies in our database
(>90%) compared data from inside versus outside the
reserve. Because reserves can have effects outside
their boundaries, using Inside versus Outside compar-
isons could potentially mask (because of larval export
or adult spillover) or exaggerate (because of displace-
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Table 1. Taxonomic classifications used for invertebrate-only 
analyses

Phylum Taxonomic group

Mollusca Gastropods
Bivalves
Cephalopods

Echinodermata Urchins
Sea cucumbers

Arthropoda Barnacles
Crabs
Hermit crabs
Lobsters

Cnidaria Hard corals
Soft corals
Anthozoa (hard and soft corals)
Hydrozoa

Porifera Sponges
Annelida Polychaetes

http://www.int-res.com/articles/suppl/m384p033_app.pdf
http://www.int-res.com/articles/suppl/m384p033_app.pdf
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ment of fishing effort or being placed in areas with bet-
ter habitat) a true positive reserve effect. To address
these issues, we examined the 23 studies in our data-
base with data inside and outside of the reserve, before
and after reserve implementation. For these studies,
we calculated response ratios of (1) Inside-Before ver-
sus Outside-Before to test whether reserves are placed
in ‘better’ locations, and (2) Outside-Before versus
Outside-After to assess whether we might be under- or
overestimating a reserve effect due to changes outside
of the reserve (Halpern et al. 2004).

For all statistical analyses, we used the log of each ra-
tio (Hedges et al. 1999) and the log of reserve size to
meet statistical criteria and conducted all statistical tests
using JMP 6.0 or SAS 9.1 (SAS Institute). We analyzed
these data to answer 3 primary questions: (1) Are den-
sity, biomass, individual size, or species richness signif-
icantly and consistently affected by reserve protection?
(2) Do changes in biomass, density, size, or richness in-
side a reserve differ in temperate versus tropical regions?
and (3) Do the effects of reserves vary by taxonomic
group or characteristics of the taxa under consideration?

RESULTS AND DISCUSSION

Biological effects within marine reserves

Examining the global data set, reserve protection re-
sulted in statistically significant increases of all 4 of the
key biological variables that we examined (Fig. 2). The
most dramatic increases occurred in biomass and den-
sity of organisms within reserves (respectively, 446 and
166% average increases, 194 and 61% median in-
creases). Individual size and species richness both
showed positive but more moderate responses to re-
serve protection (respectively, 28 and 21% average in-
creases, 17 and 15% median increases), a noteworthy
result given that both of these parameters have much
lower scope for change relative to density or biomass
(the product of increases in individual size and den-
sity). For example, a 20% increase in the average size
of individuals (reported as linear measurements, e.g.
total length or carapace width) is equivalent to a much
larger increase in individual biomass given the expo-
nential relationship between length and weight. Fur-
thermore, in addition to species richness having lower
scope for change than density or biomass, reserve
studies tend to quantify richness using species counts
over a relatively small sample area (e.g. transect) and
thus may often underestimate total species richness.

The global reserve effects presented here are consis-
tent with previous analyses of fewer reserves (Halpern
& Warner 2002, Palumbi 2002, Gell & Roberts 2003,
Micheli et al. 2004). Our average reserve mean res-

ponses are very similar to those of Halpern’s (2003)
smaller data set (present study vs. Halpern’s [2003] —
biomass: 446 vs. 352%; density: 166 vs. 151%;
organism size: 28 vs. 29%; species richness: 21 vs.
25%; Halpern 2003 percentages were calculated using
mean reserve responses and excluding the few studies
that did not meet the criteria used here, e.g. gray liter-
ature). Our substantially expanded data set illustrates
that these biological impacts are robust. However, it is
important to note the reserves in our data set may be
better enforced than most. Many existing reserves
have inadequate enforcement and high levels of
poaching and as a result will show smaller or no
responses to protection (e.g. Guidetti et al. 2008).

Although the vast majority of response ratios for all
metrics indicated positive changes in reserves, the
magnitude of the response varied enormously (Fig. 2).
This variability is not surprising given that there are a
host of factors that can affect both the magnitude and
direction of an individual reserve response, including
the species studied, characteristics of the reserve, and
activities occurring outside the reserve or inside the
reserve prior to protection. Furthermore, the distribu-
tion of responses had a pronounced skew for both bio-
mass and density, with a few very large positive val-
ues. For these 2 metrics, the average response was
substantially higher than the median response. Given
the large variance in all metrics and the skew in some,
the average response may be a poor predictor of the
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expected magnitude of response for any individual
species, group of species, or an entire community
within any particular reserve.

There was considerable variation in the number of
species examined among the studies in our database,
and studies examining more species might be expec-
ted to show lower responses because they average
across species with positive and negative responses.
However, there is no indication that our results are
biased by the inclusion of studies investigating only a
single or small number of species. We examined
response ratios as a function of the number of species
measured in each study; while there tends to be a
wider range of responses (higher variance) for studies
looking at a single or small number of species, the
mean response ratio for each biological measure is rel-
atively constant for studies looking at one or a few spe-
cies compared to studies measuring an increasing
number of species (p > 0.1 for all 4 biological variables)

(Fig. 3). Thus, given the consistency of positive res-
ponse ratios in this broad synthesis and their large
median and average values, there is strong evidence
that marine reserves have important positive biological
effects within their boundaries.

A more detailed examination of some of the higher
values in our data set illustrates some of the factors
that influence reserve responses, drawing particular
attention to how intense fishing and subsequently ex-
tremely low levels of studied species outside the
reserve can lead to exceptional positive responses. The
highest density datum (+2210%) is the Las Cruces
Reserve in Chile, which represents the average of 5
studies measuring a variety of taxa including intertidal
fishes, gastropods, and algae. Of these studies, the 2
with the highest values both quantified the density
of an economically important gastropod species,
Conchelepas conchelepas (loco), which was incredibly
rare everywhere prior to reserve implementation and
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outside the reserve after protection (Castilla & Duran
1985, Manriquez & Castilla 2001). The highest biomass
datum (+2800%) is the Bongalonan Reserve in the
Philippines, the subject of a single study measuring
large predatory fishes in the families Serranidae, Lut-
janidae, and Lethrinidae (Russ et al. 2005). As a third
example, the second highest biomass datum is the sub-
ject of a study that examined a single economically
important species; in the Governor Island reserve in
Australia, rock lobster biomass was documented to be
2300% higher inside the reserve, due to very low bio-
mass levels of lobster outside the reserve (Edgar & Bar-
rett 1999). While such extreme positive responses are
rare, half of the reserve sites show biomass changes
exceeding a 200% increase and density changes
exceeding a 60% increase.

Some reserves show decreases in key biological vari-
ables. Several of the decreases in density are from a
study in which percent cover of live hard coral was
quantified for numerous reserves in the Philippines
(Russ et al. 2005), with some reserves showing higher
coral cover outside the reserve. For example, live coral
cover was 64% lower inside the Canlucani Reserve
after 2 yr of protection. Given the slow growth rates of
hard corals, they may be slow to recover inside re-
serves. Although we did not examine the effect of
duration of protection in the present study, it has been
shown to be an important factor in explaining recovery
of previously overfished ecosystems, particularly for
slower growing species (e.g. Russ & Alcala 2004).

Species richness decreased in a number of reserves,
several of which are South African intertidal reserves
in the Transkei region (Hockey & Bosman 1986).
Hockey & Bosman (1986) found that intense human
collecting acts as a source of disturbance, promoting
coexistence among otherwise competing prey species,
thereby increasing intertidal richness in unprotected
areas. Whether we would predict an increase or de-
crease in species diversity in response to reserve pro-
tection likely depends on the level of human distur-
bance (i.e. fishing pressure) and predation in the
system. As expected from the intermediate distur-
bance hypothesis and community succession theory
(Connell 1978), diversity is likely to increase in re-
serves when fishing outside is more intense but may
decrease in reserves when fishing is moderate to light
outside the reserve. This is corroborated by studies
examining reef fish biomass, density, and diversity
over a gradient of human disturbance; with decreasing
human disturbance, biomass increases consistently
while density and diversity increase until top predators
accumulate a threshold fraction of the total biomass in
the system, leading to a decline in their prey (e.g.
Sandin et al. 2008). This suggests that biomass may
often be the best indicator of reserve performance.

Lastly, most of the data used in these analyses are
from inside versus outside comparisons, as is true of
other marine reserve meta-analyses. Thus, a general
positive reserve effect may be an artifact of reserves
being placed in better habitat or areas otherwise better
able to support larger numbers and sizes of organisms.
Alternatively, a positive reserve effect could be caused
by the reserve displacing fishing effort to areas out-
side. In other words, if the outside ‘control’ area is
faced with increasing fishing pressure due to reserve
establishment, decreasing numbers or biomass of tar-
get species in these fished areas would lead to a posi-
tive response ratio even if there has been no change
within the reserve.

Reserves do not appear to be placed in fundamen-
tally better locations based on a comparison of biologi-
cal measurements taken inside and outside of future
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reserves before they are established (Fig. 4, top panel).
While these response ratios are positive, they are not
statistically significant (1-sample, 2-tailed t-tests,
hypothesis mean log response ratios significantly dif-
ferent than zero, p > 0.2 for biomass, density, and
organism size and p = 0.06 for species richness). Fur-
thermore, if the large increases in biological measures
observed in the global data set (Fig. 2) were only a
result of reserve placement, we would expect a signif-
icant effect in the Inside-Before:Outside-Before analy-
ses at a power of 0.95 for density and 0.84 for biomass
given their sample sizes (power analysis using error SD
from the global analysis).

Areas outside reserves did not show declines in bio-
logical measures following reserve establishment. In
fact, outside areas either exhibited no change or, in the
case of biomass, a significant increase after the reserve
was in place (Fig. 4, bottom panel; p = 0.02 for biomass
and p > 0.1 for density, organism size, and species rich-
ness). This increase suggests that reserves may benefit
outside areas, possibly through the spillover of adults
or the export of larvae over the long term. Thus, the
global synthesis results may actually be underestimat-
ing the reserve effect given the large number of inside
versus outside comparisons and their potential to show
no change or slight increases outside reserves through
adult spillover or larval export. Of course, these results
must be interpreted with caution given that the sample
sizes for these Before-After-Inside-Outside compar-
isons are much smaller than those for the global data
set.

Marine reserves in temperate versus tropical 
environments

Despite the perception that many of the important
fished species in temperate waters are too mobile or
long-lived to be effectively protected by reserves
(Shipp 2003, Blyth-Skyrme et al. 2006), we found that
reserves in temperate environments tend to show
effects that are as large, and in some cases larger, than
those documented for reserves in the tropics (Fig. 5).
The effects of marine reserve protection on individual
size and species richness were similar across geo-
graphical regions (2-tailed t-tests, size: p = 0.759; rich-
ness: p = 0.133). For biomass and density, there was a
slight trend towards greater positive responses in tem-
perate systems (biomass: p = 0.076; density: p = 0.097).

Given the tendency for temperate species to have
higher adult mobility and longer larval dispersal rela-
tive to tropical species, it has been suggested that tem-
perate reserves need to be far larger than is politically,
socially, or economically feasible to meet stated man-
agement goals (Shipp 2003, Laurel & Bradbury 2006).

In our database, however, temperate reserves did not
differ from the tropical reserves in average area or in
their distribution of areas (t-test, p = 0.80; Kolmogorov-
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Smirnov test, p = 0.376; n = 108). When we examined
the studies for which a reliable estimate of reserve area
was available, we found that reserve size does not
appear to influence the relative magnitude of the
reserve protection response for any of the 4 key biolog-
ical variables, controlling for tropical versus temperate
environment (Fig. 6). In fact, all relationships between
reserve size and a response variable were non-
significant with the exception of organism size (p =
0.034), and this relationship was negative in both tem-
perate and tropical environments. Ecologically, a neg-
ative relationship between reserve size and biological
variables is counterintuitive. However, these negative
relationships are influenced by single outlier points
(the smallest reserve in both analyses), which exert
considerable leverage on the regressions (Cook’s D =
0.34 and 0.57; all other points, Cook’s D < 0.1). Both of
these points are reserves represented by a single
invertebrate species: a relatively fast-growing branch-

ing coral in a tropical Israeli reserve (Coral Beach
Reserve, 6 yr of protection at time of study) and an
exploited gastropod species in a temperate Chilean
reserve (Las Cruces Reserve, 11 yr). These data de-
monstrate that in some cases even small reserves can
result in dramatic increases in average individual size,
particularly when studies examine fast growing,
largely immobile species that are heavily impacted
outside the reserve. If these 2 points are removed, the
relationship between reserve size and organism size
response becomes non-significant (R2 = 0.032, p =
0.729, n = 43; effect tests, reserve size: p = 0.263, eco-
system: p = 0.702, interaction term: p = 0.722).

The finding that reserve responses are not mediated
by the size of the protected area is generally consistent
with prior reviews (Gell & Roberts 2003, Halpern 2003,
Micheli et al. 2004). However, the marine reserves in
our database (median size = 3.3 km2) and those of prior
studies tend to be relatively small, potentially limiting
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any meaningful tests of the effect of
reserve size on biological responses. Our
database also contains comparatively few
studies examining highly mobile or
migratory species for which reserve size
may be a more critical factor. Lastly,
given all the sources of variation influ-
encing the reserve response (e.g. charac-
teristics of the species studied, intensity
of exploitation outside the reserve), it
may also be difficult to detect an effect of
reserve size across such a wide range of
studies. Neither the present study nor
most of the prior reviews were able to
examine how the same suite of species
responds to reserves of different sizes, an
analysis that would provide a more defin-
itive answer. Edgar & Barrett (1997) stud-
ied 4 Tasmanian reserves and Claudet et
al. (2008) studied 12 reserves in the
Mediterranean and northeast Atlantic
and both found evidence that biological
responses may in fact scale with reserve
size. Importantly, our results, for which
the per unit area biological measures
scale linearly with reserve size, do not
suggest that reserve size is unimportant;
for example, a doubling of per unit area
biomass results in far more total biomass
in a large versus small reserve.

Differential effects of reserve protection
among taxonomic groups

Because reserve responses are likely to
vary for different types of organisms, we
examined reserve responses by broad
taxonomic groupings (e.g. algae, inverte-
brates, and fishes) as well as different
types of functional groups. Algal data did
not have adequate sample sizes for any of
the variables except density, for which
there was no significant overall effect of
reserves (Fig. 7). However, there was a tendency for
temperate reserves to show higher density response
ratios than tropical reserves (t-test, p = 0.089), with
tropical reserves actually showing an average de-
crease in algal cover. This difference in the effect of
reserve protection on algae in tropical versus temper-
ate reserves matches typical expectations of reserve
performance. Most tropical reserves include coral
reefs, where a decline in algal abundance can lead to
an increase in coral cover due to decreased spatial
competition between algae and corals. In this situation,

reserves can protect the herbivorous fishes that are fre-
quently targeted by fishing, which reduce algal cover
on the reef (Williams & Polunin 2001, Mumby et al.
2006). In contrast, temperate reserves, particularly
those in rocky reef habitats, often protect species that
prey on urchins (the dominant herbivore in these sys-
tems), leading to an increase in algal cover.

Invertebrates and fishes showed significant positive
average responses across all reserves for all 4 biologi-
cal measures, with the exception of invertebrate spe-
cies richness (Fig. 7). In comparison to fishes, inverte-
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brates tended to show higher but non-significant
responses for organism biomass and density (t-tests,
density: p = 0.119, biomass: p = 0.069). Invertebrate
densities showed negative responses in some reserves
in addition to strong positive effects in many others,
which may be the result of indirect effects and/or
trophic dynamics (e.g. Shears & Babcock 2003, Micheli
et al. 2005).

To investigate the combined influence of environ-
ment and taxonomic group on the effects of reserve
protection for density and organism size (biomass and
richness lacked adequate sample sizes), we included
environment (tropical versus temperate), taxonomic
group (algae, invertebrates, and fishes for density; in-
vertebrates and fishes for organism size), and the inter-
action term as predictor variables in a 2-way ANOVA.
The overall model for density was significant (p =
0.004), as were the individual effects of environment
and taxonomic group (effect tests; p = 0.005 and 0.003,
respectively). This result reflects 2 trends: (1) within
each taxonomic group, there was a tendency for den-
sity responses to be higher in temperate versus tropical
reserves (t-tests, algae: p = 0.089, n = 22; fishes: p =
0.191, n = 81; invertebrates: p = 0.063, n = 71); and (2) ir-
respective of latitude, the density response was signifi-
cantly different across taxonomic groups (ANOVA, p =
0.017), with invertebrates and fishes showing higher
positive mean responses than algae. In contrast, the en-
vironment–taxonomic group model was not significant
for organism size (p = 0.999), suggesting that increases
in individual size are consistent for fishes and inverte-
brates across reserves in different geographic locations
compared to the variation in responses that we docu-
mented for density. Lastly, there was no effect of lati-
tude on biomass and richness of fish (t-tests, biomass:
p = 0.332; richness: p = 0.272), which parallels our re-
sults for overall reserve response ratios.

Beyond the differences we document for these broad
taxonomic groups, individual species or groups of spe-
cies are likely to respond differently to reserve protection
based on a range of factors. For example, reserves are
more likely to lead to large positive effects for species
that are fished, intentionally or incidentally, or that are
otherwise harmed by activities occurring in unprotected
waters (Mosqueira et al. 2000, Cote et al. 2001, Micheli et
al. 2004). Other characteristics that have been shown to
mediate a reserve effect include trophic level (Micheli et
al. 2004) and body size (Mosqueira et al. 2000). These
more detailed analyses of species characteristics have
only been conducted for fish, revealing a need for simi-
lar investigations for algae and invertebrates. However,
it should be noted that species characteristics tend to ex-
plain a relatively low percentage of the variance in re-
serve responses (e.g. Micheli et al. 2004).

To assess the influence of algal and invertebrate
characteristics, we conducted algae-only and inverte-
brate-only analyses using data extracted at the finest
taxonomic resolution available. For algal functional
groups, no group showed a statistically significant
response to reserve protection (Table S3, available at
www.int-res.com/articles/suppl/m384p033_app.pdf)
and functional group was not a significant predictor of
algal response (Table 2). The most dramatic response,
albeit non-significant, was a ~500% average increase
in leathery macrophytes (Table S3). The lack of signif-
icant responses is likely due in part to the relatively
small sample sizes for algae, although it is also possible
that algae respond idiosyncratically to reserve protec-
tion. Lastly, algae are more commonly measured in
temperate reserves, particularly with adequate taxo-
nomic resolution to allow for functional group classifi-
cation. The only functional group for which there were
data from both tropical and temperate reserves was
corticated foliose algae, which increased in temperate
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Table 2. ANOVA for algal functional groups and invertebrate characteristics predicting mean reserve response (using log re-
sponse ratios). Pair-wise comparisons of target status categories for density indicated that ‘high’ and ‘not targeted’ are signifi-
cantly different, but neither of those differ from ‘low’ (Tukey’s HSD test). None of the trophic level categories for density are sig-

nificantly different in pair-wise comparisons (Tukey’s HSD test)

Characteristic Categories Biomass Density Organism size
p N p N p N

Algal functional groups Crustose algae; filamentous algae; 0.763 41
articulated calcareous algae; corticated 
foliose algae; corticated macrophytes; 
leathery macrophytes

Invertebrates
Adult mobility Sessile; limited mobility; mobile 0.663 16 0.578 96 0.372 39
Target status High; low; not targeted 0.190 17 0.008 86 0.495 36
Trophic level Herbivore; primary producer/filter 0.066 23 0.022 107 0.414 42

feeder; filter feeder; detritivore; omnivore; 
invertivore 

Larval dispersal potential Little/none; short distance; longer distance 0.351 63 0.139 36

http://www.int-res.com/articles/suppl/m384p033_app.pdf
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reserves (49% increase, n = 5 reserves) and decreased
in tropical reserves (15% decrease, n = 3 reserves),
although again these changes were not statistically
significant.

In the invertebrate-only analyses, mollusks and
arthropods showed significant increases as a result of
reserve protection (Table S4, available at www.int-
res.com/articles/suppl/m384p033_app.pdf; for density
and size for mollusks and for biomass, density, and size
for arthropods). Examining finer taxonomic groupings,
gastropods showed a significant increase in density
and size, crabs showed an increase in density, and lob-
sters increased significantly in biomass, density, and
size (Table S4). The dramatic increases documented
for species like lobster are not surprising given that
they are often heavily exploited and have relatively
high population growth rates, allowing them to
respond quickly to protection. In contrast, slow grow-
ing taxa such as hard corals did not show significant
responses. Some taxonomic groupings, such as cepha-
lopods and soft corals, had very small sample sizes and
thus we could not adequately evaluate the effect of
reserve protection for these groups.

When examining the effect of invertebrate charac-
teristics on reserve response, we found that target sta-

tus and trophic level were both significant predictors of
density responses (Table 2). As expected, highly tar-
geted species showed the largest response, and these
responses were relatively similar across tropical and
temperate reserves (Fig. 8). For trophic level, pre-
datory invertivores showed the largest increases
(Table S2). These results are consistent with those for
fish, where higher trophic levels tend to show greater
responses to protection, likely because higher preda-
tors tend to be targeted by fisheries. Importantly, while
these characteristics were significant predictors of
density responses, they explain a relatively small per-
centage of the variance (ANOVA, R2 = 0.111 and 0.120
for target status and trophic level, respectively). Adult
mobility and larval dispersal potential were not related
to reserve responses for any of the biological measures
(Table 2), although some of the movement and disper-
sal categories showed a significant effect of protection
(Table S2). These significant responses are likely due
to covarying characteristics that do influence a reserve
response. For example, many of the species in the data
set with longer distance dispersal are lobsters and
crabs, which are heavily fished species with high pop-
ulation growth rates. This makes them ideal candi-
dates for reserve protection irrespective of their disper-
sal characteristics.

The algal and invertebrate characteristics we inves-
tigated either were unrelated to a reserve response or
explained only a relatively small portion of the vari-
ance in responses (Table 2), with similar results found
previously for fishes (e.g. Micheli et al. 2004). There-
fore, it is possible that variation in reserve responses
for these species-level traits is driven by characteristics
of the reserve (e.g. age, size) and the context of where
the reserve is located, including intensity of fishing
before reserve establishment and outside of the re-
serve, enforcement, and the management regime out-
side of the reserve. It is also possible that the species-
level traits we were able to examine in this synthesis
do not adequately capture the ecological or life-history
traits that truly influence how these species respond to
reserves. Both reserve characteristics and species traits
are unfortunately difficult to assess but merit addi-
tional investigation.

CONCLUSIONS

Using a comprehensive global synthesis of ecologi-
cal effects within no-take marine reserves, we demon-
strate that reserve protection results in significant
average increases in density, biomass, organism size,
and species richness of the communities within reserve
boundaries. However, it is important to note that
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reserves will not result in significant increases in all
species, as demonstrated by the average decrease in
algal density in tropical systems and the numerous
negative invertebrate density data points. Addition-
ally, our synthetic analysis demonstrates that these
biological increases remain consistent as more scien-
tific information about the impacts of marine reserves
becomes available. Despite a perception that reserves
are more likely to be effective in tropical regions, our
results suggest that reserves result in positive effects at
all latitudes and regions. Thus, reserves are likely to
serve as globally important conservation and manage-
ment tools when management goals include at least
one of the biological responses reviewed in the present
study.

Our analysis also revealed numerous critical infor-
mation gaps. First, we note a general lack of peer-
reviewed reserve publications from certain regions of
the world. Reserves exist in these locations, but it is dif-
ficult to assess whether implementation and enforce-
ment are effective or whether these reserves can only
be considered ‘paper reserves.’ Coordinated efforts to
promote better dissemination of marine reserve sci-
ence will greatly increase our understanding of the
benefits and limitations of no-take marine reserves as
an effective means of conservation and management.
Similarly, the vast majority of reserves in our data set
protect nearshore rocky or coral reef habitat, indicat-
ing a lack of marine reserve studies (and potentially
marine reserves) in certain habitat types (e.g. soft sedi-
ment). This is particularly important for the interpreta-
tion of our comparison of tropical versus temperate
reserve effects — while we have strong evidence that
tropical and temperate reserves are similarly effective
for reef ecosystems, we do not know whether this
result holds for less structured habitat types.

For reserves that have been studied, there is a need
for increasingly rigorous data collection. (1) Studies in
which the reserve area is studied prior to and after
implementation both outside and inside reserve
boundaries are relatively rare. Such studies are critical
because they effectively control for natural ecosystem
dynamics and ecological variability on a regional scale
and can help detect spurious reserve effects (Fig. 4).
(2) Studies examining the same suite of species at
reserves of different sizes within a region will be
essential for better understanding how reserve effects
scale with reserve size. Recent reviews have not com-
pared data explicitly designed to investigate the effect
of reserve area, and thus it is not surprising that they
have found reserve effects to be constant across a
range of reserve sizes (but see Claudet et al. 2008).
(3) There is a need for accurate data and methods for
quantifying the intensity of fishing and other exploitive
activities outside of the reserve, management and reg-

ulations outside of the reserve, and intensity of fishing
inside the reserve prior to establishment, all of which
may affect the response documented within a 
particular reserve, and which could thus help to
explain the large amount of variation in reserve res-
ponses globally. The strong positive biological res-
ponses that we have documented around the world
indicate that we can move past questions of reserve
impacts across latitudes and taxonomic groups, and
shift the focus to increasingly complex questions about
the effects of marine reserves, both within and beyond
their borders.
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