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INTRODUCTION

Small mobile invertebrates (<10 mm) are abundant
in many coastal benthic habitats, where they play a
number of important ecological roles. One of these is to
provide a pathway for energy and materials to flow
from primary producers to predators such as small
fishes (Edgar & Moore 1986, Taylor 1998). The relative
magnitudes of fluxes through small mobile inverte-
brates in different habitats can be compared by esti-
mating community-level productivity, the rate at which
biomass is elaborated per unit area per time. Produc-
tivity is thus the rate at which organic matter is poten-
tially made available to predators such as fishes. Pro-
ductivity also constitutes a broader index of ‘ecological
activity’, because the rate of production is proportional
to rates of other metabolic functions such as food con-
sumption and nutrient excretion (Peters 1983).

A comparison of community-level productivities across
common coastal benthic habitats would indicate the

relative potential value of each habitat as a food source
for small benthic and demersal fishes (Edgar & Shaw
1995), as many feed primarily on mobile invertebrates
>0.5 mm (Jones 1988, Edgar & Shaw 1995). It would also
identify habitats, and their key characteristics, in which
small mobile invertebrates, by transforming large quan-
tities of energy and materials, may be having functional
impacts on community structure that would merit further
investigation using experiments (e.g. Duffy & Hay 2000).

To our knowledge, a broad survey of this kind has
not previously been done on a systematic basis for any
region, even though ‘snapshot’ allometric methods
(e.g. Edgar 1990a) make estimating the community-
level productivity of small mobile invertebrates fairly
straightforward. Comparing existing productivity data
between habitats is difficult and introduces additional
error to estimations, as published values were obtained
using a variety of methods and animal size classes and
were conducted in different locations and seasons (e.g.
Cusson & Bourget 2005).
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The present paper quantifies the composition, den-
sity, biomass and productivity of small mobile inverte-
brates in most commonly occurring intertidal and shal-
low subtidal (<20 m depth) habitats in temperate
northeastern New Zealand. Data are presented for 34
fine-scale habitats (e.g. seagrass sediment, intertidal
coralline algal turf) and are also amalgamated into 5
broad-scale habitats (intertidal estuary, intertidal
rocky reef, sandy beach, subtidal rocky reef and subti-
dal soft sediments) after scaling for the relative extents
of the fine-scale habitats nested within them. Based on
previous studies, we hypothesised that mobile inverte-
brate abundances, biomasses and/or productivities
would be higher in habitats that were: (1) food-rich
versus poor (e.g. Vetter 1995); (2) structurally complex
versus structurally simple, due to the provision of
refuge from predators or physical factors by the former
(e.g. Coull & Wells 1983); (3) rocky bottom versus soft
sediment, due to the former’s greater stability and suit-
ability for hosting of seaweeds (Ricciardi & Bourget
1999); and (4) subtidal versus intertidal, due to the
harsher and more variable physical environment of the
latter.

MATERIALS AND METHODS

Study sites. Composition, density, estimated bio-
mass and estimated productivity of all mobile inverte-
brates retained on a 0.5 mm mesh sieve but small
enough to pass through an 8 mm sieve were surveyed
within all commonly occurring coastal habitats, rang-
ing from the high tide mark to 20 m depth on the
northeastern coast of New Zealand (see Fig. 1 and
Appendix 1 for list of habitats). Some of the names we
gave to the fine-scale habitats require explanation.
‘Mangrove’ is Avicennia marina, ‘pneumatophores’
are the aerial roots of Avicennia marina, ‘seagrass’ is
Zostera capricorni, ‘Carpophyllum plumosum’ is a fu-
calean brown seaweed, ‘Ecklonia radiata’ is a small
laminarian brown seaweed (kelp), ‘Perna canaliculus’
is a large mytilid bivalve, ‘Xenostrobus pulex’ is a
small mytilid bivalve, and ‘Atrina zelandica’ is a large
pinnid bivalve. Location details and sampling dates
are listed in Appendix 1. Sandy beaches were cate-
gorised as ‘sheltered’ (total wind fetch <1000 km),
‘moderately exposed’ (1000 to 2500 km), and
‘exposed’ (>2500 km), with fetch estimated by sum-
ming measurements of straight line distances to the
nearest land mass made at 10° intervals. If there was
no land within 300 km of the study site on a given
bearing, that bearing was allocated a value of 300 km.
Wind characteristics were not factored into fetch cal-
culations as beaches shared the same coastline and
had similar aspects (north or east facing).

All sites were situated along an 80 km stretch of coast
line between Ocean Beach (35° 50’ 21’’ S, 174° 34’ 20’’ E)
and Wenderholm Beach (36° 31’ 51’’ S, 174° 42’ 50’’ E)
and were sampled between 27 September and
7 December 2006 (austral spring). Most habitats were
represented by 5 samples at each of 3 locations. All col-
lecting was done during daylight hours. Water temper-
ature was also recorded at each site on the date of
sample collection (measured at low water for intertidal
habitats). In the general equation by Edgar (1990a),
productivity scales to temperature with an exponent of
0.89, which is sufficiently close to 1 that temperature
does not have a great effect on estimated productivity
over the likely range of daily variation experienced in
most habitats sampled. For example, if the ‘true’ tem-
perature at a site was 20°C, then one-off measurements
of 15 or 25°C would give productivity estimates that
were 77 and 122% of the ‘true’ values, respectively.

At each site, all sample locations were haphazardly
selected from within the required habitat by placing
quadrats or choosing host substrata ‘blindly’. Although
this process was not strictly random, sample locations
were selected without prior knowledge of the fauna
likely to be inhabiting them, so the results should not
be biased. Where possible, habitat boundaries were
avoided, and sample locations were reselected to avoid
these if necessary. This was not possible for the rela-
tively small patches of seaweed wrack (see below).

Intertidal habitats. Intertidal habitats were sampled
at low tide. Soft sediments were collected using a corer
0.0085 m2 in area by 0.15 m depth. High-shore
stranded seaweed wrack was sampled using a larger
corer of 0.0287 m2 by 0.15 m depth to minimize error
attributable to edge effects when sampling highly
mobile animals in thick seaweed. Rocky shore habitats
were sampled from within a 0.0085 m2 corer and re-
moved from the rock using a metal scraper. Seagrass
blades were sampled separately from their associated
sediment cores by first cutting them off at the base and
removing all blades from the core area. Mangrove
pneumatophores were sampled from within the tree-
line on the seaward fringe of the mangal. All pneu-
matophores within a 0.1 m2 quadrat were counted,
then cut off at the level of the sediment surface.

Subtidal habitats. All samples were collected by a
SCUBA diver. Soft sediments were collected as per
intertidal sediments. Cores were immediately trans-
ferred to bags with 0.2 mm mesh clamped into one cor-
ner to allow drainage. Erect macroalgae were col-
lected by placing a similar bag over the entire plant
and removing the holdfast from the bedrock with a
knife. An exception to this was the kelp Ecklonia radi-
ata, which was initially bagged and cut away 10 mm
above the holdfast. The holdfast was then removed
from the bedrock and sampled separately (due to its
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large size). All macroalgal samples comprised a single
individual (except for coralline turf). Collection of ani-
mals from coralline turf was conducted using a suction
sampler (Taylor et al. 1995) with a sampling area of
0.00785 m2. Macroalgal densities were estimated by
counting plants within 10 haphazardly placed 1 m2

quadrats in stands of each species. Beds of the horse
mussel Atrina zelandica were sampled by placing a
bag over an individual and extracting it from the sedi-
ment. Each individual constituted a replicate, and den-
sities of A. zelandica were again estimated from ten
1 m2 quadrats placed within the mussel beds.

Seasonal samples. To determine whether differ-
ences among habitats were consistent over time, 4
diverse habitats (intertidal and subtidal coralline turf at
Matheson Bay, low shore moderately exposed sand at
Omaha Beach and intertidal mudflat in the Whanga-
teau Harbour) were sampled at 3 monthly intervals for
2 yr. Sampling methods were as described above.

Sample processing. Samples were preserved in 10%
formalin in seawater containing Rose Bengal vital stain
within a few hours of collection. Macroalgae, pneu-
matophores and horse mussels were later rinsed
repeatedly with fresh water until examination of a sub-
set of host substrates under a dissecting magnifying
glass showed no associated animals remaining (ani-
mals were retained on a 0.1 mm sieve).

Samples were first rinsed on a 0.5 mm sieve to remove
excess fine sediment and were then washed through a
log-series of sieves (8.0, 5.6, 4.0, 2.8, 2.0, 1.4, 1.0, 0.71
and 0.5 mm mesh sizes) to size-fractionate the animals
(Edgar 1990a). Animals deemed mobile in habit that
were retained on mesh sizes of 0.5 to 5.6 mm were
assigned to coarse taxonomic groups and counted. Bio-
mass and productivity of mobile invertebrates were
estimated using the general equations by Edgar
(1990a), which predict individual biomass (ash-free dry
weight, AFDW) as a function of sieve mesh size, and
production as a function of individual biomass and
water temperature. It is thus important to note that the
biomasses and productivities reported in our study are
estimates rather than direct measurements.

Fine-scale habitat extents. To estimate density, bio-
mass and productivity within broader-scale habitat
types such as ‘subtidal rocky reef’ or ‘sandy beach’, we
estimated the proportion of these habitats that were
comprised of each of the 34 fine-scale habitats sampled.
On rocky reefs this was done by recording the habitat
type at 1 m intervals along 5 haphazardly placed 50 m
transects. Three intertidal (Matheson Bay, Tawharanui
and Pakiri) and 2 subtidal reefs (Matheson Bay and
Ladder Bay), which were deemed to be representative
of the reefs included in the present study, were sam-
pled in this way (see Appendix 1). Intertidal estuary
and subtidal soft sediments were estimated using exist-

ing habitat maps of Whangateau Harbour (Hartill et al.
2000) and Omaha Bay (Taylor & Morrison 2008), re-
spectively, from which the estimated areal coverage of
each habitat type included in the present study was cal-
culated using the program ArcMap GIS. Average den-
sities, etc., within the fine-scale habitats were then
weighted by the relative extents of the fine-scale habi-
tats to generate estimates for broad-scale habitats.

Analyses. Graph error bars represent standard
errors. Standard errors are based on location means for
fine-scale habitats and on habitat means for broad-
scale habitats. The ordination technique non-metric
multidimensional scaling (MDS) was used to visualise
relationships between fauna in the different habitats at
the assemblage level. The analysis was run on a Bray-
Curtis dissimilarity matrix derived from fourth-root
transformed density data (Field et al. 1982), using
Primer V 6.1.6.

RESULTS

Density

Mean densities of mobile invertebrates varied by 3
orders of magnitude across fine-scale habitats (146 to
125 796 ind. m–2) (Fig. 1). Coralline turfs contained the
highest densities of mobile invertebrates, with subtidal
coralline turf being more densely populated than inter-
tidal coralline turf. The habitat with the next highest
density was seaweed wrack of moderately exposed
beaches. The least densely populated habitats were
mostly intertidal sands. Mean densities in broad-scale
habitats ranged from 1050 to 28 723 ind. m–2, with
habitats ranked as follows: subtidal rocky reef > inter-
tidal rocky reef > subtidal soft sediments > intertidal
estuary > sandy beach.

Estimated biomass

Rankings of fine-scale habitats by estimated biomass
of mobile invertebrates were similar to density. How-
ever, biomass was greatest in the moderately exposed
seaweed wrack (Fig. 2). Broad-scale habitats ranged in
mean biomass from 0.25 to 2.35 g AFDW m–2 and
ranked as follows: subtidal rocky reef > intertidal rocky
reef > intertidal estuary > subtidal soft sediments >
sandy beach.

Estimated productivity

Average estimated productivity varied by 3 orders
of magnitude across fine-scale habitats (0.0005 to
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0.22 g AFDW m–2 d–1; Fig. 3). Coralline turf and sea-
weed wrack were the most productive habitats, in
terms of small mobile invertebrates, whilst the inter-
tidal sands were among the least productive habitats.
Mean productivity of broad-scale habitats ranged
from 0.004 to 0.055 g AFDW m–2 d–1 and ranked as
follows: subtidal rocky reef > intertidal rocky reef >
intertidal estuary > subtidal soft sediments > sandy
beach

Seasonality

None of the 4 habitats showed strong seasonal pat-
terns of density, estimated biomass, or estimated pro-
ductivity, although there are indications of seasonality
for mudflats (density, biomass and productivity) and
for intertidal coralline turfs (biomass). Regardless, the
4 fine-scale habitats ranked consistently by density,
biomass and productivity over time (Fig. 4).
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Composition

Most fine-scale habitats (85%) were numerically
dominated by either gammarid amphipods or gastro-
pods (Fig. 5). Of these 2 taxa, gastropods were the
more numerous averaged across all habitats (mean:
4175 ind. m–2). Ostracods, polychaetes, isopods, tana-
ids and nematodes also had high densities when aver-
aged across all habitats (note that the small size of most
nematodes meant that the group was likely to have been
undersampled by our 0.5 mm mesh sieve). Some taxa
were abundant in only 1 or a few habitats (e.g. ostracods
and coleopterans). Soft-sediment habitats tended to be

numerically dominated by gammarid amphipods and
isopods, whilst hard-bottom communities were domi-
nated by gastropods and gammarid amphipods.

Assemblages of fine-scale habitats grouped clearly
in multivariate space according to broad-scale habitat
type, with the exception of 1 subtidal soft-sediment
fauna, estuarine channel hash (unique in being the
only subtidal soft sediment sampled from within an
estuary; Fig. 6). Soft-sediment habitats showed some
overlap, but were collectively distinct from the rocky
reefs. Subtidal and intertidal habitats were also fairly
distinct from one another.

DISCUSSION

To our knowledge this is the first study to systemati-
cally survey the composition and density, and to esti-
mate the biomass and productivity, of small mobile
invertebrates across a broad spectrum of coastal habi-
tats. Consistent with previous studies, habitats were
extremely variable in all these parameters (Edgar
1990b, Taylor 1998, Dolbeth et al. 2003). Density, bio-
mass and productivity each varied by some 3 orders of
magnitude, and, in general, habitats ranked similarly
according to each parameter. The consistency of rank-
ing of all parameters over 2 yr indicates that results
from this ‘snapshot’ survey are representative of longer
time periods.

The method by Edgar (1990a), used to estimate inver-
tebrate biomass and productivity in the present study,
has 2 shortcomings that potentially affect our results.
(1) There can be significant error around estimates of
productivity for individual species. This error should
cancel out in diverse assemblages, but may be signifi-
cant in assemblages that are dominated by a low num-
ber of species. In our study, only the seaweed wrack
habitat was dominated by a single species, the talitrid
amphipod Talorchestia quoyana, which contributed an
average of 64% of total productivity in this habitat.
However, production:biomass ratios of 4.7 to 5.7 esti-
mated using Edgar’s method for T. quoyana in our sam-
ples were similar to others obtained using the more ac-
curate method of cohort analysis on related species
from warm-temperate Atlantic and Mediterranean
coasts (5.9 to 7.5 for Talorchestia brito [Gonçalves et al.
2003] and 5.7 to 8.2 for Talitrus saltator [Marques et al.
2003]), indicating our results are robust for this species.
(2) Edgar’s method does not take into account variation
in productivity due to food supply, which may poten-
tially lead to underestimates of productivity when food
is abundant and overestimates when it is scarce. How-
ever, data by Edgar (1990a) indicate that the food sup-
ply generally has only a minor effect on the productivity
of individuals. For the 41 species used to generate
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Edgar’s general equation, 94% of the variation in log
productivity was explained by body size and tempera-
ture alone, leaving only 6% to be contributed by other
factors such as food supply. This implies that high pro-
ductivity in certain food-rich habitats is due to high
numbers of individuals growing at ‘normal’ growth
rates rather than to high growth rates of those individu-
als. Since Edgar’s 41 species were from a wide variety
of locations around the world, and lived in a range of
habitats, water temperatures and salinities, we believe
it is reasonable to assume that variation in food supply
also had a relatively minor effect on the productivity of
individuals at our sample sites and thus should not have
unduly influenced our results.

Coralline turf and stranded seaweed wrack sup-
ported the highest densities, estimated biomasses and
estimated productivities of small mobile invertebrates.
Coralline turfs have previously been found to host pro-
ductive invertebrate assemblages (Taylor 1998), which
support high densities of juvenile carangid, mullid and
sparid fishes (Choat & Kingett 1982). Seaweed wrack is
also inhabited by high densities of epifauna and in-

fauna (Ince et al. 2007, Lewis et al. 2007,
Coupland & McDonald 2008). Whilst ani-
mals in seaweed wrack are unlikely to be a
direct source of food for fishes due to their
height on the shore, their production can be
exported to the subtidal by predators such as
crabs (Lewis et al. 2007), and they also sub-
sidise adjacent terrestrial habitats (Polis &
Hurd 1995, Colombini & Chelazzi 2003).
Seaweed wrack can be deposited in vast
quantities (Colombini & Chelazzi 2003) and
is potentially one of the most biomass-rich
and productive habitats on earth (Coupland
& McDonald 2008).

Coralline turfs and seaweed wrack share
key characteristics likely to promote produc-
tive mobile invertebrate assemblages (Hy-
potheses 1 and 2). First, they provide abun-
dant food to small mobile invertebrates in the
form of detritus. Seaweeds can be very pro-
ductive (Mann 1973), but relatively little of
their production is consumed directly, with
the remainder eventually dispersed as detri-
tus (e.g. Branch & Griffiths 1988). Where it
accumulates in large quantities, it is exploited
by highly productive assemblages of small
crustaceans and other invertebrates, most
spectacularly in the thick mats of seaweed
detritus in a submarine canyon off California
(Vetter 1995). Seaweed detritus is often a
more valuable food than the living plant, due
to reductions in toughness and polar sec-
ondary metabolites and an increase in the ni-

trogen content (Robertson & Lucas 1983, Duggins & Eck-
man 1997). The seaweed wrack habitat is by definition
composed of seaweed detritus, while coralline turf traps
seaweed particles within its matrix (Hines 1982).

The structural complexity of coralline turf and sea-
weed wrack additionally provides shelter from preda-
tion and environmental stresses. Mobile invertebrates
inhabiting structurally complex environments are
often less vulnerable to predation than those associ-
ated with more homogenous structure (Heck & Tho-
man 1981, Coull & Wells 1983). Coralline turf provided
the best refuge from fish predation of a variety of tide-
pool habitats tested by Coull & Wells (1983). The fauna
of seaweed wrack is also well concealed from preda-
tors such as birds (Lewis et al. 2007). Complex struc-
tures have more attachment points and reduce water
flow, which facilitates resistance to dislodgement by
water movement (Edgar 1983, Taylor & Cole 1994).
Coralline turf is not only rigid and very finely struc-
tured, but it is also low lying to the substratum where
flow is disrupted and slowed within the benthic bound-
ary layer, and so further reduces the risk of dislodge-
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ment. Intertidally, structurally complex habitats may
provide better resistance to desiccation. Davenport et
al. (1999) reported fewer epifauna remaining in littoral
habitats of low fractal dimensions than in complex
coralline turf with high water retention during tidal
emersion.

At the broader scale, as predicted (Hypotheses 3
and 4), hard-bottom habitats (i.e. rocky reefs) were
more productive than soft-sediment habitats, and sub-
tidal habitats tended to be more productive, in terms of
mobile invertebrates, than intertidal habitats. The do-
minance by hard-bottomed habitats may be mediated
by seaweeds, which provide complex structure and
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Dashed lines define groupings of habitats at broad-scale level
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food to associated invertebrates, and typically require a
hard surface to anchor themselves to the seafloor (Lob-
ban & Harrison 1997). Ricciardi & Bourget (1999) noted
macrofaunal biomass to be greater on rocky shores
(which are generally more structurally complex) than
sedimentary shores in a global survey. The trend for
productivity of mobile invertebrates to be higher in
subtidal than intertidal habitats may be due to the less
stressful physical environment of the subtidal, which is
not exposed to the periodic desiccation and fluctuating
temperatures characteristic of intertidal habitats.

Overall, the results of our study were consistent with
the hypotheses listed in the ‘Introduction’, in that pro-
ductivity tended to be highest in habitats that were food
rich, structurally complex, hard bottomed and subtidal.

The density and productivity of mobile invertebrates
were lower than expected within seagrass beds and on
horse mussels Atrina zelandica. Seagrass often hosts
an abundant and productive fauna (Orth 1977, Fre-
dette & Diaz 1990, Beal et al. 2004); however, in con-
trast to many studies, we sampled relatively small and
patchy intertidal beds (the only ones available in our
region). In northern New Zealand, subtidal seagrass
beds tend to support more productive animal assem-
blages than do intertidal beds (M. Morrison pers.
comm.). Horse mussel beds are more structurally com-
plex than bare sediment beds; however, only mobile
fauna living directly on the mussel shell were sampled
in the present study, limiting the type of fauna
counted, the available space and the ability of the mus-
sels to provide refuge from predators and hydrody-
namic forces. Moreover, macroinvertebrate densities
are not always higher within the mussel bed sediment
(Cummings et al. 1998), and the influence that these
bivalves have on adjacent infauna can be complex and
affected by environmental gradients (Cummings et al.
2001, Norkko et al. 2006).

The 3 most abundant taxa we sampled (crustaceans,
gastropods and polychaetes) dominate the diets of
small benthic and demersal fishes (Russell 1983, Jones
1988, Holbrook et al. 1990, Edgar & Shaw 1995). With
the exception of the seaweed wrack, a highly produc-
tive habitat that supports birds and terrestrial animals
rather than fishes due to its position on the shore, the
productivity rankings of the fine- and broad-scale
habitats should thus be a useful indicator of their
potential values as food sources for small fishes.
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Habitat Location Coordinates Area sampled Depth Collection date Habitat 
(m2) (m below C.D.) (dd/mm/yy) extent (%)

Intertidal estuary
Mangrove mud Whangateau Hr 36° 18’ 58’’ S, 174° 45’43’’ E 0.0085 – 27/09/2006 8.0

Mahurangi Hr 36° 25’ 54’’ S, 174° 43’03’’ E 0.0085 – 05/10/2006 19.2
Whangarei Hr 35° 46’ 43’ S, 174° 26’08’’ E 0.0085 – 07/11/2006

Mudflat Whangateau Hr 36° 18’ 58’’ S, 174° 45’43’’ E 0.0085 – 27/09/2006 53.7
Mahurangi Hr 36° 28’ 18’’ S, 174° 43’58’’ E 0.0085 – 05/10/2006 13.7
Whangarei Hr 35° 46’ 43’’ S, 174° 26’08’’ E 0.0085 – 07/11/2006

Pneumatophores Whangateau Hr 36° 18’ 58’’ S, 174° 45’43’’ E 0.1 – 27/09/2006 8.0
Mahurangi Hr 36° 25’ 54’’ S, 174° 43’03’’ E 0.1 – 05/10/2006 19.2
Whangarei Hr 35° 46’ 43’’ S, 174° 26’08’’ E 0.0085 – 07/11/2006

Sandflat Whangateau Hr 36° 19’ 25’’ S, 174° 46’34’’ E 0.0085 – 06/10/2006 1.7
Mahurangi Hr 36° 25’ 54’’ S, 174° 43’03’’ E 4.4

Seagrass blades Mahurangi Hr 36° 25’ 54’’ S, 174° 43’03’’ E <0.5
Snells Beach 36° 25’ 18’’ S, 174° 43’57’’ E 0.0085 – 03/10/2006
Whangateau Hr 36° 20’ 54’’ S, 174° 45’48’’ E 0.0085 13/11/2006 4.1

Seagrass sediment Mahurangi Hr 36° 25’ 54’’ S, 174° 43’03’’ E <0.5
Snells Beach 36° 25’ 18’’ S, 174° 43’57’’ E 0.0085 – 03/10/2006
Whangateau Hr 36° 20’ 54’’ S, 174° 45’48’’ E 0.0085 13/11/2006 4.4

Appendix 1. Sampling dates, locations and areas sampled (n = 5 habitat–1 site–1). Habitat extent is the proportional coverage of
that fine-scale habitat type at the location listed (e.g. subtidal coralline turf at Mathesons Bay). Sites with no dates indicated were 

used for habitat extent estimations only; (–) indicates data are not appropriate for that habitat. C.D.: chart datum
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Habitat Location Coordinates Area sampled Depth Collection date Habitat 
(m2) (m below C.D.) (dd/mm/yy) extent (%)

Intertidal rocky reef
Bare rock Mathesons Bay 36° 18’ 30’’ S, 174° 47’54’’ E 0.0085 – 27/09/2006 78.4

Tawharanui 36° 21’ 49’’ S, 174° 49’35’’ E 0.0085 – 04/10/2006 76.7
Pakiri Beach 36° 15’ 32’’ S, 174° 45’02’’ E 0.0085 – 28/09/2006 35.5

Intertidal coralline Mathesons Bay 36° 18’ 30’’ S, 174° 47’54’’ E 0.0085 – 27/09/2006 21.2
turf Tawharanui 36° 21’ 49’’ S, 174° 49’35’’ E 0.0085 – 04/10/2006 19.3

Pakiri Beach 36° 15’ 32’’ S, 174° 45’02’’ E 0.0085 – 28/09/2006 13.2

Perna canaliculus Mathesons Bay 36° 18’ 30’’ S, 174° 47’54’’ E <0.5
Ocean Beach 36° 50’ 21’’ S, 174° 34’20’’ E 0.0085 – 07/11/2006
Pakiri Beach 36° 15’ 32’’ S, 174° 45’02’’ E 0.0085 – 28/09/2006 2.6
Tawharanui 36° 21’ 49’’ S, 174° 49’35’’ E 0.7

Xenostrobus pulex Pakiri Beach 36° 15’ 32’’ S, 174° 45’02’’ E 0.0085 – 28/09/2006 27.6
Mathesons Bay 36° 18’ 30’’ S, 174° 47’54’’ E 0.0085 – 19/10/2006 0.5
Ocean Beach 35° 50’ 21’’ S, 174° 34’20’’ E 0.0085 – 07/11/2006
Tawharanui 36° 21’ 49’’ S, 174° 49’35’’ E 3.3

Subtidal rocky reef
Carpophyllum Elephant Pt 36° 22’ 12’’ S, 174° 51’56’’ E – 2 15/11/2006
plumosum Mathesons Bay 36° 18’ 30’’ S, 174° 47’54’’ E – 3.5 12/10/2006 17.1

Ladder Bay 36° 17’ 18’’ S, 174° 49’01’’ E 6.7
Okakari Pt 36° 15’ 37’’ S, 174° 45’55’’ E – 1.5 02/11/2006

Subtidal coralline Elephant Pt 36° 22’ 12’’ S, 174° 51’56’’ E 0.00785 2 15/11/2006
turf Ladder Bay 36° 17’ 18’’ S, 174° 49’01’ E 21.3

Mathesons Bay 36° 18’ 30’’ S, 174° 47’54’’ E 0.00785 1.6 31/10/2006 17.1
Okakari Pt 36° 15’ 37’’ S, 174° 45’55’’ E 0.00785 1.5 02/11/2006

Ecklonia radiata Mathesons Bay 36° 18’ 30’’ S, 174° 47’54’’ E – 3.5 12/10/2006 23.7
holdfast Elephant Pt 36° 22’ 12’’ S, 174° 51’56’’ E – 4 15/11/2006

Ladder Bay 36° 17’ 18’’ S, 174° 49’01’’ E 21.3
Okakari Pt 36° 15’ 37’’ S, 174° 45’55’’ E – 1.5 02/11/2006

Ecklonia radiata Elephant Pt 36° 22’ 12’’ S, 174° 51’56’’ E – 4 15/11/2006
fronds Mathesons Bay 36° 18’ 30’’ S, 174° 47’54’’ E – 3.5 12/10/2006 23.7

Ladder Bay 36° 17’ 18’’ S, 174° 49’01’’ E 21.3
Okakari Pt 36° 15’ 37’’ S, 174° 45’55’’ E – 1.5 02/11/2006

Rhodophytes Ladder Bay 36° 17’ 18’’ S, 174° 49’01’’ E <0.5
Mathesons Bay 36° 18’ 30’’ S, 174° 47’54’’ E – 1.6 06/11/2006 6.6
Okakari Pt 36° 15’ 37’’ S, 174° 45’55’’ E – 1.5 02/11/2006

Subtidal rocky reef
Urchin barrens Elephant Pt 36° 22’ 12’’ S, 174° 51’56’’ E 0.00785 2 15/11/2006

Ladder Bay 36° 17’ 18’’ S, 174° 49’01’’ E 49.3
Mathesons Bay 36° 18’ 30’’ S, 174° 47’54’’ E 0.00785 0.5 31/10/2006 35.5
Okakari Pt 36° 15’ 37’’ S, 174° 45’55’’ E 0.00785 1.5 02/11/2006

Sandy beach
Intertidal sands Pakiri Beach 36° 14’ 38’’ S, 174° 43’41’’ E 0.0513 – 29/09/2006
(exposed) Ocean Beach (s) 35° 50’ 21’’ S, 174° 34’20’’ E 0.00256 – 07/11/2006

Ocean Beach (n) 35° 49’ 36’’ S, 36° 33’48’’ E 0.0171 – 07/11/2006

Intertidal sands Omaha Beach 36° 20’ 24’’ S, 174° 46’55’’ E 0.0513 – 06/10/2006
(mod. exposed) Wenderholm Bch 36° 31’ 51’’ S, 174° 42’50’’ E 0.0513 – 10/10/2006

Mathesons Beach 36° 18’ 30’’ S, 174° 47’54’’ E 0.0085 – 09/10/2006

Mod. exposed Mathesons Beach 36° 18’ 30’’ S, 174° 47’54’’ E 0.0287 – 25/10/2006 <0.5
wrack Wenderholm Beach 36° 31’ 51’’ S, 174° 42’50’’ E 0.0287 – 25/10/2006 <0.5

Intertidal sands Martins Beach 36° 27’ 00’’ S, 174° 45’51’’ E 0.0085 – 03/10/2006
(sheltered) Scandretts Beach 36° 26’ 34’’ S, 174° 46’26’’ E 0.0085 – 17/10/2006

Algies Bay 36° 26’ 00’’ S, 174° 44’39’’ E 0.0085 – 19/10/2006

Sheltered wrack Martins Beach 36° 27’ 00’’ S, 174° 45’51’’ E 0.0287 – 03/10/2006 <0.5
Scandretts Beach 36° 26’ 34’’ S, 174° 46’26’’ E 0.0287 17/10/2006 <0.5

Appendix 1 (continued)
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Habitat Location Coordinates Area sampled Depth Collection date Habitat 
(m2) (m below C.D.) (dd/mm/yy) extent (%)

Subtidal soft sediments
10 m deep sand Omaha Bay 36° 20’ 00’’ S, 174° 47’26’’ E 0.0085 10 20/10/2006 11.7

Pakiri 36° 14’ 57’’ S, 174° 44’38’’ E 0.0085 10 01/11/2006
Bostaquet Bay 36° 26’ 45’’ S, 174° 51’30’’ E 0.0085 10 14/11/2006

20 m deep sand Omaha Bay 36° 19’ 30’’ S, 174° 48’17’’ E 0.0085 20 20/10/2006 11.7
Pakiri 36° 14’ 39’’ S, 174° 44’56’’ E 0.0085 20 01/11/2006
Bostaquet Bay 36° 26’ 48’’ S, 174° 51’39’’ E 0.0085 20 14/11/2006

2 m deep sand Omaha Bay 36° 20’ 06’’ S, 174° 46’52’’ E 0.0085 2 20/10/2006 11.7
Bostaquet Bay 36° 26’ 28’’ S, 174° 51’28’’ E 0.0085 2 14/11/2006
Pakiri 36° 15’ 06’’ S, 174° 44’24’’ E 0.0085 2 04/12/2006

5 m deep sand Omaha Bay 36° 20’ 06’’ S, 174° 46’58’’ E 0.0085 5 20/10/2006 11.7
Pakiri 36° 15’ 03’’ S, 174° 44’31’’ E 0.0085 5 01/11/2006
Bostaquet Bay 36° 26’ 30’’ S, 174° 51’28’’ E 0.0085 5 14/11/2006

Estuarine channel Whangateau Hr 36° 19’ 13’’ S, 174° 46’40’’ E 0.0085 3.1 31/10/2006
hash Omaha Bay 36° 20’ 54’’ S, 174° 48’00’’ E 0.0085 13.3 31/10/2006 11.8

Atrina zelandica Bostaquet Bay 36° 26’ 30’’ S, 174° 51’28’’ E – 7 07/12/2006
Martins Bay 36° 26’ 50’’ S, 174° 46’01’’ E – 2 20/11/2006
Omaha Bay 36° 20’ 54’’ S, 174° 48’00’’ E 5.2

Appendix 1 (continued)
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