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INTRODUCTION

One of the key processes during community devel-
opment (in both primary and secondary successions) is
the colonization of empty spaces, as pioneer species
usually have profound positive or negative effects on
forthcoming species (e.g. Connell & Slatyer 1977).
Among the more common negative effects is competi-
tion for space between early and late successional spe-
cies (Huston & Smith 1987). The positive effects that

colonizers of bare surfaces can have on the late succes-
sional species generally include reducing otherwise
harsh abiotic or biotic conditions (e.g. salinity: Bertness
1991; desiccation: Bortolus et al. 2002; low-nutrient
conditions: Walker et al. 2003; herbivory: Alberti et al.
2008). However, a variety of biotic and abiotic factors
can affect these pioneer species and thus retard com-
munity development (e.g. Connell & Slatyer 1977, Far-
rell 1991). For example, herbivory upon colonizer
plants (that facilitate the establishment of other spe-
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cies) ended up reducing a primary succession after a
volcanic eruption (Fagan & Bishop 2000). Also, ecosys-
tem engineering processes (sensu Jones et al. 1994),
such as bioturbation caused by shrimp, can reduce the
colonization of bare patches by invasive seagrasses
(Dumbauld & Wyllie-Echeverría 2003).

In salt marshes, pioneer plant species that colonize
bare areas (generally by seeds) (Bertness & Ellison
1987, Bertness et al. 1992, Pennings & Bertness 2001)
play a key role in the dynamic of these areas, facilitat-
ing the establishment of competitively dominant spe-
cies, ultimately leading to the final closure of these
patches (Bertness 1991, Pennings & Bertness 2001).
Bioturbation can also exert strong influences on the
dynamic of bare areas. For example, burrowing crabs
can promote erosion in some marshes (Escapa et al.
2007), and polychaetes can dramatically reduce the
colonization of tidal flats (Paramor & Hughes 2005).
Recent evidence also shows the relevance of herbivory
in marshes, being particularly important in the mainte-
nance and expansion of bare areas (e.g. Silliman et al.
2005, Jefferies et al. 2006). However, when studying
the process of colonization of bare areas, the emphasis
has been on abiotic factors and plant–plant interac-
tions, while comparatively less attention has been paid
to the role of herbivores and bioturbators.

The SW Atlantic (from southern Brazil to northern
Argentinean Patagonia) salt marshes are mainly vege-
tated by Spartina densiflora, Spartina alterniflora, and
Sarcocornia perennis (e.g. Isacch et al. 2006). In some
of these marshes, the presence of Sarcocornia perennis
is essential to the successful establishment of Spartina
densiflora (Alberti et al. 2008). The burrowing crab
Neohelice (Chasmagnathus) granulata is the dominant
herbivore in the lowest reaches of these marshes (Bor-
tolus & Iribarne 1999, Alberti et al. 2007a). Simultane-
ously, this crab is an important bioturbator capable of
removing up to 2.4 kg m–2 d–1 of marsh sediment to cre-
ate and maintain burrows (Iribarne et al. 1997). Its bur-
rowing activity can have positive or negative effects on
marsh plants depending on the environmental context
(Daleo & Iribarne 2009). Crabs oxygenate the fine-
grain sediments, facilitating the colonization of
Spartina densiflora roots by arbuscular mycorrhizal
fungi leading to increased plant productivity (e.g.
Daleo et al. 2007). However, in certain coastal areas,
they accelerate the expansion rate of tidal channels,
increasing erosion in a Sarcocornia perennis salt
marsh (Escapa et al. 2007).

In this context, the general goal of the present study
was to evaluate the impact of herbivory and bioturba-
tion by Neohelice granulata on the recruitment and
survival of Sarcocornia perennis seedlings. In particu-
lar we evaluated whether: (1) crab presence reduced
the number of S. perennis seedlings; (2) this effect was

pre- and/or post-germination; (3) seed burial could
explain the pre-germination effect; and (4) herbivory
was capable of increasing post-germination mortality
of up to 1 yr old seedlings.

MATERIALS AND METHODS

Study sites. This study was conducted at 2 coastal
lagoon salt marshes at Mar Chiquita, Argentina,
(37° 44’ 20’’ S, 57° 25’ 20’’ W; 37° 44’ 57’’ S, 57° 26’ 09’’ W),
and one at Bahía Blanca, Argentina, (38° 44’ 02’’ S,
62° 19’ 07’’ W) between April 2004 and August 2008.
These marshes are irregularly flooded (10 to 15 times
per month), and they are mainly vegetated by Spartina
densiflora, Spartina alterniflora, and Sarcocornia
perennis (Isacch et al. 2006), and densely populated by
the burrowing crab Neohelice granulata (Bortolus &
Iribarne 1999, Alberti et al. 2007a). At these sites, the
first to colonize the mudflat is Sarcocornia Perennis,
which grows in circular patches and facilitates the
establishment of seedlings of the competitively domi-
nant Spartina densiflora by reducing the impact of
crab herbivory (Alberti et al. 2008). Each of the areas
occupied by these 2 species extends for >600 m paral-
lel to the shore, and is located on the edge between the
Spartina densiflora marsh and the tidal flat. In these
areas, there are up to 60 crabs m–2 (Botto et al. 2005),
and >75% of the surface remains unvegetated.

Role of crabs in control of Sarcocornia perennis
seedling abundance. To evaluate whether crab pres-
ence reduced the number of Sarcocornia perennis
seedlings, we established 10 plots at unvegetated
areas (50 × 50 cm) at each of the 2 Mar Chiquita
marshes and 20 plots at the Bahía Blanca marsh,
directly following seed dispersal (during April 2004).
Half of the units per site were assigned to control
(unmanipulated) treatments, while the other half were
assigned to crab exclosures (n = 5 per treatment at both
Mar Chiquita marshes, and n = 10 at Bahía Blanca).
Crab exclusion plots were surrounded by a 1 cm plas-
tic mesh fence 40 cm high. Gastropods (Canepuccia et
al. 2007) and all other invertebrates in the marsh easily
passed through the mesh (A. Canepuccia & O. Iribarne
unpubl. data). Even though vertebrate herbivores
could be excluded by the cages, rodents forage at
higher intertidal levels (A. Canepuccia & J. Alberti
unpubl. data). Fish could also be excluded, but there
are no herbivorous fish in this system (Cousseau et al.
2001). And although Micropogonias furnieri and Pogo-
nias cromis can sometimes bioturbate the intertidal
sediment when looking for prey, it occurs at much
lower intertidal elevations (P. Martinetto pers. comm.).
After 4 mo (August 2004) we counted the number of S.
perennis seedlings per plot and compared the number

56



Alberti et al.: Biotic interactions affect bare patch colonization

of seedlings between treatments using a t-test for
unequal variances (Welch approximation tc) for each
site. The tc is equal to the t value when sample sizes are
the same, but degrees of freedom decrease as the dif-
ference between variances of the 2 groups increases
(Zar 1999).

Pre- and post-germination effects. The negative
impact of crabs on seedlings could be due to pre-
and/or post-germination effects. To investigate these
possibilities, we conducted another experiment at one
Mar Chiquita marsh during 2005. We identified 20
plots at unvegetated areas (50 × 50 cm) directly follow-
ing seed dispersal that were randomly assigned to the
following treatments (n = 5): (1) post-dispersal exclo-
sures (fences as described above, deployed directly
following seed dispersal); (2) post-germination exclo-
sures (deployed right after early seed germination); (3)
cage controls (3 sided fences deployed right after seed
dispersal); and (4) controls (unmanipulated plots). In
August we counted the number of Sarcocornia peren-
nis seedlings per plot, and finally we compared the
number of seedlings between treatments using an
ANOVA on log-transformed data (Zar 1999). Here and
henceforth we used Tukey’s test after significant
ANOVA for a posteriori contrasts (Zar 1999).

Role of seed burial in pre-germination control. Bio-
turbators can affect seedling densities by burying
seeds (Paramor & Hughes 2005). To evaluate whether
this could be occurring in our system, we conducted an
experiment using glass beads at one Mar Chiquita
marsh. We established 15 unvegetated plots (50 ×
50 cm) after seed dispersal that were randomly
assigned to Treatments (1), (3) and (4), described in the
subsection above (n = 5). On the surface of each plot
we evenly distributed 65 g of glass beads, the most
similar to seeds in size and weight that we could find
(mean ± SD glass bead size: 0.575 ± 0.076 mm diam.;
glass bead weight: 2.281 ± 0.269 mg; seed size: 0.988 ±
0.052 mm; seed weight: 0.969 ± 0.043 mg). In August
we collected samples from the sediment surface of
each plot (5 cm diam. × 0.5 cm deep), then we sieved
the samples and counted the number of glass beads
per sample under 10× magnification. Finally we com-
pared the number of glass beads between treatments
using an ANOVA (Zar 1999). Given the differences in
size and weight between beads and seeds, the results
will only be used to show whether seed burial is a
plausible mechanism.

Role of herbivory in post-germination control. To
evaluate whether crab herbivory can reduce the sur-
vival of Sarcocornia perennis seedlings, we per-
formed an experiment using transplants and exclo-
sures at one Mar Chiquita salt marsh. We selected
40 S. perennis plants (approx. 1 yr old) from an adja-
cent and higher zone (without crabs), and we ran-

domly assigned them to the following treatments (n =
10 per treatment): (1) control (unmanipulated plants);
(2) transplant control (plants extracted and put back
in); (3) with crabs (transplants moved to the experi-
mental site described above, this paragraph); and (4)
crab exclosures (transplants moved to the experimen-
tal site and surrounded by fences as explained in the
above subsections). Transplants and the surrounding
sediment (10 × 10 × 10 cm) were carefully extracted
using a shovel. The experiment started in September
and lasted 2 wk, including the spring tides (because
crabs consume plants mostly when under water)
(Alberti et al. 2007b). At the end of this experiment
we measured the maximum height and the number
of branches of each transplant, and finally we com-
pared both dependent variables between treatments
using ANOVAs (one for each dependent variable)
(Zar 1999).

RESULTS

Role of crabs in control of Sarcocornia perennis
seedling abundance

Crab presence reduced the number of Sarcocornia
perennis seedlings by around 60% at Bahía Blanca
(tc = 2.8, df = 16, p < 0.05), and between 90% (tc = 4.2,
df = 4, p < 0.05) and 95% at Mar Chiquita (tc = 5.66, df =
4, p < 0.01; Fig. 1).

Pre- and post-germination effects

Post-dispersal and post-germination exclosures
revealed that crabs reduced the number of seedlings at
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Fig. 1. Sarcocornia perennis. Number of seedlings per experi-
mental plot (0.25 m2) in controls (black) and crab exclosures
(gray) at 2 marshes at Mar Chiquita and 1 at Bahía Blanca.
*Significant differences (p < 0.05) between treatments for a
given study site. Data are mean + SE; data is shown prior to
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both instances. Post-germination exclosures showed
62% fewer seedlings than post-dispersal exclosures,
while control and cage control plots showed 88%
fewer than post-germination and 95% fewer than post-
dispersal exclosures (F3,16 = 21.72, p < 0.001; Fig. 2).

Role of seed burial in pre-germination control

Crab presence and bioturbation activity strongly
reduced the number of glass beads on the top 0.5 cm of
the sediment. On average, controls and cage controls
showed 56% fewer glass beads than exclosures (F2,12 =
5.95, p < 0.05; Fig. 3). There were no differences in the
number of glass beads between control and cage con-
trol treatments (Tukey’s test: p = 0.89; Fig. 3).

Role of herbivory in post-germination control

The experiment using transplants showed that crab
herbivory can strongly affect the survival of seedlings
up to 1 yr old. After only 15 d, crab herbivory reduced
the maximum height of transplants by approx. 63%
and the number of branches by approx. 83% (respec-
tively, F3,36 = 4.16, p < 0.05; F3,36 = 14.89, p < 0.001;
Fig. 4). There were no differences between control and
transplant control treatments either in height (Tukey’s
test: p = 0.94; Fig. 4) or in the number of branches
(Tukey’s test: p = 0.98; Fig. 4). In fact, only 3 out of 10
transplants without exclosures were alive after those
2 wk, while 9 out of 10 survived inside exclosures.

DISCUSSION

Our results show that the crab Neohelice granulata
can dramatically reduce the number of Sarcocornia
perennis seeds that germinate, as well as their subse-
quent survival, by both bioturbation and herbivory.
Results suggest that the mechanism involved in the
control of seedlings after seed dispersal and before
germination is seed burial by bioturbation, and that
post-germination control involves herbivory. The study
of these processes is of crucial importance to under-
stand marsh functioning given that (1) many marshes
are inhabited by bioturbators (e.g. Bertness 1985, Irib-
arne et al. 1997, Paramor & Hughes 2004, Jefferies et
al. 2006); and (2) pioneer plants (such as S. perennis)
play a key role in the dynamics of disturbance-
generated patches (Bertness & Ellison 1987) usually by
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reducing physical stress and thus permitting the
course of successions and closure of these patches
(Bertness 1991, Pennings & Bertness 2001).

Potential effects of bioturbators on the germination
and seedling survival of marsh plants

Many marshes throughout the world are inhabited by
bioturbators. The polychaete Nereis diversicolor is found
in Northern Europe and is an important source of mortal-
ity and erosion of Salicornia spp. salt marshes (Paramor
& Hughes 2004, but see Morris et al. 2004). And it has
been suggested that they can delay the colonization of
bare surfaces through seed burial (Paramor & Hughes
2005). In Canada, when grubbing for roots and rhizomes,
the lesser snow geese Chen caerulescens caerulescens
destroy all vegetation cover and heavily disturb the sed-
iment, producing extensive bare grounds that remain
unvegetated for several decades (Jefferies et al. 2006).
But bioturbators can also positively affect marsh plants:
along the East Coast of United States, the fiddler crab
Uca pugnax increases the productivity of Spartina al-
terniflora by oxygenating the sediment with their bur-
rows (Bertness 1985). Similarly, the increased oxygena-
tion caused by Neohelice granulata burrows is a possible
cause of increased production of seeds by Spartina den-
siflora (Bortolus et al. 2004), and also facilitates the colo-
nization of Spartina densiflora roots by mycorrhizal
fungi, leading to higher plant productivity in southwest-
ern Atlantic marshes (Daleo et al. 2007).

Sexual reproduction of marsh plants is considered to
be unimportant for system functioning (Pennings & Bert-
ness 2001). However, in certain contexts, such as the re-
vegetation of large bare patches (Bertness 1991, Pen-
nings & Bertness 2001) or the invasion of new habitats
(suggested by Castillo et al. 2000), sexual reproduction
can play an essential role. So much so that some marshes
seem to be limited by the number of seeds, given that the
artificial addition of seeds led to increased plant cover
(Rand 2000). However, harsh abiotic conditions such as
salinity or desiccation can dramatically reduce seedlings’
success (Bertness et al. 1992, Bertness & Yeh 1994), and
that is why positive interactions are so important during
these early stages of development (Bertness & Yeh 1994,
Callaway & Walker 1997). The present study highlights
the importance of considering biological stress factors
when analyzing the success of the sexual reproduction of
marsh plants, especially if we take into account that
many marshes throughout the world are inhabited by
bioturbators that can have profound impacts on the dy-
namics of these systems.

Our results do not allow us to disentangle whether
the pre-germination effect is due to bioturbation and/
or seed predation. However, the mounds produced by

crabs, when they create and maintain burrows, contain
a larger amount of Spartina densiflora seeds than the
surrounding area (Canepuccia et al. 2008), suggesting
that seed predation may not be very intense. This evi-
dence, coupled with our experimental results showing
that burial can be very important, makes us believe
that most of the pre-germination effect is due to biotur-
bation and not due to seed predation. However, further
experiments are needed to confirm this process.

Bioturbation, herbivory, and succession dynamics in
bare areas

Connell & Slatyer (1977) identified 3 models of suc-
cession during community development where early
successional species can have either a positive (facili-
tation), neutral (tolerance), or negative (inhibition) ef-
fect on the establishment of later species. Regardless of
the model, the current conception of plant secondary
succession explains successional patterns as an effect
of competitive replacement of colonizing species (i.e.
fast-growing, high dispersers are the first to colonize
disturbed zones but, after some time, they are replaced
by slow-growing, competitively superior species that
do not disperse so effectively; see Huston & Smith
1987, Tilman 1988). This bottom-up conception of sec-
ondary succession is based on the trade-offs between
dispersion capacity and competitive capacity (Tilman
1988). Nevertheless, there is growing evidence that
consumers can have great effects on plant successions
(Schmitz et al. 2006), thus affecting plant community
structure and species diversity (Buschmann et al.
2005). The impact of herbivores on the succession rates
and community development varies depending on her-
bivore preferences and the succession model (Farrell
1991). Selective foraging can greatly decrease the bio-
mass of target species and, when competitively supe-
rior species are preferred, herbivory is expected to
slow down the succession (Farrell 1991) and to in-
crease plant diversity by creating temporal gaps or
decreasing dominant plant growth, preventing less
competitive species from being overgrown (Olff &
Ritchie 1998).

In related systems such as rocky shores, mangroves,
and marshes, for example, herbivores can determine
the final composition of species in those formerly bare
areas (Farrell 1991, Clarke & Kerrigan 2002, Bromberg
Gedan et al. 2009). In addition to herbivory, bioturba-
tion can also have profound impacts during the course
of successions that start in bare areas. In seagrass beds
and marshes, bioturbation can prevent plant coloniza-
tion of bare areas, acting mostly during the seedling
phase (Dumbauld & Wyllie-Echeverría 2003, Paramor
& Hughes 2005). Similarly, in our study system, Sarco-
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cornia perennis colonizes the mudflat and facilitates
the establishment (through seedlings) of the competi-
tively dominant Spartina densiflora by reducing the
impact of crab herbivory (Alberti et al. 2008). This
facilitative succession is essential for the expansion of
the Spartina densiflora marsh onto the mudflat, as the
asexual expansion is extremely slow due to a combina-
tion of both physical stress and crab herbivory (Alberti
et al. in press). However, these results are not univer-
sal, as similar species in different environmental sce-
narios may not have the same impacts. For example,
grazing has long been recognized as a key factor in the
dynamic of bare areas along rocky shores (Farrell
1991); however, extremely harsh abiotic conditions can
preclude grazing (Bertness et al. 2006). Similarly, in
salt marshes, herbivory can prevent the colonization of
bare areas by Spartina densiflora only when physical
stress is not very intense (Alberti et al. in press).

Consequences of limiting pioneer plants

In environments of high biological or physical stress,
pioneer plants usually play a key role for the rest of the
community, facilitating the establishment of late-suc-
cessional species (Connell & Slatyer 1977, Fagan &
Bishop 2000, Pennings & Bertness 2001). For example,
wrack deposition frequently occurs in marshes, killing
the underlying vegetation and thus forming large bare
patches (Brewer et al. 1998) that sometimes become
hypersaline (Bertness 1991, Pennings & Bertness
2001). Asexual colonization of these bare patches is ex-
tremely slow (Bertness 1991), and then a fast closure
can only occur when pioneer plants (tolerant to harsh
abiotic conditions) colonize these patches and facilitate
the establishment of other species through changes in
the physical environment (Bertness & Ellison 1987,
Bertness 1991). Northwestern Atlantic coastal marshes
usually show these disturbance-generated patches
that are completely recovered in a couple of years,
largely due to the sexual reproduction of marsh plants
(Bertness & Ellison 1987). However, at the middle
marsh of the Mar Chiquita coastal lagoon, these
patches can remain completely bare for more than 5 yr
(J. Alberti unpubl. data). Even though the causes were
not evaluated, it is possible that bioturbation combined
with herbivory delays the recolonization of these bare
patches. Analogous situations occur in many other
stressful environments. For example, herbivore insects
retard the expansion of a N-fixing pioneer plant at
Mount St. Helens in the United States, delaying the re-
covery of the disturbed areas (Fagan & Bishop 2000).
Along rocky shores, the consumption of colonizers af-
fects the successional speed and can lead to com-
pletely different communities (Farrell 1991). Asexual

reproduction is not as efficient as sexual reproduction
in the recovery of disturbed areas in physically stress-
ful environments such as salt marshes (Pennings &
Bertness 2001). Even though we did not evaluate it
here, biological stress may reduce the efficiency of
sexual reproduction, comparatively increasing the im-
portance of not-so-efficient asexual reproduction, and
thus delaying full recovery. Clearly, limiting the settle-
ment of pioneer species has consequences than can go
much further than the direct interaction between the
bioturbator/ herbivore and the plant, given that it will
probably affect the dynamic of the system.
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