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INTRODUCTION

Marginal coral reefs and communities exist near or
beyond the normal limits of reef distribution, close to
the environmental thresholds for coral survival (Kley-
pas et al. 1999). Marginal reefs are defined as those
where 3-dimensional, biologically influenced build-
ups of coral framework and carbonate sediments have
occurred. Marginal communities, however, are assem-
blages of organisms growing on substrates other than
their own and which do not produce framework. The

lack of framework in these communities is attributable
to a lack of significant accretion of calcium carbonate
(Buddemeier & Smith 1999), with corals in these com-
munities attaching to hard substrata, appearing as iso-
lated colonies growing on exposed bedrock (e.g. Mac-
intyre 2003). Coral communities can have similar
species diversities to true coral reefs (>140 spp; Shep-
pard & Sheppard 1991, Perry 2003), though in most
cases species diversities are much lower (<90 spp; Har-
riott & Banks 2002, Moyer et al. 2003, Nozawa et al.
2008).
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Marginal reefs and communities frequently occur at
high latitudes (subtropics) i.e. above 25° S and 25° N,
with well known examples being those of the Persian
Gulf, Bermuda, Japan and Lord Howe Island, Aus-
tralia. Development and coral species diversity of these
high-latitude assemblages, at both biogeographic and
local scales, are largely regulated by low mean annual
and seasonally variable temperatures and irradiances,
and the low aragonite saturation state (Buddemeier
1997, Kleypas et al. 1999). Other parameters with local
importance include wave exposure (Harriott et al.
1994, Benzoni et al. 2003, Nozawa et al. 2008), low and
variable salinity and high turbidity (Harriott & Smith
2002, Manzello & Lirman 2003). Macroalgae play a
dominant role in many of these high latitude coral
assemblages, their rapid growth out-competing corals
for space (Johannes et al. 1983). Further, many high
latitude coral assemblages are small and isolated (e.g.
Babcock et al. 1986, Brook 1999, Hughes et al. 2002),
meaning that they are likely to be largely self-seeding
in terms of larval supply (Ayre et al. 1997).

Patterns of diversity and distribution in high latitude
coral communities, which exist close to the en-
vironmental limits of survival, are poorly documented.
Given that these communities occupy a transitional
tropical–temperate ecological niche, studies of such
sites, and their relatedness to coral communities and
reefs elsewhere can provide important information
about the processes underlying the distribu-
tional limits of coral species and coral reefs
(Harriott & Banks 2002). Further, they can
provide essential information for conservation
and management strategies, which need to
take into account physical and biological
factors that are important in high-latitude sys-
tems (Harriott & Banks 2002).

To address the patterns of coral diversity
and distribution at high latitudes, we focused
on one of the South Pacific’s high-latitude
coral community sites, the Kermadec Islands
Marine Reserve, 750 km off the northeast
coast of New Zealand’s North Island (Fig. 1)
and 3000 km from the Great Barrier Reef
(GBR). The isolation of the Kermadec Islands,
coupled with the lack of terrestrial inputs or
a resident human population, means that
they are relatively free from anthropogenic
stressors to which other reefs are exposed,
such as concentrated over-fishing or ter-
restrial runoff. However, little is known of
the biodiversity variability within the marine
reserve (among islands, or among sites within
islands), which spans a range of latitudes
(29 to 31° S) and sea surface temperatures
(14 to 18°C annual minima, 23 to 26°C annual
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Fig. 1. (a) Kermadec Islands, northeastern New Zealand. Inset: 8 sites
within the Kermadec Islands Marine Reserve; for site abbreviations see
Table 1. Arrows: major oceanic currents (Schiel et al. 1986); (b) location for
which data from published records were used to analyse regional affinities
of Kermadec Island coral community. Global site abbreviations: GBR,
Great Barrier Reef (N, North; C, Central; S, South); GNE, Gneering Shoals;
JUL, Julian Rocks; COOK, Cook Island; SOL, Solitary Islands; SWR, South-
west Rocks; LHI, Lord Howe Island; ELI, Elizabeth Reef; HA, Houtman
Abrolhos; MOZ, Mozambique; SA, South Africa; PER, Persian Gulf; GAQ, 

Gulf of Aqaba; IKI, Iki Island, Japan; TSU, Tsushima Island, Japan
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maxima; Francis et al. 1987). The lack of a compre-
hensive study of temporal and spatial variation in
community structure of the benthic (coral and non-
coral assemblages) at the Kermadec Islands is due to
their inaccessibility; their isolation, and intense wave
exposure (Gardner et al. 2006). We aimed to (1) assess
the spatial patterns of coral distribution in terms of
cover and species diversity and richness at this high
latitude location; (2) determine if different assem-
blages exist between neighbouring sites at the Ker-
madec Islands and how these communities vary with
latitude; and (3) identify similarities between coral
diversity at the Kermadec Islands and other coral
communities and reefs to quantify the contribution of
latitude in governing coral species distributions. The
latter point is developed in analyses of published data
of coral biodiversity at a latitudinal range of Aus-
tralian sites, and marginal sites on a global scale,
including high latitudes.

MATERIALS AND METHODS

Study area. The study was conducted at 2 locations
at the Kermadec Islands, 120 km apart and situated
between 29° and 30° S, in November 2004. The 11
islands form 3 discrete groups (Fig. 1), the northern
group around Raoul Island (29° 12’ S, 177° 55’ W), the
middle group around Macauley Island (30° 14’ S,
178° 25’ W), and the southern group of Curtis and
Cheeseman Islands (31° 21’ S, 178° 41’ W). Although
corals are present at the southern group, the area
was not surveyed, because it was inaccessible at the
time of study. As the islands are volcanic in origin,
sites were characterised by steeply sloping rock sub-
strata dominant in the shallow sub-tidal zone down
to 10 m. The Kermadec Islands also feature gently
sloping reef areas of smooth rock and large boul-
ders common to depths of 20 to 30 m. Eight of the
9 sites surveyed are situated in the northern group,
which includes Raoul, Meyer, North Chanter, South
Chanter, West Chanter, Napier and Nugent Islands.
One site was located close to Macauley Island in the
middle group. Sites were chosen on the basis of
accessibility and repeatability.

Equidistant between temperate New Zealand and
tropical Tonga, the Kermadec Islands are one of the
few subtropical island groups in the western South
Pacific Ocean, and form New Zealand’s largest
marine reserve (748 000 ha). The main oceanographic
influence on the Kermadec Islands is poorly known
(Gardner et al. 2006), but is suggested to be either
from the East Australian Current, flowing from New
South Wales (eastern Australia) to Norfolk Island and
on to the Kermadec Islands (Marshall 1979, Schiel et

al. 1986), or from the northwest route of New Cale-
donia, Fiji and Tonga (Fig. 1; Gardner et al. 2006).
Little is known of localised oceanographic patterns.
Previous surveys of benthic species diversity at the
Kermadec Islands have reported a mix of tropical,
subtropical and temperate species of Southwest
Pacific origin (Schiel et al. 1986, Brook 1999, Gardner
et al. 2006), with corals generally restricted to depths
of <30 m (Brook 1999).

Sampling. At each of the Kermadec sites, quantita-
tive benthic surveys were carried out at 4 depth
strata, 3–6, 6–9, 9–12 and 12–15 m, consistent with
previous surveys (Schiel et al. 1986, Gardner et al.
2006). Sampling was conducted by photographing 16
haphazardly located quadrats of 50 × 50 cm (total
area sampled = 4 m2 per stratum) using a Canon
S60 camera. From the digital images, percent cover
(±SD) was determined using the 100 random dot
method for 9 benthic groups: sand/rubble, filamen-
tous/fleshy algae, encrusting red algae, hard coral,
soft coral, bryozoans, sponges, ascidians and ane-
mones. Corals present were identified to family and,
where possible, to species, and their percent cover
was recorded.

Regional affinities. For multivariate analysis of
coral community structure in relation to other geo-
graphic locations, data on scleractinian coral species
richness in the form of number of species per family
was collated from 18 additional locations. These
were 12 Australian regions or sites from the tropics
to subtropics (Fig. 1; 10 published by Veron 1993a,b
cited in Harriott & Banks 2002, the other 2 in Veron
& Marsh 1988, Oxley et al. 2004), and 6 marginal/iso-
lated sites from around the world: Tsushima Island
and Iki Island Japan (34° and 33° N respectively;
Sugihara & Yamano 2004, Yamano et al. 2004 re-
spectively), the Persian Gulf (26° N; DeVantier &
Pilcher 2000), the Gulf of Aqaba (28° N; Sheppard &
Sheppard 1991), South Africa (east coast, 26° S) and
southern Mozambique (27° S; both Riegl 1996). Coral
species counts from the present study for the Ker-
madec Islands were supplemented with records
from Brook (1999), who identified 8 additional spe-
cies. Where possible, percent coral cover, survey
depth, and average minimum and maximum annual
temperatures for the sites were noted. Most tempera-
ture data were collated from ReefBase GIS informa-
tion (http://reefgis.reefbase.org), with data for Japan
from Yamano et al. (2001).

Data analysis. Kermadec Islands: Mean (±1 SD) of
percent cover for each benthic category was estimated
for the 16 replicate quadrats at each site. Percent cover
of each coral species identified was estimated for each
quadrat, and means calculated for each site/depth stra-
tum. Total number of species per site was recorded.
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Significance of differences in coral cover (hard and soft
corals separately) between sites and depths was deter-
mined using a 2-way ANOVA test, following normality
(Kolmogorov-Smirnov test) and equal variance testing
(Levene’s test).

Multivariate analyses of similarities and differences
among sites and depths were performed on percent
cover of (1) all benthic categories and (2) scleractin-
ian coral species only. Data analysis was performed
using the PRIMER package v6.0 with permutational
multivariate analysis of variance (PERMANOVA)
add-on (Plymouth Marine Laboratory). All benthic
group and scleractinian coral species percent cover
values were pre-treated with a dispersion weighting
transformation in which the abundances of the differ-
ent species were differentially weighted on the basis
of their observed variability in replicate samples.
This method compensates for the spatial clustering
common in coral community studies (Clarke et al.
2006a). Similarities were calculated using the zero-
adjusted Bray-Curtis similarity measure (Bray & Cur-
tis 1957) to account for samples with depauperate
assemblages (see Clarke et al. 2006b). PERMA-
NOVA, with 9999 permutations, was used to deter-
mine differences in coral assemblages between sites
and depths within sites, and separately between sites
at each depth strata. This analysis is unconstrained
by the assumptions of normality and homogeneity of
variance that limit the use of traditional MANOVA,
and relies on comparing the observed value of a
test statistic (pseudo F-ratio) against a recalculated
test statistic generated from random re-ordering
(permutation) of the data (Anderson 2001). Patterns
in the data were visualised using a canonical ana-
lysis of principal coordinates (CAP), and similarity
percentage analysis (SIMPER) established the spe-
cies causing the dissimilarities between the majority
of sites and any outlying sites and depth combina-
tions.

Regional affinities: To gain insight into the re-
gional affinities of the coral families and diversity
patterns seen at the Kermadec Islands, multivariate
analyses of similarities and differences were con-
ducted on the total number of species in each family
present at each of the aforementioned Australian and
marginal locations, using the PRIMER software pack-
age. Analysis was conducted on untransformed and
4th root-transformed data, to identify the role of
dominant and rare families, respectively. Following
calculation of similarities using the Bray-Curtis simi-
larity measure, significant groupings in the multivari-
ate space at the 95% level were identified using the
similarity profile permutation test SIMPROF, with
SIMPER analyses used to assess the contribution of
each family to the similarities within clusters.

RESULTS

Kermadec Islands

We identified 17 coral species in this survey
(Table 1): 16 hard (scleractinian) corals and 1 soft coral
(Sinularia sp.). The most common species observed
were Montastraea curta, Hydnophora pilosa and an
encrusting Montipora sp. Small spatial scale geo-
graphical divisions were observed for some coral spe-
cies, with 1 species only found at the southern sites
(Rhizopsammia sp), and 3 limited to the northeast
region (H. pilosa, Tubastrea sp. and Dendrophyllia sp).
Coral colonies were generally small, their diameters
ranging from 20 (e.g. Cyphastrea serailia) to 1000 mm
for soft corals. Total number of scleractinian species
was greatest at the northernmost site of West Napier
Island (9), and lowest at the southernmost site of
Macauley Island (3). The soft coral Sinularia sp. was
present at all sites excluding Macauley Island.

Soft corals were less abundant than hard corals, with
an average (± SD) of 2.9 ± 11.9 versus 5.2 ± 13.9%
cover respectively, averaged over all depths at all sites.
Both hard and soft coral cover were significantly differ-
ent between sites (Fig. 2; hard: F = 9.7, p < 0.01; soft:
F = 13.9, p < 0.01). Southeast Denham Bay had the
greatest mean cover of hard corals (18%), with only
0.2 ± 0.9% hard coral cover recorded at Macauley
Island. Rocks Southwest Meyer had the greatest mean
soft coral cover (13 ± 26.5%; Table 1), with less than
1% recorded at East Denham Bay and the northern-
most site of West Napier Island.

Coral cover was less than macroalgal cover in all
sites surveyed. Macroalgae accounted for 57 to 94% of
the benthic cover (Southwest Meyer and Macauley
Island, respectively; Table 1). Filamentous/fleshy
macroalgae observed included genera such as Cauler-
pa, Enteromorpha, Codium and Corallina, with en-
crusting species such as Lithothamnion sp. and Apo-
phloea sp. also being common. Filamentous/fleshy
macroalgal cover declined with decreasing latitude,
accounting for only 36% of the benthic cover at West
Napier Island (29° S), compared to 94% at Macauley
Island (30° S) though it was highly variable between
neighbouring sites. For example, the 3 sites south of
Meyer Island ranged from 37 to 57% filamentous/
fleshy macroalgal cover, even though all were within a
20 km radius.

Both hard and soft coral cover were significantly dif-
ferent between depths within sites (Fig. 2; hard: F =
4.1, p < 0.01; soft F = 9.6, p < 0.01). Overall, mean hard
coral cover (±SD) was lowest in the 12 to 15 m zone (2 ±
2% of cover averaged over all sites), although the
2 sites around Parsons Rock had their highest recorded
coral covers in this depth zone (Parsons Rock = 8.2 ±
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12.5%, Outer Parsons Rock = 5.3 ± 14.1%). These
deeper assemblages around Parsons Rock were domi-
nated by Leptastrea sp. and Montastraea curta. M.
curta, Goniastrea favulus, and Hydnophora pilosa
were present at all depths surveyed, varying in cover
and presence by site. Pocillopora damicornis was only
present in the 3 to 9 m zone, at 0.2 to 3.4% of benthic
cover. Mean soft coral cover was greatest in the 9 to
12 m zone, averaging 7 ± 14% over all sites, with the
highest cover of 42 ± 38% being recorded at Rocks
Southwest Meyer. Lowest mean soft coral cover was
recorded in the 12 to 15 m zone (0.45 ± 0.8%), aver-
aged over all sites. Mean cover of filamentous algae
decreased with depth from 63.6 ± 18.9% in the 3 to 6 m
zone to 52.9 ± 17.3% in the 12 to 15 m zone.

Multivariate analysis of both benthic composition
and scleractinian coral species assemblages for the 9
sites (in 4 depth strata) around the Ker-
madec Islands revealed significant dif-
ferences among sites and depths within
sites (Table 2; PERMANOVA, p < 0.01
for all tests). However, only 13 of 36 and
8 of 36 possible site comparisons had
significantly different benthic composi-
tions and coral community structures,
respectively. Analysis of significant
differences in coral assemblages be-
tween sites at each depth revealed
the greatest variability between assem-
blages at the 3 to 6 m strata, with all
sites significantly different from each
other (Table 2). Least variability was ob-
served in the 6 to 9 m strata, with only

26 of the 36 site combinations showing significant dif-
ferences (Table 2). Canonical ordination shows a lack
of groupings of sites and depths according to their
coral assemblage similarities, with a clear overlap of
most sites due to their dominance by macroalgae and
coral species scarcity. The few outliers identified by
CAP analysis were sites with high abundances of hard
or soft corals (e.g. Rocks Southwest Meyer 9 to 12 m
had 41% soft coral cover, data not shown).

The taxa that contributed most to the dissimilarity
between the main grouping and the outliers for ben-
thic and scleractinian coral assemblages were defined
by SIMPER analysis. The site of Mid South Meyer was
significantly different to most other sites, due to its
abundance of soft corals (19% mean cover) in addition
to the hard coral Hydnophora pilosa (3% mean cover).
The other outliers were characterised by their abun-
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Fig. 2. Mean percent coral cover ± SD of scleractinian (dark bars) and soft corals (light bars – bottom axis), and number of species
(dots – top axis) present at each of the 9 sites (left axis) in the 4 depth strata surveyed at the Kermadec Islands (for site abbreviations 

see Table 1). Sites ordered from north to south (top to bottom)

Factor DF SS MS Pseudo-F p Significant pairwise
differences

Site 8 44 323 5540 2.21 <0.01
Depth 3 8814 2938 5.28 <0.01
Depth (Site) 26 65549 2521 6.61 <0.01

3–6 m Site 7 37 313 5330 8.3 <0.01 All sites
6–9 m Site 8 71 441 8930 12.5 <0.01 26 of 36 combinations
9–12 m Site 8 73 728 9216 11.5 <0.01 35 of 36 combinations
12–15 m Site 8 55 498 6937 8.6 <0.01 30 of 36 combinations

Table 2. Results of PERMANOVA of similarities in coral community assem-
blages for 2-way nested site and depth among sites, and separate analysis for
each depth stratification at 9 sites at the Kermadec Islands, New Zealand. Pair-
wise difference for sites in each depth stratification significant at p < 0.05
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dance of rare species (e.g. Outer Parsons Rock
12 to 15 m had 4% Leptastrea sp.), or the rela-
tively high abundance of one species (e.g.
Rocks Southwest Mayer 3 to 6 m had 14%
Montastraea curta). Two site/depth combina-
tions were significantly different to other site/
depth strata in both benthic (including coral)
and coral species community structure: Rocks
Southwest Meyer 9 to 12 m, which was domi-
nated by soft coral (42% cover), H. pilosa (13%
cover) and filamentous/fleshy macroalgae
(23% cover); and Southeast Denham Bay 6 to
9 m with 38% hard coral cover (including 28%
Montipora sp.). The southern site of Macauley
Island was not significantly different in com-
munity structure to 5 of the other 8 sites, de-
spite its geographical isolation. Overall, the
coral assemblage at Macauley Island exhibited
the lowest coral cover, lowest coral species
diversity and an absence of soft corals. How-
ever, the lack of clear groupings in all 9 sites
suggests a variable benthic community among
sites and depths, rather than a clear latitudinal
delineation.

Regional affinities

Cluster analysis (Fig. 3) of the regional
affinities of the coral species and diversity pat-
terns seen at the Kermadec Islands revealed
the existence of pronounced divisions between
the tropical Australian sites and the high lati-
tude sites. Analyses of coral assemblages
using both untransformed and transformed
data gave the same clusters, at comparable similarity
levels. SIMPROF grouped sites based on the abun-
dance of each coral family into 5 clusters at p < 0.01,
loosely defined as: A – Northern and Central GBR, B –
Gulf of Aqaba/Houtman Abrolhos, C – Australasian
high latitude (incl. the Kermadec Islands), D – Japan,
E – high latitude, plus the 2 outliers of Southwest Rocks
(Australia) and the Southern GBR.

The Kermadec Islands showed closest affinity in
terms of coral family composition with the high latitude
sites of Cook Island (28° 12’ S, 153° 34’ E) and Julian
Rocks (28° 38’ S, 153° 36’ E), both in New South Wales
(NSW), Australia. The coral assemblages of the Ker-
madec Islands and the 2 Australian high latitude sites
were significantly different to all other tropical, sub-
tropical and high latitude clusters (p < 0.05). These 2
Australian high latitude sites have similar coral cover
to the Kermadec Islands (8%) with 8 and 5%, respec-
tively, though their species counts are higher than at
the Kermadec Islands (24 species) with 33 and 30 spe-

cies, respectively. The closest affinity of coral assem-
blages in this cluster was with the cluster of high lati-
tude sites of Japan (Iki Island 33° 47’ N, 129° 43’ E and
Tsushima Island 34° 25’ N, 129° 20’ E), Australia, South
Africa, Mozambique and the Persian Gulf. Notably, the
western high latitude Australian site, Houtman Abrol-
hos, showed closest affinity with the Gulf of Aqaba, in
terms of coral family composition. This latter cluster
showed closer affinity with all GBR regions than with
other high latitude sites, despite the Persian Gulf being
closely located to the Gulf of Aqaba, and the African
sites in the same ocean as Houtman Abrolhos (though
admittedly many thousands of km apart). Additionally,
the southernmost mainland site of Australia, South-
west Rocks (30.56° S, 152.0° E), was separate in coral
assemblage similarity to all other groups (similarity of
~20%) due to the species-depauperate nature of the
site (only 8 species).

SIMPER analysis revealed that the Faviidae (25%),
Dendrophylliidae (25%) and Acroporidae (18%) con-
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tributed most to the similarity of the coral assemblages
at the Kermadec Islands and the 2 southern Australian
sites (Table 3). The dissimilarity of the high latitude
Australasian cluster to the Japanese sites was attrib-
uted to the abundance of species from the Faviidae at
the latter (mean of 19 species compared to 7 species)
and the high counts of species from the Dendrophylli-
idae at the former (mean of 6 species compared to 1
species at the Japanese sites). The abundance of acro-
porids on the GBR, and their absence at the Kermadec
Islands, explained the different coral assemblage of
the Kermadec Islands versus the GBR clusters. Fur-
thermore, the abundance of species in general, and
specifically of acroporid and faviid species at the
remaining high latitude sites (cluster E) explained the
separation of this group from the 2 Australian high lat-
itude sites and the Kermadec Islands.

After assessing survey depth at each location (where
possible), no distinct patterns were found between
depth and affinities of coral assemblages. Despite the
surveys of all coastal eastern Australian sites being
conducted at 8 to 12 m (Harriott & Banks 2002), as
opposed to the 0 to 40 m at the Kermadec Islands
(Brook 1999), 2 of these Australian sites still showed
closer affinity with the Kermadec Islands than with
other Australian sites. Survey depths at other high lat-
itude sites range from 0 to 20 m (Elizabeth Reef) to 0 to
50 m (Gulf of Aqaba).

A clear pattern exists between the clustering of
tropical sites versus high latitude sites, and their
annual temperature ranges (Fig. 3), with the coral
assemblages of the warmer GBR sites clustering
together. However, similarities also exist in tempera-
ture ranges between distinct high latitude clusters.
Five of the 8 sites in the high latitude cluster (E) have
a similar annual temperature range to the Kermadec
Island cluster (C; 18 to 24°C), yet exhibit a lack of
affinity with respect to their coral assemblage. How-
ever, sites in the Kermadec Islands cluster have the
lowest annual maximum of 24°C, whereas the annual

maxima at the other high latitude sites range from
25 to 30°C. Further, the Kermadec Islands and south-
ern Australian sites all host coral communities as
opposed to reefs. The Japanese sites, loosely cluster-
ing with the Kermadec Islands, are located at a higher
latitude (34° N) than the Kermadec Islands and are
subject to average annual temperatures of 13 to 27°C.
The other 3 sites in the high latitude cluster (E) are all
subject to either higher or wider ranging annual tem-
perature ranges than the Kermadec Islands (Persian
Gulf 15 to 33°C, S. Africa 21 to 30°C, Mozambique
22 to 28°C).

DISCUSSION

The coral assemblages of the Kermadec Islands are
dominated by subtropical species and feature low
coral species diversity and overall low cover, as might
be expected at such a high latitude location (Harriott
& Banks 2002). We identified 16 scleractinian and 1
soft coral species, with considerable differences in
assemblages between closely located sites (<1 to
4 km). Although located at a high latitude (29 to
31° S), and subject to low annual sea surface tempera-
tures (SST; 18 to 24°C annual range), the variability in
coral diversity and cover at the Kermadec Islands
suggests that local-scale variations in the environ-
mental and biological regime are important for con-
trolling the structure of this marginal community. On
a regional scale, the Kermadec Islands coral assem-
blage was most similar to 2 rocky subtropical sites of
southeastern Australia (NSW); there was a lack of
affinity with tropical sites, and a lesser affinity for
other high latitude sites. These different affinities are
likely explained by local environmental factors such
as wave energy (and associated algal whiplash) and
water quality, rather than latitude and its associated
influence on temperature (Wells 1957). Additionally,
larval supply, and historical and evolutionary factors
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Group N GBR/C GBR Gulf of Aqaba/ Australasian high Japan Australian and African 
(A) Houtman Abrolhos (B) latitude (inc. KI) (C) (D) high latitude (E)

Within group similarity 97% 69% 69% 83% 79%

Family contributing Acroporidae (108) Acroporidae (58) Faviidae (7) Faviidae (19) Acroporidae (32)
(mean number spp.) Faviidae (63) Poritidae (16) Dendrophylliidae (6) Poritidae (6) Faviidae (22)

Poritidae (37) Merulinidae (11) Acroporidae (6) Pectiniidae (4) Poritidae (9)
Fungiidae (31) Siderasteidae (7) Siderasteidae (3) Acroporidae (2) Dendrophylliidae (6)

Table 3. Coral families contributing to SIMPROF groupings (Fig. 3) of similarities in coral assemblages at Australasian and mar-
ginal sites, calculated with Bray-Curtis Similarity. Families are listed in order of % contribution to within-site similarity. Letters in
brackets under site refer to groupings in text. Numbers in brackets beside families indicate average number of species per group in 

site assemblage. N and C GBR: Northern and Central Great Barrier Reef. KI: Kermadec Islands
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(Harriott & Banks 2002) will have influenced the for-
mation of the modern-day coral assemblages at the
Kermadec Islands.

The low coral diversity at the Kermadec Islands (24
species, Brook 1999) is seemingly linked to the physio-
logical tolerances of coral species to low temperatures.
Many reef-building species cannot grow and survive
outside the tropics (Harriott et al. 1994, 1995), as exem-
plified by the absence of some major reef-building taxa
(e.g. staghorn Acropora and massive Porites) at the
Kermadec Islands and at most subtropical Australian
sites. However, coral communities with higher species
diversity and cover have been observed in regions sub-
ject to lower annual SST minima than those seen at the
Kermadec Islands. For example, along the coast of
Japan, coral communities with up to 40 species and 20
to 30% cover have been recorded (Yamano et al. 2004).
These are usually subject to an annual average SST
minimum of 17°C (compared with 18°C at the Kerma-
dec Islands), and the most northerly of them are sub-
ject to a lowest annual SST of 13.3°C (Yamano et al.
2001). Additionally, coral communities on the east
coast of Australia separated by <50 km, but with simi-
lar annual temperature regimes, have highly variable
species diversity and cover (Harriott & Banks 2002).
The low temperatures experienced at the Kermadec
Islands will also limit coral reef formation and cover by
causing coral mortality (Veron & Done 1979, Burns
1985), and reducing the rates of growth (Grigg 1982,
Harriott 1999), fecundity (Wells 1957, Hughes et al.
1999) and recruitment (Veron & Done 1979, Grigg
1983). However, while low temperature goes some
way towards explaining the low diversity and cover of
corals at the Kermadec Islands, alone it cannot explain
the lack of similarity between coral assemblages at
sites from similarly high latitudes. Other, more local
factors must play a role.

The hydrodynamic conditions, in terms of exposure
to high wave energy, at the Kermadec Islands create a
challenging environment for habitation, with the
absence of shallow, sheltered rocky reefs and lagoons
limiting the substrate available for coral settlement.
Locally, the southern site of Macauley Island is ex-
posed to unrefracted ocean swell and storm surges
(Brook 1999), and the species assemblage present re-
flects this challenging environment: macroalgae domi-
nate with no soft corals present and <1% hard coral
cover. The high wave energy experienced at the Ker-
madec Islands is also experienced at the rocky benthic
communities of Julian Rocks and Cook Island (NSW,
Australia; Harriott et al. 1999), with which the Ker-
madec Islands showed the closest affinity in the pre-
sent study. These sites are located 2 km and 600 m off-
shore, respectively. Reef accretion at these sites is also
likely to be inhibited by the removal of living and dead

coral skeletal material by episodes of severe waves
(Harriott & Smith 2002). Further, the dislodgement of
colonies from the substrate by storm surge will be facil-
itated by the relatively smooth surfaces of rocks at high
latitudes (Banks & Harriott 1995, Nozawa et al. 2008).

Environments with high wave energy favour com-
pact growth forms of corals (Veron 1993b), with only
those coral species that can withstand exposure to
swell and storm surge able to establish there. Thus,
the low abundance of branching species at the Ker-
madec Islands, Julian Rocks and Cook Island (e.g.
acroporids, pocilloporids) may be due to the high de-
gree of wave exposure. Comparatively, at Lord Howe
Island, Australia, reef-building species are able to
establish, but only in the lagoonal areas; they are
uncommon on the seaward slopes where reef accre-
tion capacity is very limited (Harriott et al. 1995). In
addition to Lord Howe Island, the other high latitude
sites considered here, all of which show greater spe-
cies diversity than the Kermadec Islands, all feature
sheltered areas, which potentially allow more fragile
species to establish. The lack of sheltered areas at the
Kermadec Islands means that even if temperatures
are sufficient to allow colonization by reef-building
species, hydrodynamic conditions may prevent their
long-term establishment.

The high wave energy at the Kermadec Islands also
favours dominance by calcareous algae, which can
establish in wave-exposed areas, and out-compete
corals for space and light (Hustan 1985). At high lati-
tudes, competition between corals and algae plays a
significant role in regulating coral assemblages (Birke-
land 1977, Birkeland & Randall 1981) because subtrop-
ical conditions (i.e. relatively low SST) favour algae
over corals. The dominance by macroalgae, at the Ker-
madec Islands, Julian Rocks and Cook Island (76, 45
and 67%, respectively, compared to 25% on the GBR)
suggests that algae are successfully out-competing
corals for space at these sites, perhaps by overgrowth
of the live coral tissue (McCook et al. 2001). Chemical
degradation and physical damage by abrasion have
also been shown to be involved in a number of direct
competitive interactions between corals and algae, the
mechanism dependent on the coral and algal species
concerned (de Nys et al. 1991, McCook et al. 2001,
Jompa & McCook 2003, Nugues & Bak 2006). In areas
of high flow, such as many of the shallow exposed sites
at the Kermadec Islands, macroalgae can have a
whiplash effect on the corals, causing physical damage
by abrasion (Coyer et al. 1993) and reduced coral
growth (River & Edmunds 2001). On the other hand,
corals have also been shown to inhibit algal growth
and overgrow algae (Meesters & Bak 1993, McCook
et al. 2001). For example, Jompa & McCook (2002)
reported a mutual competitive interaction between the
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coral Porites cylindrica and the creeping form of the
brown alga Lobophora variegata; the alga induced tis-
sue mortality of the coral, which was also able to
inhibit the growth of this alga, though to a lesser
degree.

The impact of wave surge and algal competition on
coral cover will also be depth dependent (McCook et
al. 2001). As wave surge decreases with depth, the re-
duced algal whiplash at these depths may create a
more habitable environment for corals (cf. McCook et
al. 2001). Additionally, algal growth rates decline with
depth and illumination (cf. Markager & Sand-Jensen
1992). As a result, the alga has a reduced competitive
advantage, and thus coral cover increases with depth
until light becomes limiting (Burns 1985, Riegl et al.
1995). This pattern was observed at some of the sites at
the Kermadec Islands, but was not consistent across
all sites.

The competition between algae and corals at high
latitudes, and indeed any location, is linked to nutrient
concentrations as, in general, inshore and higher lati-
tude waters have greater nutrient concentrations than
do offshore and lower latitude waters, which allows for
enhanced growth rates of macroalgae (Crossland
1983). Additionally, any variation in nutrient availabil-
ity between sites will affect community structure, as
nutrients enhance growth and hence the competitive
ability of macroalgae (Kojis & Quinn 1984, Hughes
1989, Nugues & Roberts 2003). Turbidity, a reflection
of nutrient levels (Koenings & Edmundson 1991), is
indeed known to be variable between sites at the Ker-
madec Islands (0 to 3 Formazin Turbidity Units, FTU,
J. Gardner unpubl. data); however, long-term mea-
surements of turbidity and/or nutrients are not avail-
able and so further study is needed to assess the role
that nutrient levels play in shaping the coral assem-
blages at this location.

The geological history of the Kermadec Islands and
the rate of dispersal of larvae to this isolated site are
additional, intertwined factors that limit the species
present. In a study of genetic connectivity between
Lord Howe Island and the GBR (700 km apart), Ayre &
Hughes (2004) showed that expanses of open ocean
between isolated reefs are far more effective barriers
to dispersal than are similar distances within continu-
ous reef systems. This highlights the potential for lim-
ited recruitment of coral larvae at the Kermadec
Islands, given that they lie at a minimum distance of
750 km from any landmass, and are approximately
3000 km from the GBR. Indeed, at the Kermadec
Islands, there is evidence of limited connectivity be-
tween even closely located sites (<1 km), most likely
associated with the hydrographic regime (Wood &
Gardner 2007). The low diversity of the Kermadec
Islands may also reflect their geological history, with

no evidence of a land bridge at any time (Brothers &
Searle 1970). Additionally, there appears to be a de-
cline in coral recruitment with increasing latitude,
linked to low water temperatures (Hughes et al. 2002,
Nozawa et al. 2006), which at the Kermadec Islands
likely compounds the problems associated with their
remoteness. Finally, although a heavily debated issue,
the mode of transmission of coral species is likely to
affect their likelihood of recruitment to and within the
Kermadec Islands. Most brooding corals have larvae
that are competent to settle within a few hours or a few
days after release (Richmond 1987, Harrison 2006,
Gilmour et al. 2009), which promotes settlement on, or
close to, the natal reef (e.g. Tioho et al. 2001). How-
ever, spawning corals and some brooding corals pro-
duce a small proportion of larvae that have extended
competency periods of over 100 d in the water column
(e.g. Nozawa & Harrison 2002), with an associated dis-
persal potential of hundreds of km (Harrison & Wallace
1990, Harrison & Booth 2007). Whilst over 85% of
coral species on the GBR are spawners (reviewed by
Hughes et al. 2002), approximately half of the species
present at the Kermadec Islands are brooders. Many
high latitude locations are dominated by brooding spe-
cies, including the Solitary Islands (Harriott & Banks
1995), Lord Howe Island (Harriott 1992) and Gneering
Shoals (Banks & Harriott 1996); locations which show a
lack of affinity, in terms of their species assemblages,
with the Kermadec Islands.

It is important to note that small, isolated, and often
peripheral islands in the Pacific Ocean are usually sub-
ject to high faunal turnover rates, which are a major
factor contributing to differences in community struc-
ture in time and space at these locations (Pauley 1989,
Harriott et al. 1994, 1995). Temporally, little is known
of the variability in community structure at the Ker-
madec Islands, as due to their isolation and inaccessi-
bility, longer-term monitoring has not been possible.
Two previous short-term studies have found large
within-site variability (surveys 1991 to 1992, Brook
1999; survey 2002, Gardner et al. 2006), while variabil-
ity with depth is apparent when these 2 studies are
compared; however, repeat sampling of the same sites
has not been undertaken. Crucially, though, the pre-
sent study identified the same coral species present at
the Kermadec Islands as were reported by Brook
(1999), which suggests that, although coral cover may
be temporally variable, species presence is not (at least
in the short to mid term). Hence, our analysis of
regional species affinities remains valid, even if the
extent of coral cover may vary over time and the asso-
ciated comparisons should be treated with caution.

The marine environment of the Kermadec Islands
was, and is, largely unthreatened by extractive use or
pollution, and can be viewed as being just about as
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pristine a marine environment as it is currently possi-
ble to find (cf. Sandin et al. 2008). Thus, our study pro-
vides valuable data on a marginal coral community
that is relatively free from anthropogenic impact.
Ongoing monitoring at this site will not only improve
our understanding of the ecology of high latitude coral
communities, but provide a pristine comparison for
assessing the impacts of environmental degradation on
other high latitude coral systems.
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