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INTRODUCTION

Pinnipeds are top predators in many marine eco-
systems and understanding their foraging ecology is
essential in determining their impacts on prey species,
their interactions with fisheries, and in monitoring the
health of the ecosystem (Boyd & Murray 2001, Reid &
Croxall 2001, Arim & Naya 2003). To accurately assess
the diet of wide-ranging pinniped species that utilize
diverse marine habitats, it is necessary to examine
their foraging ecology over different spatial and tem-
poral scales.

Traditionally, pinniped diet has been determined
from the identification of prey hard parts collected
from stomach, colon, spewing (regurgitation) or scat

(fecal) samples (e.g. Lucas 1899, Antonelis & Perez
1984, Sinclair et al. 1994, Yonezaki et al. 2003, Gund-
mundson et al. 2006, Zeppelin & Ream 2006, Yonezaki
et al. 2008). This technique is useful because it pro-
vides information on specific prey species consumed;
however, several biases and limitations must be ac-
counted for when using this method (see reviews by
Bigg & Fawcett 1985, Pierce & Boyle 1991, Bowen
2000). Additionally, unless samples are collected con-
tinuously over long periods, this analysis represents
only a ‘snapshot’ of prey consumed during an animal’s
most recent meal(s) and does not provide integrated,
long-term foraging information (Hobson et al. 1997a).
When using scats, ancillary information about the indi-
vidual animal (e.g. age and sex) is not readily avail-
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able, making intraspecific dietary comparisons diffi-
cult. Most scat samples have been collected from
breeding sites and primarily represent the diet of
reproductive females; the diets of other age or sex
classes have been examined infrequently.

More recently, pinniped foraging ecology has been
examined using biochemical methods, such as measur-
ing the abundance of naturally occurring stable iso-
tope ratios of carbon (13C/12C) and nitrogen (15N/14N)
(e.g. Hobson et al. 1997a, Burns et al. 1998, Burton &
Koch 1999, Hirons et al. 2001, Kurle & Worthy 2001,
Kurle 2002, Zhao et al. 2004, Newsome et al. 2006,
Porras-Peters et al. 2008). Stable isotope analysis is
based on the premise that the stable isotope composi-
tion of a consumer’s diet is reflected in its tissues. Con-
sumer tissues usually become enriched in 15N and 13C
compared to their prey due to the process of fractiona-
tion. 15N is enriched predictably with increasing tro-
phic level due to the preferential excretion of 14N (~2 to
5‰ for marine mammals; Hobson et al. 1996, Kelly
2000, Kurle 2002, Zhao et al. 2006); this permits estima-
tion of a consumer’s trophic level (Wada et al. 1991,
Hobson & Welch 1992, Gannes et al. 1998, Vander
Zanden & Rasmussen 2001). The ratio of stable carbon
isotopes changes little with trophic position (~0.5 to
2‰ for marine mammals; Kelly 2000, Kurle 2002,
Lesage et al. 2002, Zhao et al. 2006); rather, it is
affected by factors that act at the base of the food web.
Stable carbon isotopes can therefore be used to esti-
mate a consumer’s foraging location (e.g. δ13C enrich-
ment: nearshore > offshore, benthic > pelagic; Rau et
al. 1982, Fry & Sherr 1984, Wada et al. 1991, France
1995, Hobson et al. 1997a, Burton & Koch 1999, Kelly
2000). Because tissues are collected in stable isotope
analysis, information about the individual (e.g. age
class, sex) is known and intraspecific comparisons can
be made. Additionally, stable isotope analysis of tis-
sues can provide information on assimilated diet at
varying temporal scales due to the dissimilar isotopic
turnover rates of different tissues (Kirsch et al. 2000).
However, stable isotope analysis does not provide
detailed information on dietary composition and the
results from analyses can be difficult to interpret.

The northern fur seal Callorhinus ursinus is widely
distributed in the North Pacific Ocean, Bering Sea, Sea
of Okhotsk and Sea of Japan. It is one of the most pro-
lific otariid pinnipeds, with abundance estimates of
~1.1 million (Reeves et al. 2002, Gelatt & Lowry 2008).
In North America, most individuals of the species
breed on the Pribilof Islands (St. George and St. Paul)
in the southeastern Bering Sea, and this population has
undergone substantial declines during the past decade
(Towell et al. 2006). Conversely, smaller populations
within their North American range, including those on
Bogoslof and San Miguel Islands, have experienced

increases since the 1980s (Ream et al. 1999, Towell et
al. 2006, Melin et al. 2007).

Northern fur seals utilize diverse marine habitats
over varying spatial and temporal scales. Adult fe-
males and juveniles from the Pribilof and Bogoslof
Islands migrate south onto the continental shelf and
slope of the eastern North Pacific Ocean, ranging as far
south as 30°N (Lander & Kajimura 1982, Ream et al.
2005). Animals from San Miguel Island migrate north
along the continental margin to waters as far north as
Queen Charlotte Islands, Canada (53° N; National
Marine Mammal Laboratory [NMML] unpubl. data).
Northern fur seals begin their return migrations during
spring and arrive at breeding colonies during early
summer (Antonelis & Perez 1984). While on breeding
colonies, both adult female and juvenile male northern
fur seals are central place foragers (Robson et al. 2004,
Sterling & Ream 2004, Call et al. 2008). After a 7 to 10 d
perinatal period, adult females alternate between
feeding at sea for 3 to 9 d and nursing their pups on
land for 1 to 2 d (Bartholomew & Hoel 1953, Peterson
1966, DeLong 1982, Gentry & Holt 1986, Reeves et al.
1992). This nursing behavior is repeated ~10× over the
next 4 mo, after which pups are weaned and must feed
for themselves (Peterson 1966). Several authors have
noted that adult female fur seals exhibit fidelity to
feeding areas on subsequent trips to sea (Loughlin et
al. 1987, Robson et al. 2004, Call et al. 2008). Pups
develop their swimming and diving skills during the
nursing period (Baker & Donohue 2000). After an
abrupt weaning, pups migrate to sea where they might
spend the next 2 to 3 yr of their lives. Juveniles are not
restricted in their attendance to the rookery. Differ-
ences in their morphology, physiological capabilities
and experience may lead to differences in their diet,
distribution, and habitat use compared to older con-
specifics.

The objectives of this study were to combine scat and
stable isotope analyses to examine the foraging eco-
logy of northern fur seals across their North American
range of breeding sites. Specifically, we determined
whether foraging habitat and diet differed with time of
year, breeding site, or age class. We used stable iso-
tope analysis to examine temporal and age class differ-
ences, and scat analysis to identify specific prey items
consumed. We compared our results with previous diet
and telemetry studies at the breeding colonies.

MATERIALS AND METHODS

Study sites and sample collection. This study was
conducted at 4 breeding colonies that span the geo-
graphic range of northern fur seals in North America,
including rookeries on the following islands: Bogoslof
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Island (BI), Alaska (53.93° N, 168.03° W); Reef and Vos-
tochni on St. Paul Island (SPI), Alaska (57.18° N,
170.27° W); and San Miguel Island (SMI), California
(34.03° N, 120.44° W) (Fig. 1). The study sites include
diverse habitats associated with distinct oceano-
graphic features that affect the distribution and
dynamics of prey resources (Stabeno et al. 1999). Addi-
tionally, recent telemetry and dietary studies from scat
analysis have indicated intraspecific differences in for-
aging behaviors among sites included in this study
(Robson et al. 2004, Zeppelin & Ream 2006, Call et al.
2008, NMML unpubl. data).

From September through November 2006, fur and
blood samples were collected from juvenile and adult
female northern fur seals from BI and SPI rookeries for
stable isotope analysis. Most juveniles were estimated
to be 1 or 2 yr old based on morphological and behav-
ioral characteristics (Scheffer 1962). Tissues were col-
lected from pup and adult female fur seals at SMI
during November 2006. Fur was collected from indi-
viduals by using scissors to cut a patch of guard hair
(~2 × 2 cm) on the dorsal side at the pelvic girdle.

Guard hair was clipped as close to the underfur as pos-
sible. Samples were placed in envelopes until further
processing in the laboratory. Blood samples were
obtained from the dorsal side of the rear flipper using a
21-gauge butterfly needle and placed directly into
Vacutainer tubes. Plasma and red blood cells (RBCs)
were collected from tubes with sodium heparin, which
is an anticlotting agent that does not alter isotopic sig-
natures (Hobson et al. 1997b). The tubes were cen-
trifuged for 10 min. Between 1 and 2 ml of each blood
component was decanted into a cryovial and frozen in
a –40°C freezer for later laboratory processing.

In July 2006, fecal samples were opportunistically
collected on Castle Rock, which is an islet ~1 km north-
west of SMI. Scats are usually collected on Castle Rock
rather than on mainland SMI during the summer
breeding season because samples are more accessible
and collections result in less disturbance. Recent stud-
ies have indicated that adult females from SMI and
Castle Rock forage in the same areas; thus, it is as-
sumed that they are feeding on the same prey species
(NMML unpubl. data). Scats were collected at Reef
and Vostchoni rookeries on SPI in September 2006 and
on BI in September 2007. At all locations, we assumed
that scats collected on the rookery primarily represent
the diet of adult females because territorial males fast
during the breeding season. Juvenile animals arrive
later in the season than adults and typically utilize
areas that are separate from the breeding sites. Scat
samples were stored in plastic bags and frozen for later
processing.

Stable isotope analysis. In the laboratory, fur sam-
ples were put into scintillation vials and cleansed using
a mild detergent solution, followed by a rinse of deion-
ized (DI) water. Lipids were extracted using a 2:1 chlo-
roform:methanol wash and another DI water rinse.
Cleaned fur and frozen blood samples were placed in a
lyophilizer and dried for 24 to 48 h. The dried samples
were then ground into a powder and homogenized
using a glass rod (blood components) or mortar and
pestle (fur). Samples were weighed (1.0 ± 0.2 mg) and
sealed into 8 × 5 mm tin capsules and analyzed using a
continuous flow isotope ratio mass spectrometer
(20–20 PDZ Europa) at the University of California
Davis Stable Isotope Facility. The natural isotopic
abundance in a sample is expressed in delta (δ) nota-
tion, δ13C or δ15N = 1000 × [(Rsample/Rstandard) × 1], where
Rsample and Rstandard are the 13C/12C or 15N/14N ratios of
the sample and standard, respectively. The standards
are Vienna-Pee Dee Belemnite limestone (V-PDB) for
carbon and atmospheric N2 for nitrogen. The units are
expressed in parts per mille (‰). Tissues within an
individual were compared among each other using a
blocked 1-way ANOVA. Within each tissue type, linear
models (ANOVAs) were used to compare δ13C or δ15N
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between age classes (juvenile–adult female in Alaska,
pup–adult female in California) and among locations.
Significance of the effects was tested using t-test at the
5% significance level. Statistical analyses were per-
formed using the R Program Language (R Develop-
ment Core Team 2006).

Scat analysis. In the laboratory, scat samples were
thawed and rinsed in nested sieves (2.0, 1.0, and
0.5 mm) or processed in a washing machine (Orr et
al. 2003). Fish remains were stored dry in scintillation
vials and cephalopod structures were stored in vials
with 70% isopropanol. Prey remains were identified
under a dissecting microscope to the lowest possible
taxon using sagittal otoliths and skeletal remains from
fishes and beaks from cephalopods. Otoliths, beaks,
and diagnostic bones were identified using the refer-
ence collection at the National Marine Mammal Labo-
ratory (Seattle, WA).

The importance of prey taxa was described using
percent frequency of occurrence (%FO), which was
defined as:

where Oik = absence (0) or presence (1) of taxon i in
scat k; and s = the total number of scats that contained
identifiable prey remains. The adequacy of the sample
size to describe the diet was determined by creating
mean cumulative prey diversity curves (±1 SD) based
on the Shannon-Wiener (H’) index (Krebs 1999) fol-
lowing an approach proposed by Ferry & Cailliet
(1996), Ferry et al. (1997), and modified by Cruz-
Escalona & Turren (Centro Interdisciplinario de Cien-
cias Marinas – Instituto Politecnico Nacional, Mexico).
Curves were created by implementing a Matlab rou-
tine that computes 500 random permutations from the
original data. If the prey diversity curve reached an
asymptote, we assumed that enough samples have
been analyzed to characterize the diet. Distribution
and life history patterns of the most frequently occur-
ring prey were used to aid in the interpretation of δ13C
and δ15N values.

RESULTS

Stable isotope analysis

Stable isotope samples were collected from 36 adult
females and 37 juveniles in Alaska, and 9 adult
females and 7 pups on San Miguel Island during Sep-
tember and November 2006 (Table 1). We were unable
to collect all tissue types from all animals at each loca-
tion. All tissue types were collected from 32 adult
females and 25 juveniles in Alaska, and 9 adult

females and 6 pups on San Miguel Island during Sep-
tember and November 2006 (Table 1). Male and
female data of juveniles and pups were pooled for
analyses because sample sizes were not large enough
to allow statistical comparisons between sexes.

Within-individual variation

The δ13C and δ15N values differed among tissues
within individuals (blocked ANOVA: F = 40.75, df = 2,
p < 0.001 for δ13C; and F = 12.99, df = 2, p < 0.001 for
δ15N; Fig. 2). Post-hoc analysis indicated no differences
in mean δ13C values among plasma and RBCs; how-
ever, fur had significantly higher mean δ13C values
than the blood components (Tukey’s HSD: for all com-
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Location Age class Fur Plasma RBC

St. Paul (Reef) Adult 10 10 10
Juvenile 14 (13) 13 14 (13)

St. Paul (Vostochni) Adult 6 (5) 6 (5) 7 (5)
Juvenile 7 7 7

Bogoslof Adult 17 19 (17) 19 (17)
Juvenile 8 (5) 9 (5) 9 (5)

San Miguel Adult 10 (9) 9 9
Pup 7 (6) 7 (6) 7 (6)

Table 1. Number of samples obtained from northern fur seals
at St. Paul, Bogoslof and San Miguel Islands for stable isotope
analyses during 2006 by age class and tissue type. Numbers
in parentheses indicate sample sizes used to compare tissue
types within individuals. Adult samples were from females
only. Juvenile and pup samples were collected from both 

males and females. RBC: red blood cells
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parisons, p < 0.001). There were no differences in
mean δ15N values between fur and RBCs; however,
mean δ15N values of fur and RBCs were significantly
lower than those of plasma (Tukey’s HSD: for all
comparisons, p < 0.001).

Inter-location variation

All tissues of adults and pups collected at SMI had
significantly higher mean δ13C values than any of the
samples collected at Alaskan locations (t-test: for all
comparisons, p < 0.01; Fig. 3). Adults at BI had signifi-
cantly lower plasma δ13C values compared to adults at
Reef and Vostochni (t-test: for all comparisons, p <
0.01), and lower RBC δ13C values compared to adults at
Vostochni (t-test, p < 0.01). Stable carbon isotope pat-
terns of juveniles were generally similar to those of
adults (Fig. 3). Juveniles at Reef had significantly
higher fur δ13C values than those at BI (t-test, p < 0.01).
Juveniles at Vostochni had significantly lower RBC
δ13C values than those at Reef or BI (t-test: for all com-
parisons, p < 0.05).

For adult females, we found similar patterns in δ15N
values for all tissue types (Fig. 3). Adult females at SMI

and Vostochni rookeries had the highest mean δ15N
values (regardless of tissue). Their δ15N values were
not significantly different from each other, but were
significantly higher than those of adult females at the
other rookeries (t-test: for all comparisons, p < 0.01;
Fig. 3). Adult females at Reef had intermediate δ15N
values, which were significantly higher than those of
adult females at BI (t-test: for all comparisons, p < 0.01;
Fig. 3). For juveniles, mean δ15N values of all tissue
types exhibited a similar pattern as those of adult fe-
males (Fig. 3). However, juveniles at BI had signifi-
cantly lower RBC δ15N values than those on Vostochni
(t-test, p < 0.05), and significantly lower plasma δ15N
values than juveniles at both SPI sites (t-test: for all
comparisons, p < 0.01)

Age-class variation

There were significant differences in mean δ13C val-
ues between immature and adult animals at all sites
(Fig. 3). Pups had significantly higher mean RBC δ13C
values and significantly lower mean fur δ13C values
than adults at SMI (t-test, p = 0.04). Juveniles had sig-
nificantly lower mean δ13C values than adults for all

tissue types at all Alaska sites (t-test: for
all comparisons, p < 0.01).

The relationship in δ15N values be-
tween age classes was the same for all
tissue types. Pups at SMI had signifi-
cantly higher mean δ15N values than
adults (t-test: for all comparisons, p <
0.01). Juveniles at Reef and Vostochni
had significantly lower mean δ15N val-
ues than adults (t-test: for all compar-
isons, p < 0.05). There were no differ-
ences in mean δ15N values between
juveniles and adults at BI.

Scat analysis

One day of collection at each site
yielded 170 scats that had identifiable
prey remains: Reef (n = 28), Vostochni
(n = 74), BI (n = 41), and Castle Rock,
SMI (n = 27). The minimum number of
samples needed to adequately describe
diet varied by location; however, the
mean cumulative prey diversity curves
reached an asymptote, indicating that
enough samples had been collected at
the 4 rookeries (Fig. 4). For all locations
combined, we identified at least 27 prey
species from 17 families, which in-
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cluded 22 fishes, 4 cephalopods, and 1 worm (Table 2).
The relative importance of each prey taxon was deter-
mined using %FO (Table 3). Walleye pollock (Thera-
gra chalcogramma) dominated the diet on both Reef
(89.3%) and Vostochni (68.9%). Other frequently oc-
curring prey (>5.0%) on both rookeries included Pa-
cific herring (Clupea pallasi; >14.0%), Pacific salmon
(Oncorhynchus spp.; >17%) and Atka mackerel (Pleu-
rogrammus monopterygius; >6.0%); lanternfishes
(myctophids; 10.7%) on Reef rookery; and Pacific sand
lance (Ammodytes hexapterus; 5.4%), three-spine
stickleback (Gasterosteus aculeatus; 5.4%), Irish lord
(Hemilepidotus spp.; 5.4%) and gonatid squid (Gona-
tus madokai and/or G. middendorffi; 5.4%) on Vos-
tochni rookery. BI was characterized by high occur-
rences of off-shelf nekton, including gonatid squid
(primarily Gonatopsis borealis, Berryteuthis magister,
G. onyx, and G. tinro; 73.2%) and northern smooth-
tongue (Leuroglossus schmidti; 73.2%). SMI had high
occurrences of northern anchovy (Engraulis mordax;

92.6%), Pacific hake (Merluccius productus; 55.6%),
Pacific sardine (Sardinops sagax; 51.9%), market squid
(Loligo opalescens; 22.2%) and rockfishes (Sebastes
spp.; 7.4%).

DISCUSSION

Within-individual variation

Mean δ13C values of fur were more enriched com-
pared to those of the blood components. These results
were similar to earlier studies of other pinniped species
(Hobson et al. 1996, Hobson et al. 1997a, Lesage et al.
2002, Zhao et al. 2006). Variation in δ13C values among
tissues of an individual may reflect temporal shifts in
diet and/or habitat use or may relate to differences in
the amino acid composition or lipid content of the tis-
sues (Kurle 2002, Zhao et al. 2006). If the variation is
due to the latter, it should be noted that blood contains
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serum albumins, which are the most abundant blood
plasma proteins that serve as carriers of free fatty acids
among other molecules (Lehninger 1982). Lipids have
proportionally less 13C than proteins, explaining why
blood components have lower δ13C values compared to
fur, which is primarily composed of proteins. Plasma
has higher lipid concentrations that may result in lower
δ13C values compared to RBCs (Nelson 1970, Kurle
2002). Lipids were removed from fur during sample
preparation. However, fur has a different amino acid
composition compared to blood. More specifically, fur
and other keratinaceous tissues have glycine, which is
13C-enriched compared to most other amino acids.
Therefore, there may have been differences in δ13C
between fur and blood components that could not be
ascribed to temporal shifts in foraging location by an

individual. The variable lipid or amino
acid content of tissues could bias δ13C
values for blood components; however,
the magnitude of this potential bias was
not measured in this study.

Apart from being a metric of changes
in dietary intake and trophic level at
different temporal scales, differences in
δ15N values among tissues of an individ-
ual could also have resulted from differ-
ences in macromolecular composition
(i.e. amino acids, lipids) of tissues (Kurle
2002, Zhao et al. 2006). Findings of sev-
eral studies on captive birds and mam-
mals indicate that isotope values of dif-
ferent tissues from the same individual
vary in a systematic way, even when the
animal is fed an isotopically monoto-
nous diet (Tieszen et al. 1983, Sutoh et
al. 1987, Hobson & Clark 1993, Hobson
et al. 1996, Kurle 2002, Lesage et al.
2002, De Smet et al. 2004, Zhao et al.
2006). Although lipids have inconsider-
able influence on δ15N values given
their small composition of nitrogen,
Kurle (2002) reported that differences
in amino acid composition accounted
for differences in δ15N values among
blood constituents in captive northern
fur seals that were fed an isotopically
homogeneous diet throughout the
study. Unlike captive animals, wild
northern fur seals usually do not have
an isotopically homogeneous diet.
However, isotopic patterns among tis-
sues in this study were similar to those
observed in captive marine mammal
studies (e.g. Hobson et al. 1996, Lesage
et al. 2002). Therefore, along with

changes in fur seal diet (i.e. prey species, acquisition
location), tissue composition and other physiological
factors should be considered when interpreting differ-
ences in δ15N and δ13C values among different tissues.

Inter-location variation

The fact that plasma and RBC values were different
among islands indicates that fur seals segregate habi-
tat throughout the breeding season. The δ13C values of
plasma and RBCs were different at each island (δ13C
enrichment: SMI > SPI > BI), which may denote that fur
seals from these sites foraged in geographically dis-
tinct areas throughout the summer. The δ15N and δ13C
values of plasma reflect diet integrated approximately
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Family Species Common name

Fishes
Ammodytidae Ammodytes hexapterus Pacific sand lance

Bathylagidae Bathylagus ochotensis Popeye blacksmelt
Leuroglossus schmidti Northern smoothtongue

Clupeidae Clupea harengus Pacific herring
Sardinops sagax Pacific sardine

Cottidae Cottid spp. Sculpin
Hemilepidotus spp. Irish lord

Engraulidae Engraulis mordax Northern anchovy

Gadidae Gadus macrocephalus Pacific cod
Merluccius productus Pacific hake
Theragra chalcogramma Walleye pollock

Gasterosteidae Gasterosteus aculeatus Three-spine stickleback

Hexagrammidae Pleurogrammus monopterygius Atka mackerel

Myctophidae Myctophid spp. Lanternfish
Nannobrachium regale Pinpoint lampfish
Stenobrachius leucopsarus Northern lampfish
Symbolophorus californiensis Bigfin lanternfish

Myxinidae Myxinid Hagfish

Osmeridae Mallotus villosus Capelin

Salmonidae Oncorhynchus spp. Pacific salmon

Scorpaenidae Sebastes spp. Rockfish

Trichodontidae Trichodon trichodon Pacific sandfish

Cephalopods
Gonatidae Gonatid Gonatid squid

Gonatopsis spp.

Loliginidae Loligo opalescens Market squid

Octopodidae Octopus rubescens East Pacific red octopus

Other
Class: Polychaeta – –
(polychaete worm)

Table 2. Callorhinus ursinus. Species and families of prey found in northern fur
seal scat samples collected from St. Paul, Bogoslof, and San Miguel (Castle
Rock) Islands. Samples from St. Paul and San Miguel Island sites were obtained 

in 2006, while those from Bogoslof Island were obtained in 2007
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1 to 2 wks prior to collection, whereas those of RBCs
represent the diet of the prior few months (Hobson &
Clark 1993, Hilderbrand et al. 1996, Zhao 2002, Zhao
et al. 2006); therefore, the stable isotope patterns were
maintained for multiple foraging trips throughout the
summer breeding season. The 13C-enriched values for
individuals at SMI relative to those at the Alaska sites
may be a reflection of latitudinal isotopic differences at
the base of the food web (13C-enrichment: lower >
higher latitudes; Rau et al. 1982, Dunton et al. 1989,
Goericke & Fry 1994, Schell et al. 1998). The δ13C val-
ues of fur seals at BI and SPI did not follow the same
latitudinal pattern. These patterns may have been
affected by other factors including differences in forag-
ing location (e.g. depth, distance from shore). The sim-
ilarity in δ13C values between individuals at Reef and
Vostochni rookeries on SPI may indicate an overlap in
foraging habitats. Alternatively, if the animals foraged
in different areas, there may not be sufficient geo-
graphical separation between those areas to result in
dissimilar carbon isotope compositions.

Fur seals molt annually for an average of 15 wk be-
ginning in late July (Scheffer 1962, Scheffer & Johnson
1963). Approximately 25% of the guard hair from the
previous generation is thought to remain following the
molt (Scheffer & Johnson 1963). Thus, fur represents
nutrients incorporated from the summer breeding sea-
son and, to a lesser extent, the previous winter migra-
tion and earlier molts. Adult females at the Alaska sites
had similar mean fur δ13C values, which suggests that
they migrate to the same general areas during winter

months to feed. The mean fur δ13C val-
ues of Alaska females were lower than
those of adult females at SMI, which
suggests that they forage in different
oceanic domains than SMI animals. The
higher mean fur δ13C values of SMI
adult females may reflect more coastal
foraging than that of Alaskan adult
females.

The habitat separation of animals
from the different islands (discerned
from stable carbon isotope ratios) in our
study are supported by previous tele-
metry studies of northern fur seals.
Studies conducted on both adult fe-
males and juvenile males at Alaska sites
during the summer breeding season
found differences in foraging habitat
based on island and breeding colony
(Robson et al. 2004, Sterling & Ream
2004, Call et al. 2008). Adult females
have been shown to exhibit a high de-
gree of habitat fidelity on repeat forag-
ing trips throughout the breeding sea-

son (Robson et al. 2004, Call et al. 2008). Fur seal
foraging habitats have been characterized by unique
marine environments that are defined by hydrographic
domains associated with the continental shelf (Goebel
et al. 1991, Robson et al. 2004, Sterling & Ream 2004,
Call et al. 2008). Adult females at BI generally take
short foraging trips (<50 km) to deep offshore waters
(Ream et al. 1999, NMML unpubl. data). Adult females
and juvenile males at Vostochni typically forage over
the continental shelf, and animals at Reef utilize both
on-shelf and off-shelf habitats (Loughlin et al. 1987,
Goebel et al. 1991, Sterling & Ream 2004, Call et al.
2008). Postpartum females at SMI forage primarily in
pelagic waters over the continental slope to the north-
west of the island (Antonelis et al. 1990). No studies
have been conducted on the foraging characteristics of
juveniles or pups at SMI during the breeding season.

Data from historical pelagic collections of northern
fur seals have been used to examine their winter
migration (Kenyon & Wilke 1953, Lander & Kajimura
1982, Bigg 1990). However, these pelagic collections
are biased towards nearshore waters. Telemetry stud-
ies indicated that adult female fur seals at SPI and BI
travel to foraging areas in the subarctic–subtropical
region of the central North Pacific and the coastal
areas of the eastern North Pacific during the winter
months (Ream et al. 2005, NMML unpubl. data). Adult
females and recently weaned pups at SMI migrate
northwards along the continental margin (Lea et al.
2009). During their winter migrations, it appears that
adult females travel further offshore compared to pups
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Prey taxa Reef Vostochni Bogoslof Castle Rock
(n = 28) (n = 74) (n = 41) (n = 27)

Engraulis mordax 92.6
Leuroglossus schmidti 73.2
Theragra chalcogramma 89.3 68.9 9.8
Merluccius productus 55.6
Sardinops sagax 51.9
Loligo opalescens 22.2
Gonatid squid 3.6 5.4 73.2 3.7
Clupea harengus 14.3 27.0
Oncorhynchus spp. 17.9 18.9
Gadid 3.6 25.7 2.4
Myctophid spp. 10.7 17.1 3.7
Pleurogrammus monopterygius 14.3 6.8 2.4
Sebastes spp. 7.4
Ammodytes hexapterus 5.4
Gasterosteus aculeatus 5.4
Hemilepidotus spp. 5.4
Cottid spp. 3.7

Table 3. Callorhinus ursinus. Percent frequency of occurrence (%FO > 5%) of
prey taxa retrieved from northern fur seal fecal samples collected at 4 rookeries
during 2006 or 2007 (Bogoslof). n: number of samples that had identifiable prey 

remains. Bold numbers indicate prey taxa with %FO > 10%
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(NMML unpubl. data; S. R. Melin, AFSC, pers. comm.).
At the Alaskan sites, stable nitrogen isotope values

followed the same pattern for all tissue types (i.e. 15N
enrichment: Vostochni > Reef > BI). There were no dif-
ferences in mean δ15N values between individuals at
SMI and Vostochni, implying that fur seals at these
sites were feeding at a similar trophic level within their
respective communities. The enriched δ15N values of
fur seals at SMI and Vostochni rookeries imply that
these individuals were feeding at a higher trophic level
than animals at Reef and BI. We did not measure diet–
tissue fractionation and were therefore unable to dis-
cern specific prey consumed at each location using sta-
ble isotopes. Several studies (e.g. Kurle & Worthy 2001)
have determined the diet–tissue fractionation of sev-
eral prey of fur seals; however, diet–tissue fractiona-
tion for many prey have not yet been determined (esp.
for SMI prey). In order to use models, isotope values for
most, if not all, prey are needed to provide accurate
results. It was beyond the scope of this study to recon-
struct the diet of fur seals at each location; rather, we
provide a foundation for understanding resource use
by these animals throughout their distribution.

The scat samples collected in our study also indicate
differences in diet among the study sites. Dietary dif-
ferences were associated with prey assemblages in
specific hydrographic domains. Although walleye pol-
lock was the dominant prey of fur seals at both Reef
and Vostochni, there were other dietary differences
among animals at these sites. Scats from Vostochni
contained almost exclusively on-shelf species (e.g.
walleye pollock, Pacific herring, Pacific sand lance,
and sand fish), whereas samples collected at Reef con-
tained both on-shelf (e.g. walleye pollock, Pacific her-
ring) and off-shelf species (e.g. myctophids). Fur seal
scats collected on BI were dominated by deep-water
species that migrate to pelagic waters at night (e.g.
bathylagids, myctophids, and squid species). No scats
were collected on BI in 2006, but samples were col-
lected in September 2007 and used for this study. Pre-
vious studies indicated that the composition of the most
frequently occurring prey retrieved from fur seal scats
at BI changes very little between years during the sum-
mer breeding season (NMML unpubl. data).

Remains from scats collected at Castle Rock (SMI)
were primarily from epi- or mesopelagic schooling
prey (e.g. Pacific hake, northern anchovy, Pacific sar-
dine, market squid); however, bathypelagic prey were
also identified (e.g. California smoothtongue, northern
lampfish, blue laternfish). Scats were collected at Cas-
tle Rock ~2 mo prior to the collections at the Alaskan
sites and ~4 mo before the collection of tissues for sta-
ble isotope analysis at SMI because of logistical factors.
However, we assumed that the prey assemblages in
the regions where fur seals fed did not change dramat-

ically during inter-island scat collections, or between
the time when scats were collected at Castle Rock and
when tissues were sampled at SMI. Scat studies con-
ducted opportunistically throughout the year on other
pinniped species (e.g. California sea lions Zalophus
californianus) foraging in the same region show similar
prey assemblages (Antonelis et al. 1984, Antonelis et
al. 1990, Melin 2002). Our results are corroborated by
previous food habit studies that indicated dietary dif-
ferences among conspecifics from different breeding
sites associated with the same hydrographic domains
(Sinclair 1988, Antonelis et al. 1997, Perez 1997, Zep-
pelin & Ream 2006). Our findings are further sup-
ported by dive data from previous studies that de-
scribed intraspecific foraging strategies depending on
hydrographic domain. Goebel et al. (1991) found that
fur seals foraging over deep waters tended to make
shallow dives at night following the movement of the
deep scattering layer. Fur seals foraging over the shelf
made dives throughout the day and night and many of
their dives reached the bottom.

Age-class variation

We observed significant differences in mean δ13C
and δ15N values between adult females and immature
animals. At SMI, pups had lower mean δ13C values
(except for RBCs) and higher mean δ15N values than
adult females. The difference in δ13C values between
pups and adult females may be because pups still
relied on their mothers for nutrition and were sus-
tained on a lipid-rich milk diet, which is 13C-depleted
in comparison to the relatively protein-rich piscivorous
diet of their mothers (Tieszen et al. 1983, Tieszen &
Boutton 1988, Polischuk et al. 2001, Kurle 2002). The
likely reason why pups had higher δ15N values than
adult females at SMI is again their reliance on their
mothers for sustenance. The milk that pups consume is
derived from remobilized body tissues of lactating
females. Consequently, pups are essentially feeding on
their mothers’ tissues and thus feeding at a higher
trophic level than older conspecifics.

Juveniles had lower mean δ13C values than adult
females at all Alaska sites. All juvenile tissues had
lower δ13C values compared to adult female tissues,
indicating that these age classes were feeding in dif-
ferent areas during both the summer breeding season
and the winter migration. Telemetry data indicated
that during the breeding season, juvenile males at SPI
typically utilized the same hydrographic domains as
adult females from the same rookeries; however, juve-
nile males traveled further from the rookery and left
for greater durations (Sterling & Ream 2004). Adult
females are constrained by having to return to shore to
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nurse their pups, which restricts trip duration and the
distance they can travel. Juveniles and adult females
may also partition habitat during the breeding season
to reduce competition, or because of differences in the
abundance and distribution of their respective prey.
Low numbers of yearlings were found in early near-
shore pelagic collections of northern fur seals, suggest-
ing that both juvenile males and females remain far-
ther offshore than adult females during the winter
migration (Kenyon & Wilke 1953, Bigg 1990). Likewise,
recent satellite-telemetry studies on SPI indicated that
juveniles remain in the Bering Sea for a greater dura-
tion before departing for the winter migration and
travel farther offshore during the migration than adult
females (NMML unpubl. data). Most of the juveniles
sampled in this study were estimated to be 1 and 2 yr
olds. Individuals within this age group generally
remain offshore in the eastern North Pacific Ocean,
with only a few coming into the Pribilof Islands region
near the end of the breeding season (Bigg 1990).
Because we sampled near the end of the breeding sea-
son, juveniles may have only recently returned to the
breeding rookeries and the difference in both δ13C and
δ15N values of the blood components may be indicative
of time spent in both the North Pacific Ocean and
around the Pribilof Islands.

Juveniles had lower mean δ15N values than adult
females at both SPI rookeries. Enriched δ15N values of
adult females compared to juveniles at SPI suggest that
adult females are feeding at a higher trophic level than
juveniles. Hobson et al. (1997a) also found that adult
females had higher δ15N values than juvenile northern
fur seals. Additionally, Kurle & Worthy (2001) found
that juvenile male northern fur seals at the Pribilof
Islands feed at higher trophic levels with increasing
age, based on comparison of δ15N isotope values from
several tissues with different turnover times.

Intraspecific age differences in diet or foraging be-
haviors may be the result of several factors. For exam-
ple, young animals may be physiologically or morpho-
metrically underdeveloped compared to adults. Fur
seals, like all air-breathing homeotherms that dive for
aquatic prey, are constrained by their ability to store
and transport oxygen at depth (in blood and muscles),
and decrease the rate at which it is used (Burns 1999).
Onboard oxygen stores scale to body mass (Schmidt-
Nielson 1984, Kooyman 1985, 1989) and metabolism
(Kleiber 1975). Because young animals are smaller,
have higher mass-specific metabolic rates, and lower
mass-specific body-oxygen stores, they are limited in
their diving depths and durations compared to older
conspecifics. Immature animals may not have the
swimming speed or the mouthparts to capture adult
prey. Additionally, young animals may have different
nutritional requirements, insufficient experience, or

may be avoiding competition with older conspecifics
(Fowler et al. 2006). Shifts in diet or changes in
foraging/diving behaviors with increasing age have
been observed in other otariid pinnipeds including the
Galápagos fur seal (Arctocephalus galapagoensis;
Horning & Trillmich 1997), New Zealand fur seal (A.
forsteri; Page et al. 2006), Australian sea lion (Neo-
phoca cinerea; Fowler et al. 2006), Steller sea lion
(Eumetopias jubatus; Raum-Suryan et al. 2004, Pitcher
et al. 2005), and California sea lion (Zalophus californi-
anus; NMML unpubl. data).

There was no difference in mean δ15N values be-
tween adult females and juveniles at BI. Adult females
at BI take short foraging trips relative to SPI seals and
forage at night on small diel vertically migrating pela-
gic prey species (NMML unpubl. data). BI scats had
highest occurrences of bathylagid, myctophid, and
squid species. During the day, many of these species
reside at depths beyond the physiological limits of both
adults and juveniles. At night, they migrate to surface
waters and are presumably accessible to both juvenile
and adult fur seals.

We were unable to use scats to determine differ-
ences in diet between immature animals (i.e. pups and
juveniles) and adult females because scats collected on
rookeries are assumed to be from adult females. How-
ever, the life history and distribution of dominant prey
species found in scats of adult females support our sta-
ble isotope results. For example, pollock was the dom-
inant prey at SPI. Pollock segregate in the water col-
umn by age, with younger individuals residing in the
surface to mid water, and older pollock residing near
the bottom (Bailey 1989). Adult female fur seals have
greater physiological capabilities and thus have better
access to older pollock residing at greater depths,
whereas juveniles might be restricted in their dive
depths or have a smaller gape width to capture larger
prey; thus, they might be eating younger and smaller
pollock that are higher in the water column. Larger,
older pollock have higher δ15N values compared to
smaller, younger individuals (Kurle & Worthy 2001).

CONCLUSIONS

By incorporating the use of traditional proxies (e.g.
fecal analysis) and biochemical methods (e.g. stable
isotope analysis), we were able to acquire a better
understanding of the foraging ecology of different-
aged Callorhinus ursinus from multiple locations.
Whereas both methods have inherent biases, they
were strengthened when used in combination. Infor-
mation on the identity of prey taxa was obtained using
scat analysis. Because we used dual stable isotope
analysis of multiple tissues with differing turnover
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rates, we were able to infer changes in foraging pat-
terns within an individual and between groups of ani-
mals over longer temporal and spatial scales. Our find-
ings are supported by previous telemetry and diet
studies. We did not collect scats from juveniles and did
not measure diet–tissue isotopic discrimination; how-
ever, we believe our findings provide a valuable foun-
dation for future study. This rangewide knowledge of
foraging ecology allows us to assess the relative impor-
tance of different prey species and could ultimately
provide insights into the impacts of changing environ-
mental conditions, predation, and fisheries on fur seals.
To provide a better resolution on the foraging ecology
of wild populations, future studies should include the
use of multiple techniques, the simultaneous collection
of stable isotope data for both consumer and prey to
validate diet results, and the collection of scats from
different age classes.
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