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INTRODUCTION

The aims of this study were to identify critical rela-
tionships between juvenile North Pacific albacore and
their prey in the California Current System (CCS), and
to quantify decadal variability in diet and consumption
rates. Diet studies are a snapshot of the habits of
marine predators. In light of significant ecological
changes in the CCS over the past half-century (e.g.
Hare & Mantua 2000, McGowan et al. 2003, Brodeur et
al. 2005, Lavaniegos & Ohman 2007), and given func-
tional redundancy in marine food webs (Link 2007)
and the commonality of generalist foraging strategies
(Roughgarden 1974), variability in diet is expected.

North Pacific albacore Thunnus alalunga are highly
migratory predators that produce 60 000 to 100 000 t of
commercial landings annually (ISC 2006). Adults
spawn in the western-central North Pacific and juve-
niles (ages 0 to 4) occupy the productive California and
Kuroshio Current regions (Laurs & Lynn 1977). Juve-
nile albacore migrate into CCS waters in the late
spring and reside there until late fall. Some juveniles
over-winter at the southern end of the CCS along the
Baja continental shelf, while some migrate across the
North Pacific to the Kuroshio system (Kimura et al.
1997). Albacore complete 90% of growth before repro-
ductive maturity (de Zarate & Restrepo 2001); given
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the residence time of juveniles in the CCS, their diet in
this region is important to the production of the popu-
lation.

Diet habits of juvenile albacore in the CCS have
been described in a host of studies (Hart et al. 1948,
Pearcy 1973, Bernard et al. 1985). Three notable stud-
ies (McHugh 1952, Iversen 1962 [in conjunction with
Graham 1959], Pinkas et al. 1971) are sufficient in
scope for interdecadal comparisons. Data collected by
Pinkas et al. (1971), in particular, are widely used to
parameterize ecosystem models (Kitchell et al. 1999,
Olson & Watters 2003, Field et al. 2006). These 3 histor-
ical diet studies have never been analyzed in concert.
Given the widespread presumption that albacore are
opportunistic predators (Pinkas et al. 1971, Watanabe
et al. 2004, Consoli et al. 2008), an updated diet study
is warranted.

Significant fluctuations in population sizes of 2 for-
age fishes, Sardinops sagax (Pacific sardine) and
Engraulis mordax (Northern anchovy), have occurred
asynchronously over the past century (Soutar & Isaacs
1974, Schwartzlose et al. 1999, Baumgartner et al.
1992, Chavez et al. 2003). Past studies (McHugh 1952,
Iversen 1962, Pinkas et al. 1971, Bernard et al. 1985)
have identified anchovy, but not sardine, in significant
quantities in juvenile albacore diet. However, those
studies were conducted during periods of high anchovy
and low sardine abundance (Jacobson et al. 1995, Hill
et al. 2007). Recently, the relative abundance of these
small pelagic fishes has reversed (Hill et al. 2007).
Given the biological similarities between these forage
species, it is reasonable to hypothesize that juvenile
albacore have increased predation on sardine and
decreased predation on anchovy.

Predator–prey interactions are critical components
of multispecies models, and empirical attempts to
quantify interaction strengths rely upon diet studies or
field observations of predation. Diet studies are espe-
cially useful in poorly observed systems, such as the
pelagic environment, where interaction strengths are
difficult to quantify (Wootton 1997). For pelagic preda-
tors, gut content studies remain the primary method for
measuring food web linkages. Estimating variability in
diet-derived parameters is a critical step in improving
multispecies and ecosystem-based models (Chris-
tensen & Walters 2004).

Multispecies models have shown great promise for
estimating recruitment and natural mortality, quantify-
ing fishing impact on community structure, and
describing climate effects on food webs (e.g. Cox et al.
2002, Watters et al. 2003, Christensen & Walters 2004,
Field et al. 2006). However, the complexity inherent in
these models obscures more finely resolved compo-
nents, such as species-level dynamics (Hollowed et al.
2000). Species-specific parameters in ecosystem-scale

models, such as the consumption to biomass ratio
(Q:B), can be calculated within the models themselves,
but it is important also to validate estimates empiri-
cally.

Q:B quantifies prey biomass consumed per unit bio-
mass of a predator population on an annual basis (Pauly
1989). This parameter can be used, among other things,
to estimate the predation pressure exerted on prey pop-
ulations and to predict how a predator population may
be affected by changes in prey abundance. The poten-
tial for sudden and unexpected fluctuations in marine
populations, especially fisheries, underscores the im-
portance of predicting community responses to chang-
ing climate and fishing pressure (Hare & Mantua 2000,
Pauly et al. 2002, Hsieh et al. 2005). Thus, estimates of
Q:B that are empirically derived for a given species are
important for informing adaptive ecosystem-based
management.

This study presents new data quantifying diet habits
of juvenile albacore in the CCS, and, in the context of
3 prior studies, investigates changes over time. Histor-
ical studies are re-analyzed using a contemporary bio-
energetics approach, and estimates of energetic
demand are used to calculate Q:B for juvenile alba-
core. This is the first study to quantify empirically, for
albacore, the suite of prey energy density (ED) values
consumed and the impacts of variable prey on con-
sumption rates. Results demonstrate that juvenile alba-
core rely on few species of prey to meet energetic
requirements in the CCS.

MATERIALS AND METHODS

Data collection (present study). Stomachs from 371
juvenile North Pacific albacore were collected during
June to September 2005 and 2006 (Fig. 1). Stomachs
were collected by the author on recreational boats (n =
188) and by captains and crew on 2 commercial boats
(n = 183). All boats used troll gear, poles, or hand lines.
In all cases, date and location were recorded. Time of
day and albacore length were recorded on recreational
vessels. Stomachs were removed on deck from fish
minutes after death and frozen with dry ice or in a blast
freezer; a small percentage (~10%) were collected at
docks from vessels returning from day trips.

Contents were identified visually by the author exclu-
sively, primarily utilizing fish vertebrae (Clothier 1952),
fish otoliths (Harvey et al. 2000), cephalopod beaks
(Pinkas et al. 1971, Clarke 1986), and crustacean body
and eyeball morphology to identify species to the lowest
taxonomic level possible. Unidentifiable remains, tissue
from Sebastes spp. (rockfishes), and voucher speci-
mens of juvenile cephalopods were sequenced for
genetic identification. Lengths of individual prey items
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were measured to reconstruct original (pre-digestion)
weights. If a stomach contained a large number of one
species, 5 randomly chosen representatives per stomach
were measured.

Data collection (historical studies). McHugh (1952)
collected 321 stomachs during the summers of 1949
and 1950 using unbaited poles (Fig. 1, based on
McHugh Fig. 1). Albacore lengths were not provided.
McHugh reported mean volumes of individual prey,
total volume of species consumed, and frequency of
occurrence, but not numbers consumed.

Graham (1959) and Iversen (1962) reported indepen-
dent results from one study and data are combined here
(hereafter, jointly referred to as Iversen 1962). Investiga-
tors collected stomachs between 1950 and 1957 using
longline, gill net, and troll gear. Only those collected by
troll gear (n = 155 and starting in 1954) are analyzed
here. Other sampling methods are not comparable due
to location or gear bias. Trolling occurred primarily in the
CCS, but some (n = 38) were collected further west
(Fig. 1, based on Iversen Table 1) and could not be ex-
cluded from the gear-aggregated results. Sampling oc-
curred during fall and winter 1954, 1955, and 1956 and
summer 1955, 1956, and 1957. Iversen reported fre-
quency of occurrence, number, and volume of prey items
while Graham reported numeric data only.

Pinkas et al. (1971) collected 905 albacore from
commercial vessels using troll gear. Sampling took
place during July to November 1968 and July to
September 1969 (Fig. 1, based on their Fig. 4). They
reported frequency of occurrence, number, and vol-
ume of prey for each of 3 regions (southern, central,
and northern CCS).

Data analysis. Stomachs were assigned to one of 3
regions in the California Current based on the regional
divisions established by Pinkas et al. (1971). Regions
were designated northern (north of 44° N latitude,
inclusive), central (between 33° and 44° N latitude) and
southern (south of 33° N latitude, exclusive). The
northern region lacks data from McHugh (1952) and
Iversen (1962) and the southern region lacks data from
Iversen (1962).

The energetic contribution (E) of prey to the diet of
juvenile albacore is Ei = Wi × EDi where Wi is wet
weight (g) and EDi is energy density (kJ g–1) of species
i. Published values of prey ED and proximate composi-
tion were collected. Only ‘whole body’ values reported
as wet weight were used. If ED for a species was
unavailable, the next highest taxonomic level was
used (see supplement at www.int-res.com/articles/
suppl/m414p209_supp.pdf for details).

The taxonomic resolution of prey and diet metrics in
the 4 studies varied. Any prey category that occurred
in at least 10 stomachs in any of the 4 studies was
analyzed. The degree of digestion was not reported in
the historical studies, complicating comparisons of
mass data. Therefore, numbers of prey were converted
to pre-digested weight using published allometric
length–weight relationships. The mean length of prey
from 2005–2006 was applied to historical studies. This
was justified by the similarity in prey sizes described
(see Discussion). For McHugh (1952), percent volume
was used directly because numeric data were not
reported.

Pre-digested weight was reconstituted as follows.
Allometric length-weight relationships were used for
all species of fish (Harvey et al. 2000, Froese & Pauly
2008). For crustaceans, measurements of carapace
length and wet weight were used (Isaacs et al. 1969).
For cephalopods, measurements of beak lower rostral
length (LRL) were used to calculate wet weight. The
LRL of cephalopod beaks in this study ranged from 0.2
to 2.0 mm. LRL–weight relationships for this range of
beak sizes exist for Loligo opalescens, Gonatus sp.,
Onychoteuthis borealijaponica, and Abraliopsis sp.
(Wolff 1984, Clarke 1986). Body masses were calcu-
lated for these 4 species, and the overall mean was
applied to remaining cephalopod species.

A bioenergetics model of albacore (Essington 2003)
was used to calculate daily consumption rates. Daily
consumption (C) is C = AL + SMR + AMR + REP + G,
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where AL is loss from assimilation, SMR is standard
metabolic rate, AMR is active metabolic rate, REP
is reproduction, and G is somatic growth. Here, AL
describes the loss of energy due to feces (10%), excre-
tion (10%), and specific dynamic action (15%) (Olson
& Boggs 1986). All components have units of J kg–1 d–1.
The model is size- and age-explicit, and includes
swimming speed, lift, sex ratio (1:1), and age of repro-
ductive maturity. To quantify the steady-state biomass
(g kg–1 d–1) of prey consumed (CB), C was multiplied by
prey ED–1. Finally, to calculate annual Q:B, CB was
multiplied over the year.

Parameter uncertainty was quantified by running
10 000 Monte Carlo simulations of the model. Essing-
ton (2003) found Q:B sensitive to 10% perturbations of
AL, swimming speed (xswim), the slope of the line rela-
ting AMR to swimming speed (xAMR), and ED. In the
simulation, AL, xswim and xAMR varied by 10% and ED
varied according to the distributions in the literature.

The bioenergetics model was given a temporal com-
ponent by varying diet according to the historical stud-
ies and by sampling from the age distribution of alba-
core in the CCS. The energy consumed is a weighted
combination of the ED of prey and the proportion that
prey comprises of total intake. Using the percentage
weight a taxon contributed to albacore diet, an ensem-
ble energy density value (EDn) was calculated for each
study (simply, a weighted mean). To calculate EDn for
any non-study year x, a weighting function accounted
for the distance of year x from the 2 studies flanking x
in time (i and i+1), such that

(1)

where t is the year of study i or the non-study year x. C
and CB are functions of albacore age, therefore the
age-distribution of juvenile North Pacific albacore
landed by the North American commercial troll fishery
from 1966 to 2005 was used to create a distribution
from which the simulation sampled. This fishery oper-
ates primarily in the CCS and targets juveniles (ISC
2006). To extrapolate for the time period 1949 to 1965,
overall age distribution was used. In each iteration,
the following variables were randomly sampled from
their distributions: AL, xAMR, xswim, ED, and albacore
size/age. EDn, CB and Q:B were calculated along with
estimates of uncertainty.

RESULTS

The 4 studies describe diet habits of 1672 juvenile
albacore in the CCS at various points during a period
spanning 55 yr. Albacore were between 52 and 105 cm
in fork length (Table 1), corresponding to age groups of

2 to 3 yr old (Suda 1966). Albacore of this size allocate
approximately 10% of energetic intake to growth, 20
to 25% to active metabolism (swimming), 40% to stan-
dard metabolism, and the balance is lost (Essington
2003 and values calculated here).

In the CCS, juvenile albacore consumed young-of-
year (YOY) fishes, juvenile cephalopods, and adult zoo-
plankton (Table 2). Juvenile albacore were capable of
consuming adult-sized small pelagic fishes, evidenced
by the size of bait in stomachs (Table 2). However, ex-
cluding bait and saury Cololabis saira, their mean prey
was recently spawned fishes 15 to 65 mm in length and
cephalopods weighing 4 g. The Pacific saury was no-
table because it was relatively larger than other prey
(119.1 ± 68.3 mm, 13.0 ± 20 g, mean ± SD) and the large
SD indicated both juvenile and adult saury were eaten.
In comparison, anchovy Engraulis mordax were consis-
tently of juvenile sizes (34.7 ± 10.0 mm, 1.1 ± 1.3 g). The
remainder of fishes were also juveniles except mycto-
phids, which, while small (50.1 ± 15.8 mm), were adults.
Juvenile rockfish Sebastes spp. (14.5 ± 4.5 mm) were a
common prey item and were the smallest fish regularly
consumed by albacore. Cephalopods were juvenile
sizes, and crustaceans (amphipods, decapods, and
euphausiids) were adult sizes. While bait boats har-
vested anchovy and sardine Sardinops sagax 15 to
20 cm in length for fishing vessels, the natural prey of
albacore were considerably smaller.

Table 3 summarizes preyED values synthesized from
the literature and used in the bioenergetics model.
Crustaceans and cephalopods were significantly lower
in energy content than fishes, although some species of
squid were more comparable to fishes. Of the species
consumed by albacore, crustaceans ranged from 2.5 to
3.2 kJ g–1, cephalopods from 3.0 to 6.7 kJ g–1, and
fishes from 3.5 to 7.9 kJ g–1 (see supplement for
detailed values).

Depending on the EDn of the albacore prey, daily
consumption rates could range from 0.02 to 0.12 g g–1

d–1 for an age-3 albacore (mean length 65 cm) (Fig. 2).
The relationship between biomass consumed and EDn
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Collection Mean length Range Source
years (cm) (cm)

1949–1950 n/a n/a McHugh (1952)
1954–1958 ~ 67 53–85 Iversen (1962)
1968–1969 n/a 52–93 Pinkas et al. (1971)
2005–2006 75.6 (8.9) 54–99 Glaser (this study)
1966–2005 68.4 (6.5) 37–105 ISC (2006)

Table 1. Thunnus alalunga. Collection years, and fork lengths
of juvenile albacore (parentheses: SD) examined in 4 diet
studies and from commercial catch (ISC 2006)
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varies geometrically: CB = C × ED–1. Thus, the sensitiv-
ity of the model depends on the magnitude of EDn. Due
to the high proportion of fish in albacore diet, the 4
studies cluster along the flat portion of the curve rela-
ting consumption rates to prey ED (Fig. 2).

In general, over a period of 55 yr and 3 regions of
the CCS, albacore primarily consumed anchovy,

saury, and cephalopods, based on
percent energetic contribution (E).
Table 4 describes the spatial and tem-
poral patterns evident in juvenile
albacore diet, to the extent that data
were available.

In the northern region, anchovy
were the largest single-species com-
ponent of diet; however, anchovy
were far more predominant (68% ver-
sus 30%) in 1968–1969 than in 2005–
2006. In the late 1960s, cephalopods
were the second most important prey
group (14%). All other taxa each com-
prised less than 10% of the diet, with
saury (8%), myctophids (5%), and
crustaceans (4%) being notable. In
2005–2006, the sum of all crustaceans
comprised the largest component of
the diet (31.5%); the group Crusta-
ceans was primarily undifferentiated
decapods or euphausiids. Juvenile
hake appeared in albacore diet for the
first time on record in 2005–2006 and
were the second most important (21%)
single-species prey group in the
northern region, followed by cephalo-
pods (5%) and juvenile sardine (4%).

The central region contained data from all 4 diet
studies and showed, overall, a predominance of saury
and cephalopods in the diet, with important excep-
tions. Anchovy were the most important (38%) prey in
1949–1950, while hake were the most important (38%)
during 2005–2006. In these 2 studies, saury and
cephalopods were, respectively, the second and third
most important prey groups, whereas they were the
first and second most important groups during the
intervening studies (1954–1957 and 1968–1969).
Cephalopods dominated diet in the central region in
1968–1969 (63%), the highest contribution of cephalo-
pods in any interval. Crustaceans were a less im-
portant component of diet here, comprising only 1 to
10% of E.

Diet in the southern region, generally speaking, was
dominated by the same prey: saury was the most
important group in 1949–1950 (61%) and 1968–1969
(59%), while cephalopods were either the second or
third most important group in all 3 studies available. In
the earliest study, crustaceans comprised the second
most important group (11%). Anchovy were important
in 1968–1969 (17%) and 2005–2006 (67%) but were
not significant in 1949–1950. Notably, sardine was the
second most important component of diet (15%) in this
region during the 2005–2006 study, and hake were not
present.
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Prey category n Length (mm) n Weighta (g)

Crustaceans
Amphipods 47 11.7b (6.5) 8 0.04 (0)
Pleuroncodes planipes 2 33.8b (2.5) 1 2.0
Euphausiids 30 23.0b (4.8) 8 0.1
Malacostracans 24 26.3b (8.4) 1 0.1

Cephalopods 181 0.8c,f (0.2) 181 3.8f (4.0)

Fishes
Cololabis saira 87 119.1d (68.3) 87 13.0 (20.0)
Engraulis mordax 421 34.7d (10.0) 421 1.1 (1.3)
Sardinops sagax 128 49.2d (16.9) 128 1.8 (3.6)
Sebastes spp. 29 14.5d (4.5) 29 0.1 (1.0)
Merluccius productus 232 60.9e (15.3) 232 2.1 (2.0)
Trachurus symmetricus 7 64.7e (39.3) 7 12.5 (17.6)
Myctophidae 16 50.1e (15.8) 16 1.9 (1.4)
Fishes (other) 942 49.7f,g (34.9) 942 2.5f,g (7.3)
Engraulis mordax bait 29 100.0d (22.8) 29 13.6 (7.0)
Sardinops sagax bait 39 145.5d (16.2) 39 33.0 (12.9)
Scomber japonicus bait 8 227.7e (36.1) 8 60.9 (21.5)

aWet weight. bTip of rostrum to end of telson (mm). cBeak lower rostral length
(mm). dStandard length (mm). eTotal length (mm). fTaxonomic mean. g‘Other’
category measurements include unknown and identified (above) fishes

Table 2. Thunnus alalunga. Measured lengths and calculated weights of prey
categories common to 4 studies of juvenile albacore diet, mean (SD). Measure-
ments were made from stomach contents collected in 2005–2006 (this study).
Mass values from length–weight relationships were applied to numeric data
from historical studies to reconstruct the pre-digestion wet weights of prey. n is 

the number of specimens measured

Prey category ED

Amphipods 2.5 ± 0.9
Pleuroncodes planipes 3.0 ± 1.3
Euphausiids 3.1 ± 1.1
Crustaceans (other) 3.2 ± 1.1
Cephalopods 4.4 ± 0.5
Cololabis saira 7.5 ± 1.0
Engraulis mordax 6.6 ± 0.5
Sardinops sagax 7.3 ± 0.6
Sebastes spp. 4.2 ± 0.3
Merluccius productus 5.9 ± 1.3
Trachurus symmetricus 6.4 ± 0.5
Myctophidae 7.1 ± 0.6
Paralepididae 7.1 ± 0.6
Vinciguerria lucetia 5.2 ± 0.4
Fishes (other) 6.6 ± 0.6

Table 3. Thunnus alalunga. Energy density (ED, mean ± SD)
values (kJ g–1) of prey common to 4 studies of juvenile albacore 

diet in the California Current System
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EDn estimated for the 4 studies was comparable,
ranging from 6.0 to 7.0 kJ g–1 with low variability
(Table 5). A juvenile albacore feeding in the CCS con-
sumed between 18.0 to 21.0 g of prey per kg of body
mass per day (CB). Using an age-3 albacore (5.9 kg,
65 cm) as an example, this estimate of CB translates
into a steady-state energetic intake of between 106.2
and 123.9 g per albacore per day.

The mean annual Q:B was consistent between stud-
ies and ranged from 6.7 to 8.0 yr–1 (Fig. 3). The greatest
variability occurred early in the time series when 3 diet
studies were close in time. The studies in the late 1960s
and 2005–2006 had similar EDn values and the Q:B line
is relatively flat through this period. Given the wide
temporal spacing between these studies, it is impossi-
ble to know whether changes in diet (and hence
changes in Q:B) were gradual or sudden; the weight-
ing function used here assumed the former.

DISCUSSION

Spatial and temporal patterns

This study presents observational evidence that only
2 or 3 species of fish were important prey items for
juvenile albacore in the CCS. Based on 4 diet studies,
juvenile albacore obtain greater than 60% of their total
energetic intake from 2 species of coastal pelagic fish:
Northern anchovy Engraulis mordax and Pacific saury
Cololabis saira. These results have been consistent
over 50 yr and are corroborated by other studies of
juvenile albacore (not analyzed here due to scope)
which found saury and anchovy were dominant prey
off Vancouver Island during 1941–1947 (Hart et al.

1948), saury were the dominant prey off Oregon dur-
ing 1970 (Pearcy 1973), and juvenile anchovy were the
dominant prey off Southern California during 1983
(Bernard et al. 1985). Finally, cephalopods were an
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Prey category 1949– 1954– 1968– 2005–
1950 1957 1969 2006

Northern
Amphipods – – 0.0 0.7
Pleuroncodes planipes – – 0.0 0.0
Euphausiids – – 0.0 14.1
Crustaceans (unid.) – – 3.9 17.4
Cephalopods – – 14.3 4.7
Cololabis saira – – 8.1 0.7
Engraulis mordax – – 67.8 29.8
Sardinops sagax – – 0.0 4.3
Sebastes spp. – – 0.1 4.3
Merluccius productus – – 0.0 20.9
Trachurus symmetricus – – 0.0 0.0
Myctophidae – – 5.4 0.5
Paralepididae – – 0.1 0.0
Vinciguerria lucetia – – 0.0 0.0
Fishes (other) – – 0.3 2.5

Central
Amphipods 0.9 0.1 0.3 1.2
Pleuroncodes planipes 0.0 0.0 0.0 0.0
Euphausiids 6.5 0.4 2.6 0.4
Crustaceans (unid.) 3.4 0.0 0.1 0.3
Cephalopods 11.6 10.3 63.3 18.9
Cololabis saira 22.3 85.1 17.2 30.5
Engraulis mordax 37.6 0.0 2.1 1.5
Sardinops sagax 0.0 0.0 0.0 0.5
Sebastes spp. 1.5 0.0 1.1 2.8
Merluccius productus 0.0 0.0 0.0 37.6
Trachurus symmetricus 0.0 0.0 0.0 0.0
Myctophidae 1.2 1.1 8.6 0.6
Paralepididae 0.0 0.0 0.4 0.0
Vinciguerria lucetia 0.0 0.0 0.0 0.0
Fishes (other) 15.0 3.0 4.3 5.7

Southern
Amphipods 1.4 – 0.0 0.5
Pleuroncodes planipes 5.8 – 0.3 0.0
Euphausiids 3.5 – 0.1 0.1
Crustaceans (unid.) 0.4 – 0.0 3.5
Cephalopods 9.0 – 18.5 11.4
Cololabis saira 61.4 – 59.1 0.4
Engraulis mordax 2.8 – 17.1 67.4
Sardinops sagax 0.0 – 0.0 15.3
Sebastes spp. 0.9 – 0.4 0.0
Merluccius productus 1.8 – 0.0 0.0
Trachurus symmetricus 0.0 – 0.1 0.0
Myctophidae 0.7 – 0.6 0.0
Paralepididae 0.0 – 0.1 0.0
Vinciguerria lucetia 3.3 – 0.0 0.0
Fishes (other) 8.9 – 3.8 1.5

Table 4. Thunnus alalunga. Energetic contribution (E, %) of
prey to diet of juvenile albacore in the California Current.
Studies are: McHugh (1952), Iversen (1962), Pinkas et al.
(1971), and Glaser (this study). Columns are years data were
collected. Prey categories represent taxa in common to the 4
studies, in general distinguishing any species category 
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important component of albacore diet in all 3 regions
investigated.

There have been important spatial and temporal
exceptions to these general patterns. Saury occurred in
much lower proportions in juvenile albacore diet in the

northern region (note that Pearcy 1973
found significant amounts of saury in
diet in this region, but data were col-
lected over only 6 d and from a limited
spatial area). Crustaceans were signif-
icant only in the northern region in
one study (2005–2006). Anchovy were
always important in the northern
region, but were only found in large
quantities in the central region during
1954–1957 when they were not found
in the southern region. For all other
studies, including one sampling trip
in 1983 (Bernard et al. 1985), anchovy

were important in the southern region. Hake were an
important component in the northern and central
regions during 2005–2006, but were not documented
in notable quantities in other studies. Finally, sardine
were important in the southern region (and occurred in
the northern region) during 2005–2006, but not else-
where.

It has long been hypothesized (Laurs & Lynn 1991),
and more recently demonstrated (Barr 2009), that the
juvenile albacore population in the CCS is made up
of northern and southern subpopulations, split around
40° N, with differing migration routes and possibly
growth rates. In diet, saury were less abundant north
of 44° N, and hake were absent south of 33° N. Other-
wise, there are no strong regional patterns to diet that
could differentially affect these subpopulations.

Juvenile albacore prey almost exclusively on YOY
fishes, with the exception of predation on adult saury.
Data collected in 2005–2006 quantify these results,
while the discussions of prey sizes in historical studies
corroborate them. Comments by Hart et al. (1948),
Iversen (1962), and Pinkas et al. (1971) suggested fish
prey were of juvenile sizes. Measurements of individ-
ual volume (McHugh 1952) and length (Bernard et al.
1985) demonstrated that fact. Finally, albacore also
consumed juvenile (but not adult) Japanese anchovy
Engraulis japonicus in the Western Pacific Ocean
(Watanabe et al. 2004).

Prey preferences: anchovy over sardine

The CCS contains many species of forage fish:
anchovy, saury, hake, sardine, jack mackerel Trachu-
rus symmetricus, and Pacific mackerel Scomber japon-
icus. Jack mackerel and Pacific mackerel have never
been found in significant quantities as prey of alba-
core, and sardine were only important in the southern
region during 2005–2006. These results belie the con-
ventional wisdom that albacore are true generalists
(Pinkas et al. 1971, Watanabe et al. 2004, Consoli et al.
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Data Ensemble Consumption Demand Source
collection ED (kJ g–1) (g g–1 d–1) (g albacore–1 d–1)

1949–1950 6.0 ± 0.9 0.021 ± 0.005 124.5 ± 28.8 McHugh (1952)
1954–1957 7.0 ± 0.9 0.018 ± 0.004 105.7 ± 20.9 Iversen (1962)
1968–1969 6.2 ± 0.7 0.020 ± 0.004 120.4 ± 26.0 Pinkas et al. (1971)
2005–2006 6.2 ± 0.9 0.020 ± 0.004 119.6 ± 24.7 This study

Table 5. Thunnus alalunga. Estimates of diet-derived bioenergetic parameters
(mean ± SD) for juvenile albacore from 4 diet studies. Values were calculated
from aggregated study data (not separated into regions). The ensembleED is the
weighted mean energy density value. Consumption rate and daily demand
(prey biomass consumed at steady-state) were calculated using a bioenergetics 

model (Essington 2003) for an age-3 albacore of mean weight (5.9 kg)
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2008) and suggest that albacore have diet preferences.
Without concurrently quantifying relative abundance
of prey, in particular of YOY fishes, I cannot demon-
strate that juvenile albacore are selectively consuming
anchovy, saury, and sometimes hake over sardine and
mackerel. Nevertheless, observational evidence sug-
gests that juvenile albacore are not consuming prey in
proportion to their relative abundance at the scale of
the California Current ecosystem.

Continuous long-term biomass time series for YOY
fishes are available for hake and Pacific mackerel
(1966 to present and 1929 to present, respectively).
Sardine time series contain a gap from 1964 to 1981,
anchovy data span 1963 to 1994 and are limited to the
southern subpopulation, and jack mackerel and saury
are not assessed (Fig. 4). Consequently, the 2 primary
prey species are too data-poor to make conclusive
statements about preference or selectivity. However,
Fig. 4 does support some conjecture. When time series
coincide, YOY Pacific mackerel were considerably less
abundant than sardine, anchovy, or hake, and they did
not appear in albacore diet. During 1968–1969 (Pinkas
et al. 1971), abundance of YOY anchovy and hake
were comparable; sardine were not assessed but were

assumed to have been far less abundant (Jacobson &
MacCall 1995). By the 2005–2006 study, anchovy
assessments were no longer carried out. Sardine
recruitment has been high over the past 2 decades,
and YOY sardine were more abundant than YOY hake
and likely were more abundant than anchovy during
2005 and 2006 (Hill et al. 2007). Thus, one might
expect sardine to be more common in diet recently if
relative abundance in the CCS were the dominant pre-
dictor of diet habits.

These 4 diet studies failed to find sardine in significant
quantities, with the important exception of the southern
region during 2005–2006. Thus, while it is assumed that
sardine were higher in abundance than anchovy in the
CCS during this period (Hill et al. 2007), the diet of alba-
core did not reflect a major shift in prey species from an-
chovy to sardine. However, the finding of significant pre-
dation on sardine in the southern CCS indicates that,
during periods of higher sardine abundance, albacore
can and do consume them. Sardine recruitment during
2005 and 2006 was higher than during the 1950s and
1960s (when past diet studies were conducted), but re-
cruitment was lower on average than over the past
decade (Hill et al. 2007, Fig. 4). Had diet data been col-
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lected during years of high sardine recruitment (e.g.
1998 or 2003), predation on juvenile sardine may have ri-
valed or exceeded predation on anchovy.

Several important caveats to these conjectures must
be made. First, the population estimates from which
Fig. 4 was constructed are age-based stock assessments
associated with high uncertainty in mortality rates and
thus in recruitment biomass (see assessment reports
cited). Second, the time series describe populations or
subpopulations that do not fully overlap each other or
span the CCS. Anchovy data are for the central sub-
stock residing south of 35° N (Jacobson et al. 1995a),
and anchovy biomass estimates for the northern sub-
stock do not exist. Furthermore, with a possible north-
ward shift in hake spawning grounds (Phillips et al.
2007), the hake population is unlikely to overlap the
southern anchovy population. Finally, adult sardine
and mackerel tend to occupy waters further offshore
than hake or anchovy (Agostini et al. 2006, Checkley et
al. 2000). Consequently, inferences must be made care-
fully; data simply are not available to conclude whether
active preferences in albacore diet exist.

Thermal preferences drive predation

Optimal foraging theory provides several hypothe-
ses for why albacore may consume anchovy, saury, and
(recently) hake instead of sardine (MacArthur &
Pianka 1966, Kirby et al. 2000). First, sardine could be
faster swimmers than other species and therefore more
costly to chase. However, at the size consumed by
albacore during summer and fall months, there is little
difference in swimming speed of sardine and anchovy
(van der Lingen 1995). Second, sardine could be of
inferior energetic quality (Emlen 1966); however, sar-
dine is considerably higher in ED than hake, slightly
higher than anchovy, and only slightly lower than
saury (Table 3). Third, albacore may not co-exist with
sardine at mesoscales or during feeding events.

Adult sardine live further offshore than anchovy,
saury, or juvenile hake, and the species have distinct
spawning regions (Checkley et al. 2000). Sardine
spawn in warmer (13° to 25ºC) offshore waters (Lluch-
Belda et al. 1991) subject to weaker, slower rates of
curl-driven upwelling (Rykaczewski & Checkley
2008), whereas anchovy and saury spawn in colder
nearshore waters with stronger coastal upwelling
[respectively, 11.5 to 16.5ºC (Lluch-Belda et al. 1991)
and 13 to 18ºC (Kurita 2006)]. Newly spawned hake
are found in nearshore waters during spring and
summer (Saunders & McFarlane 1997). The optimal
thermal range for albacore is 16 to 19ºC, and optimal
foraging models predict albacore will hunt in waters
just above the threshold at which thermal stress accu-

mulates (Kirby et al. 2000). Under conditions of uni-
form prey, albacore hunt in cold, nearshore waters to
the exclusion of warmer, offshore waters (Kirby et al.
2000). Under conditions of variable prey abundance
and energy densities, albacore are predicted to occupy
warmer offshore waters when satiated, but the major-
ity of daylight hours would be spent foraging in colder
nearshore waters. This study empirically supports the
model predictions of Kirby et al. (2000): juvenile alba-
core prefer hunting in the habitat of YOY anchovy,
saury, and hake to that of sardine, even during periods
of high sardine abundance.

It is possible that data collection did not adequately
sample sardine habitat, especially given that sardine
live further offshore than anchovy, and fishing vessels
have economic incentives to stay as close to shore
as possible. However, sampling locations did occur
within the spatial extent of sardine spawning habitat
described by egg distributions (Checkley et al. 2000) in
the southern CCS, and egg, larval, and adult distribu-
tions in the northern CCS (Emmett et al. 2005).

These results raise an interesting question regarding
sardine and anchovy population dynamics. Over the
past century, the populations of these 2 coastal pelagic
species have fluctuated asynchronously (Soutar &
Isaacs 1974, Schwartzlose et al. 1999). While many
explanations have been advanced, environmental
factors may be the root cause (Chavez et al. 2003,
Rykaczewski & Checkley 2008). If sardine and an-
chovy do not occupy the same water masses (Checkley
et al. 2000), do not eat the same prey (van der Lingen
1995), and do not have the same predators, can the 2
species be considered competitors?

The absence of hake from all but one diet study can
be explained by the episodic nature of hake spawning
and recruitment (Horne & Smith 1997, Lo et al. 1997,
Agostini et al. 2006, Phillips et al. 2007). Hake have the
highest degree of spatial patchiness in egg and larval
distribution of any fish in the CCS (Lo et al. 1997) and
the geographic center of hake spawning can move
annually (Horne & Smith 1997, Phillips et al. 2007).
Abundance is also highly patchy in time, being 3 to 10
times greater in outstanding years of recruitment than
in an average year (Horne & Smith 1997). None of the
major spikes in hake recruitment co-occurred with the
3 historical diet studies. The absence of hake prey in
those studies could be due to a temporal mis-match in
hake spawning and albacore predation, or a temporal
or spatial mis-match in hake presence and stomach
sampling. Furthermore, the finding of hake in diet in
the central and northern regions during 2005–2006 is
corroborated by high relative values of hake catch per
unit effort (CPUE) during 2003 to 2006 compared to the
previous 4 decades (although, strikingly, CPUE was
lowest during 2005–2006) (Phillips et al. 2007).
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Reconceptualizing albacore foraging

This study reconceptualizes historical diet studies by
translating numeric gut content data into the currency
of energetics. Energetic values are the most accurate
way to quantify the importance of a prey item to the
growth of the predator (Wallace 1981, Probst et al.
1984, Pope et al. 2001). Numerous indices can be used
to quantify diet habits, such as the Index of Relative
Importance (Pinkas et al. 1971), the Geometric Impor-
tance Index (Assis 1996), mean stomach fullness (Pope
et al. 2001), and simple metrics of number, volume, or
frequency of occurrence of prey. Energetic contribu-
tion avoids over-emphasizing small but numerous prey
(e.g. euphausiids) or prey that occur regularly but in
small numbers, and is a biologically meaningful quan-
tity. In this light, the diet habits of albacore appear
less diverse than presumed in the past. For example,
Pinkas et al. (1971) emphasize the importance of crus-
taceans, in particular euphausiids, to albacore diet.
However, when ED is taken into account, crustaceans
are insignificant: only 1 of 4 studies found E greater
than 3%. Likewise, cephalopods were 30% of ener-
getic intake during the 1968–1969 study, but else-
where they contributed less than 12%. If only species
richness of diet is considered, the 10 species of ce-
phalopods consumed make diet appear more diverse.
While the importance of weak predator–prey inter-
actions should not be ignored (McCann et al. 1998),
research efforts could focus on a more narrow range of
prey.

This refined view of juvenile albacore diet habits
suggests that their classification as generalist preda-
tors should be qualified. Undoubtedly juvenile alba-
core ‘eat what they see’, a characteristic of oppor-
tunists. However, what they see may be confined to a
particular environment — in this case, to that favoring
juvenile anchovy, saury, and hake. Therefore, the scale
at which predation is viewed becomes critical. If one
conceptualizes the entire CCS as an aggregated food
web, as many ecosystem models do (e.g. Field et al.
2006), albacore do not consume some species (namely,
sardine) in proportion to abundance in the environ-
ment. However, when smaller spatial scales are con-
sidered, albacore consume prey they encounter, possi-
bly in proportion to the rate of encounter.

Importance of energy density and diet stability

Accounting for variability in prey ED is important for
accurate modeling of predator consumption rates
(Stewart & Binkowski 1986). ED values can differ sig-
nificantly within a species, depending primarily on
reproductive status (Kitts 2004) and size (Ciannelli et

al. 2002). However, other studies have shown weak or
no relationships between size and ED (Payne et al.
1999, Eder & Lewis 2005). In the case of North Pacific
albacore, prey spawning status is uniform (repro-
ductively immature) and the size distribution of prey
is narrowly confined to YOY sizes. Thus, the most
relevant evidence for interpreting variability in ED
comes from studies that focus on juvenile fishes
(Arrhenius & Hansson 1996, Ciannelli et al. 2002,
Tirelli et al. 2006). Among juvenile fishes, ED increases
linearly with growth, but the intraspecies variability at
any given time is low. Thus, when focusing on a sub-
population of predators in a given region and season,
interspecies variability in prey ED is more important
than intraspecies variability due to size or spawning
status.

The choice of EDn used in a bioenergetics model can
have a significant impact on calculated consumption
rates for certain types of predators (Fig. 2). There is a
geometrically decreasing relationship between the
biomass a predator must consume to maintain stable
energetic intake and the EDn of prey. The steepest por-
tion of the curve in Fig. 2 demonstrates the importance
of calculating EDn using weighted means. For exam-
ple, if albacore diet were 75% Pleuroncodes planipes
(a pelagic decapod) and 25% Engraulis mordax, EDn

would be 3.9 kJ g–1 and an age-3 albacore would need
to consume 190.5 g d–1, or 3.2% of its body weight, to
maintain stable energetic intake or growth. However,
if diet were 25% P. planipes and 75% E. mordax, EDn

would be 5.8 kJ g–1 and that same albacore would need
to consume only 128.8 g d–1, or 2.2% of body weight.
Furthermore, the arithmetic (non-weighted) mean of
the individual ED values is 4.8 kJ g–1, inaccurately
quantifying consumption of 154.8 g d–1. When scaled to
the population level, as in ecosystem models, these
inaccuracies become significant. Thus, unless prey are
consumed in uniform proportions, an ensemble ED
must be calculated as a weighted mean.

Although the 3 main prey items of albacore vary in
ED, the range of values lies on the asymptotic portion
of the curve in Fig. 2 and energetic tradeoffs between
prey items may be of small consequence to daily bio-
mass consumption. Hypothetically, a 25% difference
in daily demand could impact growth rates. However,
given the proportional composition of species in alba-
core diet, the EDn values are strikingly similar. This
suggests that albacore maintain a stable base of
prey — from an energetics standpoint. Finally, it should
be noted that fish are unlikely to adjust biomass con-
sumption while holding growth constant, or to change
growth rate while holding consumption rates constant.
More likely, there is plasticity in both rates and the
overall impact would be a less pronounced adjustment
to both.
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This is not to neglect the possibility of detrimental
shifts in prey quality in the future, nor to discount the
importance of variable EDn in other types of predators.
Changes in relative ED can explain predator prefer-
ences in prey (Mohn & Bowen 1996, Stenson et al.
1997), and declines in EDn have been linked to declin-
ing predator populations (Lawson et al. 1998, Kitts
2004). If the suite of prey available to juvenile albacore
in the CCS were to change significantly, particularly if
anchovy or saury were replaced by lower energy prey,
juvenile albacore would either switch prey, increase
rates of biomass consumption, or face declining growth
rates. In general, the type of predator is a critical con-
sideration when assessing variable prey ED. For
predators that consume primarily crustaceans or other
lowED prey (the steep portion of the curve in Fig. 2),
interspecies variability can lead to dramatic differ-
ences in daily rates. However, for piscivores or preda-
tors that consume high ED prey (the flat portion of the
curve in Fig. 2), the interspecies differences may con-
tribute much less to overall variability in growth rates
or population dynamics.

The low variability in EDn translates into equally sta-
ble Q:B. The value for Q:B calculated here (mean 7.3)
is lower than the 13.4 calculated by Essington (2003),
but his model used a mean ED value of 5.0 and applied
to the full North Pacific population of albacore (adults
significantly increase the ratio). While these Q:B ratios
are specific to juvenile North Pacific albacore in the
CCS, the estimates of uncertainty can be used to guide
input to models of other species and systems. As
ecosystem models begin to incorporate measurements
of uncertainty, field-verified data such as these are
increasingly needed (Christensen & Walters 2004).

Results from the past 50 yr should offer some reas-
surance that diet, biomass consumption and EDn val-
ues for juvenile albacore are stable, even during peri-
ods of widespread change in the CCS (e.g. Hare &
Mantua 2000, McGowan et al. 2003). Lavaniegos &
Ohman (2007) showed that carbon biomass of zoo-
plankton in the CCS has remained stable throughout
the oceanic changes evident during 1976 to 1977.
Despite changes in species composition of zooplankton
since the mid-1950s (Ohman & Venrick 2003), the total
biomass of zooplankton has remained stable. Although
zooplankton are not a major source of energy to alba-
core, stable carbon biomass estimates at these lower
trophic levels suggest that the overall food web has
redundancies.

This study supports recent calls (Link 2007) to expand
data collection for species that are not currently as-
sessed. Heavy fishing pressure has been linked to serial
depletion of top predators: when one commercial spe-
cies is fished to low abundances, fisheries have eco-
nomic incentives to switch target species and changes

to the food web result (Pauly et al. 2002, Link 2007).
Newly fished species are rarely as well studied as his-
torically profitable fisheries, an alarming aspect of ser-
ial depletion (Pauly et al. 2002). This scenario has a
likelihood of being repeated in the CCS. The dearth of
data describing saury in the CCS, and the short time se-
ries of anchovy biomass, make it impossible to know
whether the recent increase in hake in albacore diet is a
result of fewer anchovy or saury in the environment. In
the CCS, human catches of anchovy and saury are low
and zero, respectively, suggesting juvenile albacore are
not directly competing with humans for their most im-
portant prey items. However, humans already have ex-
panded fisheries into previously unharvested species,
and the trend will continue in order to sustain world
protein demand (Pauly et al. 2002). Collection of more
thorough data on saury and resumption of stock assess-
ments of anchovy may be prudent undertakings now,
before these stocks face new fishing pressure. Failure
to understand and document long-term changes in
these critical prey species may one day inhibit our study
of the population dynamics of a commercially important
marine predator.
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