
MARINE ECOLOGY PROGRESS SERIES
Mar Ecol Prog Ser

Vol. 421: 51–66, 2011
doi: 10.3354/meps08854

Published January 17

INTRODUCTION

Ciguatera fish poisoning (CFP) is a widespread form
of food poisoning caused by the consumption of finfish
contaminated by lipid-soluble toxins, which originate
in an assemblage of epiphytic dinoflagellates found in
tropical and sub-tropical ecosystems. Numerous stud-
ies (e.g. Ragelis 1984, Lange 1994) rank CFP as the
most common illness related to finfish consumption
and potentially the most common of all marine food
poisonings. Globally, Fleming et al. (1998) estimates
that there are 50 000 to 500 000 poisonings per year.

The symptoms of CFP have been well-described and
include a variety of gastrointestinal, neurological and
cardiovascular disturbances (Bagnis et al. 1979, Lewis
et al. 1988, Lehane & Lewis 2000, Palafox & Buencon-
sejo-Lum 2001). These symptoms vary from individual
to individual; moreover, marked differences in sympto-
mology have been observed among geographic
regions (Lewis et al. 1988, Pottier et al. 2001).

CFP is caused by exposure to an assemblage of
chemically related natural toxins known as ciguatox-
ins, which differ in chemical structure and potency
(reviewed in Lehane & Lewis 2000). These are piscine
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metabolites resulting from biotransformation of pre-
cursor toxins (gambiertoxins) produced by the benthic
dinoflagellates in the genus Gambierdiscus. However,
in addition to ciguatoxins, the coral reef food web may
also contain toxins produced by epiphytic dinoflagel-
lates from several genera, including Prorocentrum
(okadaic acid-producing species), Ostreopsis, and
Amphidinium. Certain species/strains from these gen-
era produce potent toxins that kill mice and therefore
have the potential to contribute to ciguatera toxicity
(Nakajima et al. 1981, Yasumoto et al. 1987).

Several Prorocentrum species produce a polyether
toxin known as okadaic acid (OA) (e.g. Murakami et al.
1982, Dickey et al. 1990, Morton et al. 1998), which is
commonly associated with diarrhetic shellfish poisoning
(DSP) in humans. DSP is caused by the consumption of
toxic shellfish that have accumulated OA and dino-
physistoxins (DTX) produced by planktonic dino-
flagellates in the genus Dinophysis (Yasumoto et al.
1985). Prorocentrum spp. have a cosmopolitan distribu-
tion that includes regions affected by ciguatera and DSP,
also produce OA and DTX, and are therefore suspected
of contributing to DSP and possibly ciguatera. Although
few studies have investigated the occurrence of OA in
ciguatoxic fish, it has been isolated from Sphyraena bar-
racuda, which is responsible for the vast majority of
ciguatera poisonings in the Caribbean (Gamboa et al.
1992). However, the role of these toxins in ciguatera has
not been conclusively demonstrated either experimen-
tally or through the systematic survey of toxic fish.

A second, powerful toxin potentially involved in CFP
is palytoxin. Palytoxin was first isolated from the zoan-
thid Palythoa toxica (Moore & Scheuer 1971) and is
also produced by certain Ostreopsis species (Usami et
al. 1995, Lenoir et al. 2004, Ciminiello et al. 2006).
Palytoxin has been detected in crustaceans, soft corals,
and mussels as well as fish from several families,
including Chaetodontidae, Scaridae, and Balistidae
(Fukui et al. 1987, Gleibs & Mebs 1999, Taniyama et al.
2003). Recently, blooms of Ostreopsis spp. caused res-
piratory illness and skin irritation in tourists and work-
ers at beaches along the Tyrrhenian Sea (Sansoni et al.
2003, Penna et al. 2005, Ciminiello et al. 2006), with
palytoxin exposure as the putative cause of illness
(Ciminiello et al. 2006). These reports indicate that
Ostreopsis spp. apparently can affect human health
through marine aerosols in addition to their presence
in the food chain, adding a second vector of exposure
to toxins produced by these species. Palytoxin has also
been implicated in cases of poisoning from the con-
sumption of mackerel (Kodama et al. 1989), parrot-
fishes (Noguchi et al. 1987, Taniyama et al. 2003), and
grouper (Taniyama et al. 2002); thus, given its ubiquity
in the food chain and remarkable toxicity, palytoxin
may indeed contribute to ciguatera.

Additional toxic compounds have been isolated from
fish, the origins of which have yet to be determined.
Several researchers have detected the presence of
fast-acting toxins (FAT) in ciguateric fish, which were
demonstrated to cause neurological symptoms similar
to brevetoxins (Vernoux & Talha 1989, Pottier et al.
2003). Although ciguatoxin congeners have been sus-
pected as playing possible roles as FAT, currently the
origin of these compounds is unknown.

Although the contribution of these additional toxins
to human illness is unknown, the heterogeneity ob-
served in the CFP symptoms among different locales
and even individual cases suggests the involvement of
multiple toxins. Research on the trophic pathways of
ciguatoxin has provided considerable insight into how
the uptake and movement of toxins produced by Gam-
bierdiscus spp. occurs; therefore, it seems likely that
other toxins from the benthic community may enter the
food chain in a similar manner.

The field ecology and population dynamics of these
dinoflagellates are not well characterized, particularly
with respect to habitat preference and the influence of
environmental parameters. This is partly attributable
to a lack of sustained scientific research in this area,
compounded by conflicting and sometimes contradic-
tory results yielded by past ecological studies of toxic
benthic dinoflagellates. Field surveys indicate that
Gambierdiscus dinoflagellates appear to have a poor
tolerance for strong light intensity and land runoff
(Yasumoto et al. 1980, Carlson & Tindall 1985, Grzebyk
et al. 1994), and a preference for sheltered habitats
(Carlson & Tindall 1985, Taylor 1985, Grzebyk et al.
1994, Tindall & Morton 1998); however, in the Pacific,
highest abundances were observed in areas subject to
strong currents (Yasumoto et al. 1979, 1980). While dif-
ferences in the physical habitat conditions specific to
the study area likely contribute to these discrepancies,
differences in sampling methodologies and micro-
scopic analyses may also help explain inconsistencies,
and are the focus of discussion here.

Biological sampling protocols used in studies of ciguat-
era dinoflagellates vary widely in collection, filtration
and processing methods. Although survey results are of-
ten expressed as ‘cells g–1 macroalgae’, the quantity of
the 20 μm fraction analyzed under the microscope differs
from study to study and occasionally is not specified. Fur-
thermore, a method used in many studies for enumerat-
ing ciguatera dinoflagellates involves normalizing cell
counts to the weight of the macroalgal host, but compar-
isons made among different host algae species with dif-
ferent surface area to mass ratios introduces a significant
source of error due to differences in algal morphology
and consequently, surface area among species.

Lobel et al. (1988) demonstrated that contradictory
conclusions may be reached regarding dinoflagellate
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abundance depending on whether the number of cells
is normalized to algal biomass or surface area. Hence,
the common biomass measurement used in dinoflagel-
late ecology studies ‘cells g–1 wet wt’ is only appropri-
ate for enumerations from the same host macroalga,
while ‘cells per surface area’ should be used in interal-
gal comparisons (Lobel et al. 1988). With few excep-
tions (Bomber et al. 1985, Ballantine et al. 1988), most
field surveys examining the distribution and abun-
dance of ciguatera dinoflagellates have been based on
samples collected from more than one macroalgal spe-
cies with substantial differences in morphology, and
enumerations were normalized to biomass instead of
surface area.

Here we describe surveys conducted at Johnston
Atoll, Pacific Ocean, to characterize the ecology of
toxic benthic dinoflagellates in habitats in which her-
bivorous fishes typically forage. In contrast to plank-
tonic dinoflagellates where toxin production is rare, a
surprising number of benthic dinoflagellates are toxin
producers (Nakajima et al. 1981, Anderson & Lobel
1987), necessitating the study of an assemblage rather
than a single bloom-forming species. Patterns of spe-
cies abundance, distribution and spatial heterogeneity
were examined to describe the spatial distribution and
community composition of toxigenic benthic dinofla-
gellate populations. These surveys employed stan-
dardized sampling methodology (Lobel et al. 1988) to
evaluate the environmental factors correlated with
dinoflagellate biodiversity: specifically, physical para-
meters such as water flow and depth, as well as habitat
type (e.g. lagoon, back reef, reef crest).

Understanding how the population dynamics and bio-
diversity of ciguatera dinoflagellates relate to the occur-
rence of fish toxicity has been a major goal of ciguatera
researchers since the discovery of the toxin progenitor.
Bagnis et al. (1990) showed that herbivorous fish rapidly
acquire toxicity following a bloom of Gambierdiscus tox-
icus on a reef; hence, regular monitoring would help to
identify a certain ‘threshold’ level of abundance that may
indicate an increase in the level of toxin entering the
food chain, signaling the precipitation of an outbreak.
Ultimately, a clear characterization of the patterns of dis-
tribution of these dinoflagellates as well as the biotic and
abiotic factors that contribute to their proliferation would
greatly contribute to the identification of particular pat-
terns that might be predictive of toxicity, which in turn
would benefit monitoring protocols in ciguatera endemic
areas.

MATERIALS AND METHODS

Description of study area. Johnston Atoll, Pacific
Ocean, is a remote atoll located 800 miles (1287 km)

southwest of Hawaii and 900 miles (1448 km) north of
the Line Islands of Kiribati (Fig. 1). The island is
~46 acres (0.18 km2) and encompasses 50 square miles
(80.5 km2) of reef habitat; a barrier reef wraps around
the north and western edges of the atoll platform.
Johnston Atoll comprises 4 islands, 2 of which were
artificially created by the military through dredging of
the surrounding coral reefs.

Algae sample collection. A total of 173 macroalgae
samples was collected using SCUBA and analyzed
from 14 sites comprising representative reef habitat
throughout the atoll (Fig. 1). Sampling occurred from
May to August 2003 during the calm summer months.
Prior to commencing a survey, the following informa-
tion was recorded at each site: date and time, station
number, global positioning system (GPS) coordinates,
location, weather conditions and cloud cover, habitat
type, and sea state. 

One species of macroalgae, Caulerpa serrulata, was
selected for intensive sampling to avoid errors associ-
ated with differences in surface area when normaliz-
ing dinoflagellate abundance to host alga biomass
(Lobel et al. 1988). C. serrulata is a toothed, spiral
shaped green alga that is distributed circumtropically
and is ubiquitous throughout the atoll. At least 10 sam-
ples were collected at each site; each of which was
placed in a 50 ml polypropylene conical centrifuge
tube (Fisher Scientific), sealed underwater and pre-
served in 4 to 5% formalin following the dive. The
depth and substrate type of each sampling site was
recorded.

Sample processing. Samples were filtered using a
202 μm nitex sieve stacked above a second 20 μm
sieve. A small amount (~20 ml) of the sample was
decanted into this filtration unit. The tube was resealed
and shaken vigorously for 1 min. The remaining liquid
was then poured into the filters and the tube refilled
about halfway with pre-filtered seawater. The shaking
procedure was repeated and then the entire contents
of the tube were decanted into the 202 μm sieve. The
material collected on the 20 μm sieve was backwashed
in the tube and brought up to 10 ml with filtered sea-
water. The macroalgae retained in the 202 μm filter
was removed, blotted dry with a paper towel, and
immediately weighed.

Sample analysis. Processed samples were gently
shaken and 1 ml was analyzed for benthic dinoflagel-
late abundance in a Sedgewick Rafter counting cell
slide using an Olympus BH-2 light microscope at 100×
magnification. The 10 most abundant benthic dinofla-
gellate taxa were counted, and counts of additional
species were recorded and included in genera totals
for each site. Cells were identified using line drawings
and photomicrographs by Fukuyo (1981), Faust &
Gulledge (2002), Tomas (1996), D. M. Anderson & P. S.
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Lobel (unpubl. data), and G. Usup (unpubl. data). The
number of cells g–1 macroalgae wet wt was calculated
for each sample.

Water motion measurements. Water motion was
measured at sampling sites using the ‘clod-cards’
technique developed by Doty (1971) to test algal
growth relative to water motion. The method uses
the dissolution rate of blocks of dried plaster of Paris
(clods) affixed to pieces of plastic, tile, or other
appropriate surface (cards) to describe water motion
experienced by benthic organisms. The clod cards
are deployed for a 24 h period, after which the disso-
lution rate is quantified for each card using a para-
meter termed the diffusion index factor (DF). The DF
is calculated by dividing the weight loss experienced
by the control clod cards into the weight loss experi-
enced by cards deployed in the field. Expressing

water motion using the DF allows comparisons
between different clod card lots that may have subtle
differences in their rate of diffusion, and permits
comparisons among DF values reported from other
studies.

To create the clod cards, 2 lots of approximately
eighty 30 g plaster of Paris blocks were cast in plastic
ice cube trays following the instructions outlined by
Doty (1971). After drying for 48 h, the bases were filed
so that each block was within <0.2 g of a pre-selected
weight. Each block was then glued to a small tile mea-
suring ~2 × 5 inches and allowed to dry for 24 h. After
drying, the cards were secured to bricks using duck
tape and deployed in groups of 10. Control blocks were
placed in a bucket, submerged, and the bucket was
covered to create still water conditions. The clod cards
were deployed during calm conditions at 5 macroalgae
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sampling stations in July 2003 and 5 additional sites in
August 2003 (Fig. 1). At each station, the set of 10 clod
cards was deployed in close proximity to the area
where algal samples were collected. Following each
deployment, the cards were collected and allowed to
dry for 24 h prior to weighing. DF values were obtained
by dividing the still-water calibration value into the
weight lost by each block during its period of field use.

Measure of spatial dispersion. Patterns of spatial
heterogeneity in which a population of individuals
exhibits ‘contagiousness’ in their distribution has been
well-documented in the phytoplankton community
(Bainbridge 1957, Platt & Denman 1980, Harri 1988,
Kuosa 1988, Martin 2003). In a contagious distribution,
the population is not uniformly or randomly distrib-
uted; rather, there are always patches of high density
(clumps) distributed on a general background of low
density (Elliott 1977). This particular distribution pre-
sents difficulties in data analysis and statistical testing,
since the variance is frequently greater than the mean
(Elliott 1977). To test for contagiousness in the distribu-
tion of dinoflagellates at Johnston Atoll, Morisita’s
index (Iδ) was calculated for each species (Morisita
1962, Elliott 1977). Iδ is a measure of dispersion that
describes whether the distribution is random, conta-
gious, or uniform, and is independent of the sample
mean and total numbers in the sample. The standard-
ized Iδ was calculated for each species at each site in
Microsoft Excel using Poptools version 3.1.0 (Hood
2002). The index is defined as:

(1)

where xi is the number of individuals in the ith sample
and n is the number of samples. This standardized
index ranges from –1 to +1 with 95% confidence limits
at +0.5 and –0.5. When the distribution of individuals
follows a random distribution, Iδ = 0. Indices of Iδ > 0
indicate a patchy distribution while indices of Iδ < 0 are
indicative of uniform distributions.

Statistical analyses. Statistical analyses were per-
formed using JMP software (SAS Institute, Cary, NC,
USA) and SPSS 15.0. Data were first tested for equality
of variances using Levene’s test. Differences in mean
species abundance among sampling sites and for the
environmental parameters of depth and water motion
were tested using Welch’s variance-weighted ANOVA
(Zar 1996). If significant differences were detected,
then a Games-Howell test was used to analyze pair-
wise differences. Spearman’s rank correlation coeffi-
cient was used to examine the statistical significance of
species–species, species–depth, and species–water
motion correlations.

RESULTS

Ciguatera dinoflagellate community

The 10 most abundant benthic dinoflagellate taxa ob-
served in the samples collected from Johnston Atoll were
enumerated: Gambierdiscus spp., Ostreopsis siamensis,
O. ovata, O. lenticularis, Prorocentrum lima, P. con-
cavum, Prorocentrum cf. rhathymum, P. emarginatum,
Amphidinium cf. klebsii, and Amphidinium cf. carterae
(Fig. 2). Species identifications were made solely using
light microscopy, and as detailed morphological studies
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Fig. 2. Gambierdiscus spp., Ostreopsis spp., Prorocentrum spp., and Amphidinium spp. Light micrographs of epiphytic dinofla-
gellates from Johnston Atoll, Pacific Ocean: (A,B) Gambierdiscus spp.; (C) P. emarginatum; (D) P. cf. rhathymum; (E) P. con-

cavum; (F) P. lima; (G) O. siamensis; (H) O. ovata; (I) A. cf. carterae. Scale bar: 10 μm
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were not conducted for this study, in some instances we
were not able to conclusively discern species; thus, cer-
tain identifications were tentative. Gambierdiscus spe-
cies are largely distinguished by differences in thecal
plate architecture that are not visible using light mi-
croscopy; thus, counts recorded were generic. Prorocen-
trum species were identified based on cell size and
shape; presence/absence of a central pyrenoid, areolae,
and apical spine; and the shape of the periflagellar area.
P. concavum were either round or broadly oval; cells fea-
tured areolae, a central pyrenoid and a deep, v-shaped
excavation of the periflagellar area. P. lima cells were
narrower and oval in shape, usually straight-sided, with
a central pyrenoid and narrow, v-shaped periflagellar
excavation. P. emarginatum cells were broadly oval or
round, sometimes asymmetrical, with a central pyrenoid,
and featured a deep, asymmetrical, v-shaped, periflagel-
lar excavation. P. cf. rhathymum cells were identified
based on their narrow oval shape, an off-center, asym-
metrical depression in the apical area, and an obvious
apical spine. Cells were relatively straight-sided but
asymmetrical in shape. Without using scanning electron
microscopy, the identification of these cells as P. mexi-
canum or P. rhathymum using solely morphological cri-
teria is ambiguous; thus, cells described in this study are
designated as P. cf. rhathymum based on differences in
habitat and distribution: while P. rhathymum is regarded
as an epibenthic, cosmopolitan species, P. mexicanum is
primarily described as planktonic and from northern lat-
itudes of the American Pacific (Cortés-Altamirano &
Sierra-Beltrán 2003). Ostreopsis cells were largely distin-
guished by cell size and shape. O. siamensis were large,
broadly ovoid and pointed at the sulcal area, and also
featured slight but distinct cingulum undulation.
O. lenticularis cells were also large, lenticular and sym-
metrical in shape, and lacked cell undu-
lation. O. ovata cells were small in size,
with a very distinctive narrow, tear-drop
shape. Amphidinium cells were seldom
observed and specific identifications are
tentative designations due to similarity
or plasticity in the morphological fea-
tures and the necessity for complemen-
tary genetic data to conclusively identify
species (e.g. Murray et al. 2004, Dolap-
sakis & Economou-Amilli 2009).

Water motion measurements

Water motion measurements were
significantly different among the de-
ployment sites (p < 0.001). The highest
mean DF (23.2) was measured at the
reef crest and the lowest mean DF (6.4)

was measured at a station in the lagoon, which was
also the deepest deployment site (Table 1). These val-
ues are similar to DF values measured at Johnston
Atoll by Jokiel & Morrissey (1993), who deployed a
series of clod cards in a transect that ran from the reef
crest (DF = 25) to the lagoon (DF = 5). Dissolution rates
were higher at the reef crest sites, which experienced
considerable surge, and the back reef sites. Back reef
locations were subject to strong unidirectional current
that ran from the reef crest across the back reef. Chan-
nel and lagoon sites were generally calmer, with no
surge and little current.

Benthic dinoflagellate distribution and abundance

Epiphytic dinoflagellates surveyed at Johnston Atoll
were not distributed randomly in a site; rather, the dis-
tribution of all dinoflagellate species was patchy at
more than one sampling site (Table 2). The frequent
occurrence of a patchy or contagious distribution
necessitated the use of appropriate statistical methods
for analyzing non-normal, heteroscedastic data, and
demonstrates the necessity of collecting multiple repli-
cates to adequately account for patchiness within a site
when characterizing patterns of distribution at the eco-
system level.

Overall, lagoon and channel sites supported sub-
stantially larger numbers of dinoflagellates than back
reef and reef crest habitats. The sampling station with
the highest overall dinoflagellate abundance was
JA51, followed by JA100 and WP204. JA51 and WP204
were located in dredged channels, and JA100 in the
lagoon. At all 3 sites, Prorocentrum spp. comprised the
majority of the sample (Fig. 3). These sites were
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Sampling Habitat N Depth Max Mean SD
station type (m) DF DF

JA51 Channel 10 13 na na na
JA100 Lagoon 10 11 8.0 6.4 0.98
JA101 Channel 10 5 8.9 6.8 1.80
JA94P Channel 10 5 10.6 6.8 1.95
JA86 Channel 10 4 12.1 8.7 1.53
WP203 Back reef 10 5 11.7 9.4 1.49
WP204 Channel 10 6 14.0 10.5 2.13
WP201A Back reef 9 5 19.0 13.8 2.21
B11 Back reef 10 3 18.4 16.1 1.36
S09 Back reef 10 2 19.1 18.1 0.70
WP201B Back reef 10 4 23.1 19.2 3.07
WP202 Reef crest 10 4 27.7 23.3 2.94
JA95B Back reef 13 3 na na na
S09B Back reef 10 3 na na na

Table 1. Sample collection sites at Johnston Atoll, Pacific Ocean. Sampling sta-
tion, habitat type, deployment depth, number of clod cards deployed (N), maxi-

mum and mean diffusion index factor (DF), and SD. na: not available
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Sampling Gamb O. siam O. lent O. ovat P. rha P. conc P. lima P. emar A. kleb A. cart Proro Ostreo Amph Total
station spp. spp. spp. spp.

JA51 0.56* 1.00* 1.00* 0.64* 0.52* 0.53* 0.56* 0.56* 0.61* 0.78* 0.52* 0.60* 0.61* 0.51*
JA100 0.54* 1.00* 1.00* 0.54* 0.53* 0.56* 0.56* 0.56* 0.55* 1.00* 0.52* 0.55* 0.53* 0.53*
JA101 0.54* 0.57* ND 0.52* 0.52* 0.52* 0.55* 0.51* 0.67* 0.54* 0.51* 0.53* 0.58* 0.51*
JA94P 0.54* 0.55* 0.69* 0.52* 0.52* 0.54* 0.56* 0.51* 0.55* 0.61* 0.51* 0.10 0.59* 0.50*
JA86 0.61* 0.54* ND 0.57* 0,53* 0.52* 0.58* 0.56* 0.53* 0.54* 0.52* 0.54* 0.53* 0.52*
WP203 0.55* 0.58* ND 0.56* 0.59* 0.54* 0.52* 0.53* 0.53* 0.54* 0.53* 0.58* 0.55* 0.53*
WP204 0.58* 0.87* 0.72* 0.63* 0.56* 0.53* 0.58* 0.52* 0.57* 0.66* 0.54* 0.70* 0.54* 0.54*
WP201A 0.59* 0.52* 0.60* 0.59* 0.73* 0.59* 1.00* 0.73* 1.00* ND 0.55* 0.53* 1.00* 0.53*
B11 0.53* 0.53* 0.66* 0.59* 0.58* 0.52* 0.58* 0.60* 0.54* 0.59* 0.53* 0.56* 0.52* 0.53*
S09 0.52* 0.51* 0.57* 0.53* 0.76* 0.61* 0.52* 0.53* 0.57* 0.62* 0.52* 0.52* 0.54* 0.51*
WP201B 0.63* 0.52* 0.59* 0.59* 1.00* 0.56* 0.70* 0.55* 1.00* 1.00* 0.57* 0.53* 1.00* 0.53*
WP202 0.53* 0.59* 0.71* 0.71* 0.56* 0.72* 0.57* 0.55* 0.67* 0.66* 0.52* 0.61* 0.55* 0.54*
JA95B 0.53* 0.66* 1.00* 0.66* 1.00* 0.54* 0.56* 0.55* 0.59* 0.59* 0.53* 0.59* 0.54* 0.52*
S09B 0.53* 0.60* 0.55* 0.62* 0.56* ND 0.55* 0.59* 1.00* 1.00* 0.55* 0.57* 1.00* 0.56*

Table 2. Morisita’s index of dispersion for each genus or species at each sampling station at Johnston Atoll. Gamb spp. = total
Gambierdiscus spp.; O. siam = Ostreopsis siamensis; O. lent = O. lenticularis; O. ovat = O. ovata; P. rha = Prorocentrum cf. rhathy-
mum; P. conc = P. concavum; P. emar = P. emarginatum; A. kleb = Amphidinium cf. klebsii; A. cart = A. cf. carterae; Proro spp.
= total Prorocentrum spp.; Ostreo spp.= total Ostreopsis spp.; Amph spp.= total Amphidinium spp. ND = not detected. *p < 0.05
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located in relatively calm areas that experienced mini-
mal current; 2 of them were also deeper (>10 m) than
the other sampling sites (Table 1). Statistically signifi-
cant differences in total dinoflagellate abundance
were found among sampling stations (Table 3); pair-
wise comparisons were significant between sampling
station JA51 (channel) and all other stations except
JA86, JA 94P, WP204, which were also located in
dredged channels (see Appendix 1).

In addition to changes in abundance, the biodiversity
of each sampling station also changed dramatically
among habitat types (Fig. 3). While Prorocentrum spp.
comprised the highest proportion of dinoflagellates in
the channel/lagoon sites, abundances were dimin-
ished in reef crest/back reef sites. Conversely, at sev-
eral of these high energy reef crest/back reef sites,
Ostreopsis spp. comprised the largest proportion of the
dinoflagellate density.

Gambierdiscus spp. were found in 78% of the sam-
ples and were present at every sampling site, regard-
less of depth, water motion, or habitat (Fig. 3), but
generally comprised a minor component of the phyto-
plankton assemblage. In general, however, the lagoon
and channel sites supported higher populations than
the back reef/reef crest sites. The highest mean abun-
dance of Gambierdiscus spp. was observed at a sam-
pling site located in a dredged channel (JA51); this site
also supported the highest mean abundance of total
dinoflagellates. Although Welch’s ANOVA indicated
significant differences among sampling sites, none of
the pairwise comparisons were significant (see Appen-
dix 1). The discrepancy between the results of these
tests may relate to a more complex contrast in the data,
such as differences between groups of means, or per-

haps a linear trend in the data. A second explanation
may relate to technical differences between the tests;
the Games–Howell post hoc test is designed for
unequal variances and unequal sample sizes, and con-
sequently is more conservative. Gambierdiscus spp.
persisted in a wide variety of habitats throughout the
atoll, including the shallow reef crest sites exposed to
the brunt of wave action. Prorocentrum spp. abun-
dance was highest at sampling stations located in
lagoon or channel habitats (Fig. 3), while populations
at reef crest/back reef sites were substantially lower
and never exceeded 100 cells g–1 macroalgae. P. cf.
rhathymum consistently comprised the largest propor-
tion of total Prorocentrum spp. abundance in the chan-
nel/lagoon sites; however, at the reef crest/back reef
sites, P. emarginatum was generally most abundant
(Fig. 4). Differences in total Prorocentrum spp. abun-
dance were statistically significant between the reef
crest/back reef sites and the lagoon/channel sites
(Appendix 1).

The highest total abundance of Ostreopsis spp. was
recorded at shallow (~3 m) stations located in back reef
habitats, which experienced higher levels of water
motion. O. ovata comprised the largest proportion of
total Ostreopsis spp. abundance at all but one of the
sampling sites, followed by O. siamensis and then
O. lenticularis. Significant differences in abundance
were found between sites S09 and WP203/95B; and
94P and WP203/95B (Appendix 1).

Amphidinium spp. were a minor component of the
dinoflagellate community throughout the atoll. Sam-
pling stations with the highest densities of Amphi-
dinium spp. included sites located in dredged channels
(Fig. 3). All of the stations located on or near the reef
crest had cell densities of <100 cells g–1 macroalgae.
Although Welch’s ANOVA indicated significant differ-
ences among sampling sites, none of the pairwise com-
parisons were significant (Appendix 1).

Influence of water motion on dinoflagellate 
distribution and abundance

Total dinoflagellate abundance was significantly
negatively correlated with water motion (Table 4);
however, the responses to water motion differed
among the genera surveyed. All of the Prorocentrum
species surveyed were significantly negatively corre-
lated with water motion (p < 0.001); the correlation was
strongest for P. cf. rhathymum and P. concavum. The
abundances of all Prorocentrum spp. were substan-
tially reduced at sampling stations with a DF > 10.
Gambierdiscus spp. were also negatively correlated
with water motion (p < 0.01); moreover, the lagoon site
supporting the highest abundance was also the site
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Dinoflagellate taxon F ratio p

Gambierdiscus spp. 5.74 <0.0001
O. siamensis 5.55 <0.0001
O. lenticularis NS
O. ovata 2.79 0.0042
P. cf. rhathymum 8.36 <0.0001
P. concavum NS
P. lima 4.95 <0.0001
P. emarginatum 5.79 <0.0001
A. cf. klebsii 2.72 0.0051
A. cf. carterae NS
Total Prorocentrum spp. 15.50 <0.0001
Total Ostreopsis spp. 4.78 <0.0001
Total Amphidinium spp. 3.75 0.0003
Total dinoflagellate abundance 15.52 <0.0001

Table 3. Gambierdiscus spp., Ostreopsis spp., Prorocentrum
spp., and Amphidinium spp. Comparisons of species abun-
dance at sampling stations based on Welch’s ANOVA. NS = 

not significant (p > 0.05)
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with the lowest diffusion index value (Fig. 4). Both
Amphidinium species were also negatively correlated
with water motion, but this correlation was significant

only for A. cf. carterae (p < 0.05). Con-
versely, both Ostreopsis siamensis and
O. lenticularis were positively corre-
lated with water motion (p < 0.001) and
higher abundances of each were
observed in back reef and reef crest
habitats (Fig. 4).

Influence of depth on dinoflagellate
distribution and abundance

Samples were collected from varying
depths to examine the effect of depth
on dinoflagellate abundance and distri-
bution. Sampling depths at Johnston
Atoll ranged from 2 m at a back reef site
(S09) to 13 m in a channel site (JA51).
Overall, total dinoflagellate abundance
was significantly positively correlated
with depth (p < 0.001; Table 4). The
highest numbers of both Gambierdis-
cus spp. and Prorocentrum spp. were
recorded at the deepest site (JA51) fol-
lowed by the second deepest site
(JA100), which were located in channel
and lagoon habitats, respectively. The
abundance of Gambierdiscus spp. and
Prorocentrum spp. were significantly
positively correlated with depth while
Ostreopsis spp. were significantly neg-
atively correlated (Table 4), likely due
to the near absence of this genus in
samples collected from the deeper
channel and lagoon habitats.

Correlations between dinoflagellate
species

Several statistically significant correla-
tions were observed between species in
this community (Table 5). The abun-
dance of Gambierdiscus spp. and both
Amphidinium spp. were positively corre-
lated with each of the Prorocentrum
species. Statistically significant negative
correlations were observed between P cf.
rhathymum/P. concavum and Ostreopsis
siamensis/O. lenticularis. This is likely
due to apparent habitat separation be-
tween Ostreopsis and Prorocentrum. The

abundance of G. toxicus was negatively correlated with
O. siamensis and O. lenticularis; however, this corre-
lation was not statistically significant.
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DISCUSSION

Influence of environmental parameters

This study examined the population dynamics of the
ciguatera dinoflagellate community at several spatial lev-
els, from patterns of dispersion encountered at a single
site to the abundance and distribution throughout the
coral reef ecosystem. In past ecological studies on ciguat-
era dinoflagellates, wide variations in cell densities
within a site were reported (Yasumoto et al. 1979, 1980,
Carlson 1984, Carlson et al. 1984, Ballantine et al. 1985,
Taylor 1985). In the earliest environmental studies of
ciguatera dinoflagellates, Yasumoto et al. (1980) ob-
served ‘micro-regionality’ in which the population of
Gambierdiscus toxicus was highly variable within a small
area. Taylor (1985) noted considerable small scale vari-
ability in the distribution of G. toxicus in the Caribbean,
even in beds of the same macroalgae. Carlson (1984) sim-
ilarly observed spatial heterogeneity, and clumping in
ciguatera dinoflagellates in the Virgin Islands suggested
that the distribution of tropical benthic dinoflagellates
should be described as ‘contagious’, which was con-
firmed here (Table 2). In general, the cell counts at all of
our sampling sites were low compared to other studies,
likely due to the number of sampling stations located in
back reef/reef crest habitats, where cell density was re-
duced. A second reason may be potential differences in
morphology (surface area) of our substrate compared to
substrates examined in other studies, and/or possibly that
Caulerpa serrulata is not a highly preferred host. 

These surveys, however, demonstrated that habitat
type, depth and water motion significantly affect both
dinoflagellate abundance and community composition
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Dinoflagellate taxon Water motion Depth

Gambierdiscus spp. –0.310** 0.296**
O. siamensis 0.414*** –0.396***
O. lenticularis 0.305** –0.257*
O. ovata 0.077 –0.176*
P. cf. rhathymum –0.740*** 0.668***
P. concavum –0.675*** 0.548***
P. lima –0.535*** 0.421***
P. emarginatum –0.258** 0.236*
A. cf. klebsii –0.155 0.056
A. cf. carterae –0.190* 0.107
Total Prorocentrum spp. –0.681*** 0.576***
Total Ostreopsis spp. 0.286** –0.287**
Total Amphidinium spp. –0.206* 0.077
Total dinoflagellate abundance –0.537*** 0.461***

Table 4. Gambierdiscus spp., Ostreopsis spp., Prorocentrum
spp., and Amphidinium spp. Spearman rank correlation coef-
ficients (rs) of dinoflagellate abundance vs. water motion and
depth. Data for species, genera and total dinoflagellate abun-

dance. *p < 0.05, **p < 0.01, ***p < 0.001
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among sampling stations. We found that the calm
lagoon/channel sampling stations supported signifi-
cantly higher total dinoflagellate abundance; con-
versely, dinoflagellate abundance was lowest at reef
crest/back reef sites that were subject to wave activity
(Fig. 3). These patterns agree with ecological studies of
ciguatera dinoflagellates in the Caribbean that docu-
mented the highest abundance of this community in
sheltered habitats (Carlson & Tindall 1985, Taylor
1985). We also observed distinct patterns of species
distribution among these reef habitats. At the calm
lagoon/channel sites, Prorocentrum was the dominant
genus, with P. cf. rhathymum generally comprising
nearly one-third or more of the total, followed by
P. concavum and Gambierdiscus spp. or P. lima. Again,
this pattern agrees with Caribbean studies in which
protected inshore sampling stations were consistently
dominated by P. mexicanum, P. concavum and G. toxi-
cus (Carlson & Tindall 1985, Taylor 1985). The abun-
dance of Prorocentrum species, particularly P. cf.
rhathymum, was diminished in the reef crest/ back
reef sites that experienced current and surge; all mem-
bers of this genus were negatively correlated with
water motion (Fig. 4, Table 4). 

With respect to surveys of Gambierdiscus toxicus in
the Pacific, maximum abundances were observed in
high energy areas (Yasumoto et al. 1979, 1980); how-
ever, at Johnston Atoll Gambierdiscus spp. were nega-
tively correlated with water motion (Fig. 4, Table 4).
Although the calm lagoon and channel sites supported
higher abundances of Gambierdiscus, low levels were
documented across a variety of habitats. In this man-
ner, Gambierdiscus spp. appear to have a ‘weedy’
quality that allows it to withstand a wide range of envi-
ronmental conditions, with the exception of regions
subject to significant land runoff (Taylor 1985, Grze-
byk et al. 1994). Gambierdiscus spp. have been ob-
served on many different types of substrate, including
a variety of algal species and dead coral (Besada et al.
1982, Taylor 1985, Anderson & Lobel 1987, Kohler &
Kohler 1992, Parsons & Preskitt 2007), although exper-
imental studies have showed that algal exudates can
either be stimulatory or inhibitory to Gambierdiscus
growth (Carlson et al. 1984, Taylor 1985, Bomber et al.
1989, Grzebyk et al. 1994). Gillespie et al. (1985) de-
scribed Gambierdiscus as ‘opportunistic’ with respect
to substrate; in our surveys Gambierdiscus appeared to
be opportunistic with respect to habitat as well, a qual-
ity that may help explain the inconsistencies in habitat
preferences among past ecological studies. 

In contrast with Gambierdiscus and Prorocentrum,
Ostreopsis spp. was positively correlated with water
motion (Table 4). Ostreopsis and Amphidinium spp.
were consistently low in the lagoon/channel habitats,
with each genus often comprising <10% of the total

dinoflagellate count. Although Ostreopsis spp. abun-
dances were low in all habitats surveyed, all 3 species
were present in greater proportions at high energy
reef crest/back reef sites (Fig. 4), similar to observa-
tions of the spatial variability of Ostreopsis spp. in the
Mediterranean, where populations were more abun-
dant in ‘shaken’ and ‘slightly shaken’ areas (Vila et al.
2001). These data also support observations by Carlson
(1984) that documented highest abundances of Ostre-
opsis spp. in turbulent coral reef habitats.

It is not known why certain dinoflagellate taxa such
as Ostreopsis are more resistant to the effects of wave
action, whereas others appear to be highly susceptible.
Benthic dinoflagellates in this community are known to
produce mucus, which they use to tightly adhere to
surfaces (Heil et al. 1993, Babinchak et al. 1994).
Besada et al. (1982) reported that Ostreopsis and Gam-
bierdiscus toxicus secrete enormous amounts of muci-
lage to which they are attached and/or enmeshed by
means of a short thread. Microscopic observation of
G. toxicus revealed that cells living on the macroalgal
surface were covered by a mucous layer or aggregated
within a mucilaginous matrix (Yasumoto et al. 1980,
Fukuyo 1981, Besada et al. 1982, Ballantine et al.
1988). Nakahara et al. (1996) found that G. toxicus cells
attached themselves to macroalgae thalli using a short
thread; notably, disturbance appeared to provoke sub-
strate attachment. Similarly, cells of Ostreopsis species
have been observed in a mucilaginous matrix (Besada
et al. 1982, Vila et al. 2001). The ability of Ostreopsis
and Gambierdiscus spp. to tightly adhere to a substrate
through the secretion of a mucilaginous matrix may
help to explain why these species successfully inhabit
inhospitable habitats in which they are not forced to
compete with other benthic dinoflagellates for space.
Mucus production has also been observed in Prorocen-
trum spp. (Loeblich et al. 1979, Carlson et al. 1984, Heil
et al. 1993); hence, if Prorocentrum spp. are capable of
producing mucilage in a similar manner to Ostreopsis,
it is puzzling as to why these species appear to be
highly susceptible to water motion. Nonetheless, the
ability of Ostreopsis and Gambierdiscus spp. to pro-
duce a highly effective holdfast appears to allow them
to persist in turbulent habitats at Johnston Atoll and
may confer an advantage to these species in the con-
tinual competition for space in the benthic microbial
community.

The results of our surveys show that water motion
significantly reduces dinoflagellate abundance and
are in agreement with the Caribbean studies that
observed maximum dinoflagellate abundances in calm
habitats (Carlson & Tindall 1985, Taylor 1985). The
effect of water motion on the benthic dinoflagellate
community relates to the concept of the carrying
capacity of a macroalgal species, which is in turn
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determined by the algal surface area and morphology
(e.g. branched, tufted, coralline) (Lobel et al. 1988).
Tindall & Morton (1998) suggested that the carrying
capacity of a particular algal species is variable,
dependent on the velocity of water flow as well as
other physical and chemical factors. They described a
model in which there is a progressive increase in the
carrying capacity of macroalgae and consequently,
dinoflagellate biomass, as flow velocity nears zero. In
calm habitats the formation of a 3-dimensional benthic
canopy may be possible, consisting of the macroalgal
substrate, filamentous epiphytes, sediment, and the
benthic microalgal community. Benthic dinoflagellates
that inhabit this canopy occupy space on a particular
substrate in several ways, and the manner in which
they associate with the substrate likely changes with
the intensity of water motion. Dinoflagellates have
alternately been observed directly adhering to the
macroalgal surface in a mucoid matrix (Yasumoto et al.
1980, Fukuyo 1981, Besada et al. 1982, Ballantine et al.
1988), inhabiting surface sediments and detritus
(Kohler & Kohler 1992), suspended from the substrate
using mucus threads (Besada et al. 1982, Nakahara et
al. 1996), and some species also remain motile, swim-
ming freely around the macroalgae thalli (Nakahara et
al. 1996). In turbulent conditions, the complexity of the
benthic canopy is greatly curtailed and available sub-
strate would be restricted to space available on the
macroalgae thallus for direct adherence by the dinofla-
gellates (Vila et al. 2001). In this manner, the means by
which the dinoflagellates associate with the substrate,
which is in turn influenced by intensity of water
motion, substantially influences the carrying capacity
of macroalgae in different habitats.

With respect to depth, these genera have been found
in samples collected at depths of up to 30 m; although,
the highest cell concentrations of ciguatera dinoflagel-
lates have been documented at 0.5 to 3 m (Bomber et
al. 1985, Carlson & Tindall 1985, Taylor 1985). There-
fore, it is surprising that both Prorocentrum and Gam-
bierdiscus spp. were positively correlated with depth
(Table 4). Laboratory unialgal culture experiments
determined that the average light intensity optimum
for G. toxicus is ~10% sunlight and the most efficient
growth was achieved under blue light (Bomber et al.
1988a). Under conditions in the field, Bomber et al.
(1988a) characterizes the optimum depth of Gam-
bierdiscus spp. in the range of 1 to 4 m but Gam-
bierdiscus and Prorocentrum spp. have also been fre-
quently documented at very shallow depths and under
high light intensities that seemingly exceed their toler-
ances (Carlson & Tindall 1985), including floating
algae in surface waters (Bomber et al. 1988b). In cul-
ture, these dinoflagellates were able to acclimate
quickly to different light intensities (Bomber et al.

1988b) and may also be able to adapt to growth under
lower light levels.

The deepest sampling stations in our surveys were
generally located in lagoon or channel habitats. Con-
versely, many of the shallower sampling stations were
in reef crest/back reef habitats. Given the strong effect
of water motion on the dinoflagellate community
observed in this study, it is likely that the correlation
between dinoflagellate abundance and depth is influ-
enced by water motion. A more effective means of
examining the distribution of these dinoflagellates at
depth could be accomplished by conducting a vertical
transect in an area unaffected by water motion to
specifically examine population abundance at varying
depths. However, given the disconnection observed
between the light tolerance limits identified in culture
experiments and dinoflagellate distribution in the
field, this community seems to be well-suited to
exploiting a variety of habitats and tolerating environ-
mental conditions seemingly unfavorable to growth.

Community dynamics

Several significant correlations were found among
the species examined in this study: Gambierdiscus
spp. were positively correlated with all 4 Prorocentrum
species, abundances of Ostreopsis siamensis and
O. lenticularis were positively correlated and each was
negatively correlated with P. cf. rhathymum and P.
concavum (Table 5). Several studies observed habitat
separation between G. toxicus and Ostreopsis spp.
(Besada et al. 1982, Bomber et al. 1985, Taylor 1985,
Grzebyk et al. 1994, Tindall & Morton 1998); however,
our data instead suggest habitat separation between
Ostreopsis and Prorocentrum species. 

In this study, all 4 Prorocentrum spp. were positively
correlated; this correlation was strongest between P.
cf. rhathymum and P. concavum (Table 5), which were
consistently the dominant species at the calm
lagoon/channel sites (Fig. 4). This is similar to studies
documenting reciprocal codominance between P. mex-
icanum/ P. concavum and Gambierdiscus toxicus spe-
cies at protected inshore stations, and dominance of
turbulent coral reef habitats by Ostreopsis siamensis
(Carlson 1984, Carlson & Tindall 1985). These observa-
tions confirm the characterization of the community
dynamics of ciguatera dinoflagellates in the Caribbean
and demonstrates that remarkably similar population
dynamics also exist in the Pacific. 

The means by which Prorocentrum spp. seem to
dominate preferred protected habitats is unknown;
however, laboratory experiments have shown that
these species are capable of rapid growth compared to
the other genera in this community, although growth
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rates vary among genetic strains (Heil et al. 1993). This
higher growth rate may allow Prorocentrum spp. to
rapidly proliferate and occupy new substrate when it is
made available, effectively excluding other species.
Additionally, there is evidence that these species may
also use allelopathic activity to compete for space in
the benthic canopy (Carlson 1984). Although allelo-
pathic activity has been identified in phytoplankton
(Legrand et al. 2003), few studies have been conducted
on benthic dinoflagellates. Exudates from P. lima have
been found to inhibit the growth of Amphidinium kleb-
sii, Gambierdiscus toxicus, Ostreopsis lenticularis, and
Caulerpa monotis (Sugg & Van Dolah 1999). Addition-
ally, laboratory culture experiments by Carlson (1984)
found that P. concavum produced ectocrines that were
allelopathic to G. toxicus but enhanced P. mexicanum
growth. In the competition for newly created space, the
higher growth rate of Prorocentrum species may also
confer an advantage, allowing for rapid colonization.
The production of ectocrines remains a largely unex-
plored but potentially important factor in the pattern of
succession on substrates and in other interactions
among these species.

Since the disturbance and destruction of coral reefs
have precipitated numerous ciguatera outbreaks (Ran-
dall 1958, Ruff 1989, Lehane & Lewis 2000), the pro-
cess by which colonization of this habitat occurs is
important to understanding the subsequent manifesta-
tion of toxicity in reef fishes. Clearly there are numer-
ous complex interactions that determine this commu-
nity’s composition and distribution. Studying this
process of succession at the microbial scale under dif-
ferent environmental conditions and in different coral
reef habitats may help explain observed patterns of
ciguatera dinoflagellate ecology and provide insight
into how and why toxicity occurs, how ciguatera per-
sists in endemic areas, and why ciguatera is a highly
localized phenomenon.

CONCLUSIONS

This study employed standardized sampling metho-
dology to examine the ecology of toxic benthic dinofla-
gellates at Johnston Atoll and determine how habitat,
depth, and water motion correlate with dinoflagellate
biodiversity. These data show that total abundance of
toxic dinoflagellates and community composition is sig-
nificantly different among habitats, and that the ciguat-
era dinoflagellate community structure is primarily de-
termined by the degree of water motion. The negative
correlation observed between Ostreopsis and Prorocen-
trum spp. suggests habitat separation between these
genera. Gambierdiscus spp. were widely distributed in
all habitats but under normal conditions comprise a mi-

nor component of the benthic dinoflagellate assemblage.
This study has established a quantitative baseline of Pa-
cific ciguatera dinoflagellates in a variety of habitats and
under normal environmental conditions, and contributes
to an accurate and coherent characterization of the pop-
ulation dynamics of this important community.
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