INTRODUCTION

There has been considerable debate concerning the state of the oceanic nitrogen (N) budget over the last decades (Gruber & Sarmiento 1997, Codispoti et al. 2001, Gruber 2004). This debate comes from uncertainties on biological processes driving the main sink and source terms of fixed N in the ocean. Sink terms are dominated by biological processes converting fixed N to dinitrogen (N\textsubscript{2}) (through denitrification and anammox [anaerobic ammonium oxidation] mainly occurring in N-rich Oxygen Minimum Zones, OMZs), and source terms are dominated by biological N\textsubscript{2} fixation (the reduction of N\textsubscript{2} into the bioavailable form of ammonium, NH\textsubscript{4}+). Estimates using field data suggest that marine N\textsubscript{2} fixation (~125–160 Tg N yr-1) only compensates for ~25 to 50% of N-loss processes (~165–400 Tg N yr-1) (Gruber & Sarmiento 1997, Brandes & Devol 2005, Codispoti 2007). However, new N\textsubscript{2}-fixing organisms and ecological niches suitable for N\textsubscript{2} fixation are being discovered, which may lead to increased global N\textsubscript{2} fixation estimates; most research efforts dedicated to marine N\textsubscript{2} fixation before 2000 mainly focused on the filamentous cyanobacterium Trichodesmium (Carpenter 1983, Capone et al. 1997), and the conventional view was that N\textsubscript{2} fixation takes place in warm oligotrophic N-depleted surface waters (Karl et al. 1992, Mahaffey et al. 2005). Other planktonic organisms such as unicellular cyanobacteria, heterotrophic eubacteria and archaea

Sensitivity of N\textsubscript{2} fixation to combined nitrogen forms (NO\textsubscript{3}- and NH\textsubscript{4}+) in two strains of the marine diazotroph Crocosphaera watsonii (Cyanobacteria)

Julien Dekaezemacker1,*, Sophie Bonnet2

1Université de la Méditerranée (Aix-Marseille II), and 2IRD, Laboratoire d’Océanographie Physique et Biogéochimie, Centre d’Océanologie de Marseille, Faculté des Sciences de Luminy, 13288 Marseille cedex 9, France

ABSTRACT: Despite the increasing recognition of the biogeochemical importance of marine unicellular diazotrophic cyanobacteria, the environmental factors controlling their distribution and activity in the ocean are still very poorly understood. In particular, very few studies have considered the effect of combined nitrogen (N) on unicellular diazotroph activity, although their presence has been reported in surface waters exhibiting micromolar concentrations of dissolved inorganic nitrogen (DIN). Here, we studied the effect of nitrate (NO\textsubscript{3}-) and ammonium (NH\textsubscript{4}+) additions (0.2 to 10 µmol l-1) on N\textsubscript{2} fixation and N uptake in 2 strains of Crocosphaera watsonii (WH8501 and WH0003) maintained in batch cultures in an N-free medium (YBC II) and a 12 h light:12 h dark cycle. Compared with the untreated control, increasing concentrations of NH\textsubscript{4}+ to 10 µmol l-1 rapidly inhibited night-integrated N\textsubscript{2} fixation by up to 36 and 83 % for WH8501 and WH0003, respectively. In contrast, night-integrated N\textsubscript{2} fixation was not significantly inhibited at any NO\textsubscript{3}- concentration. These results contrast with data obtained on Trichodesmium spp. (Cyanobacteria) in which night-integrated N\textsubscript{2} fixation is inhibited up to 50 % at the same NO\textsubscript{3}- concentrations. This study indicates that C. watsonii is able to take up combined nitrogen while keeping its ability to fix dinitrogen at high rates.

KEY WORDS: Crocosphaera watsonii · Cyanobacteria · Inhibition · N\textsubscript{2} fixation · Ammonium · Nitrate · Nitrogen uptake

Resale or republication not permitted without written consent of the publisher
were then found to express the \textit{nifH} gene encoding the nitrogenase enzyme catalyzing \textit{N}_2 fixation (Zehr et al. 1998, 2001, Braun et al. 1999), and \textit{N}_2 fixation rates associated with these organisms have been recognized to be equal to or exceed those reported for \textit{Trichodesmium} spp. (Montoya et al. 2004). Unicellular diazotrophs account for 75% of total activity in coastal and oceanic waters of the south west and equatorial Pacific (Biegala & Raimbault 2008, Bonnet et al. 2009). More recently, biological and geochemical studies have reported the presence of active diazotrophs in more diverse and previously unexpected environments, some containing micromolar levels of combined nitrogen (1.5 to 4 \(\mu\text{mol NO}_3^-\) \textit{l} \(^{-1}\)) (Short & Zehr 2007, Bonnet et al. 2011, Webb et al. 2009) such as High Nutrient Low Chlorophyll (HNLC) waters or above OMZs in upwelling systems (Deutsch et al. 2007, Zehr & Kudela 2011, Fernandez et al. 2011) where sinks of \textit{N} may be spatially coupled with \textit{N}_2 fixation in waters exhibiting micromolar nitrate (\(\text{NO}_3^-\)) concentrations.

Despite the increasing recognition of the biogeochemical importance of unicellular diazotrophic organisms, their role is still not explicitly taken into account in most global biogeochemical budgets and models. Moreover, the environmental factors controlling their distribution and activity in the ocean are still very poorly known. In particular, few studies have considered the effect of combined nitrogen (\(\text{NH}_4^+\) or \(\text{NO}_3^-\)) on unicellular diazotrophic activity, although the presence of such organisms has been reported in N-rich waters and in oligotrophic gyres (e.g. Church et al. 2005) in which seasonal mixing, vertical diffusion and atmospheric inputs represent a substantial source of new \textit{N}, potentially inhibiting the \textit{N}_2 fixation activity. The objectives of this study were (1) to determine the threshold of \textit{N}_2 fixation inhibition under environmentally relevant concentrations of dissolved inorganic nitrogen (DIN) such as \(\text{NO}_3^-\), and \(\text{NH}_4^+\), and (2) to investigate the ability of unicellular diazotrophs to take up these combined nitrogen forms.

We performed this study on the unicellular diazotrophic cyanobacterium \textit{Crococpsphaera watsonii}. This nanoplanktonic strain was chosen as a good representative of marine unicellular diazotrophs. Furthermore \textit{Crococpsphaera} \textit{Watsonii} WH8501 has the genomic potential to assimilate \(\text{NH}_4^+\), and reduce \(\text{NO}_3^-\) and \(\text{NO}_2^-\) (Hewson et al. 2009). It is widespread in the Pacific (Zehr et al. 2001, Campbell et al. 2005, Church et al. 2008) and in the North Atlantic (Langlois et al. 2008), and is one of the main models of marine unicellular diazotrophs to date available in culture.

MATERIALS AND METHODS

Culture conditions

Two unialgal cultures of \textit{Crococpsphaera watsonii} WH8501 (Waterbury & Rippka 1989, Zehr & Turner 2001) and WH0003 (Webb et al. 2009) were grown in batch cultures, with a 12 h light:12 h dark cycle, a daytime photon flux of 180 \(\mu\text{mol photons m}^{-2}\text{s}^{-1}\) and a temperature of 27°C, which has been reported as optimal for the growth of these 2 strains (Webb et al. 2009). Both strains were cultivated in triplicate in artificial seawater N-free YBC II medium (50 \(\mu\text{M}\) \(\text{PO}_4^{3-}\), Chen et al. 1996). Each culture was grown in a 2 l Nalgene\textregistered polycarbonate magnetic culture vessel (Nalgene Nunc International) fitted with a tetrafluoroethylene stir bar gently mixing the culture. The initial culture volume was 1.5 l. The cultures were not axenic, but standard sterilization procedures and manipulation under laminar flow hoods were followed to minimize contamination. We checked that bacteria present in the medium did not show any diazotrophic activity by filtering culture through polycarbonate 2.0 \(\mu\)m porosity filters and measuring acetylene reduction activity in the filtrate. Bacteria did not show any \textit{N}_2 fixation activity and thus did not interfere with the \textit{C. watsonii} \textit{N}_2 fixation. Moreover, most of the carbon biomass and biovolume in the cultures was associated with \textit{C. watsonii} (99.5 and 99.8%, respectively, for the strain WH8501, and 99.9 and 99.9%, respectively, for the strain WH0003).

Experimental procedure

The growth rates of the 2 strains were monitored for 23 d using \textit{in vivo} chlorophyll \textit{a} fluorescence (model Trilogy, Turner Designs) and cell abundances (flow cytometry, MoFlo cell sorter, Dako). At the beginning of the exponential growth phase of each strain, 700 ml of each triplicate vessel were taken and mixed together. The final volume (2.1 l for each strain) was divided among 9 sterile culture flasks to which different amounts of inorganic nitrogen were added (as 2 mmol \textit{l} \(^{-1}\) solution of either \textit{NaNO}_3 [99.99 Suprapur, Merck] or \textit{NH}_4\text{Cl} [99.95 Suprapur, Merck]), in order to reach final concentrations of 0.2, 1, 5 and 10 \(\mu\text{mol l}^{-1}\) and facilitate comparisons with experiments performed on \textit{Trichodesmium} spp. (Holl & Montoya 2005). For each strain, vessels were left untreated as controls. These additions were made 90 min before the start of the dark period (i.e. before synthesis of the enzyme nitrogenase catalysing \textit{N}_2 fixation, Shi et al. 2010). Immedi-
ately after nitrogen additions, samples were collected in duplicates from each vessel for acetylene reduction assays performed every 2 h in duplicates. Samples were also collected every 2 h for triplicate measurements of NH$_4^+$ and NO$_3^-$ concentrations. Finally, samples were collected for cell abundance determination 3 times during the night.

N$_2$ fixation analyses

Nitrogenase activity was measured by the acetylene reduction technique (Capone 1993) in replicate flasks. Incubations were performed in 25 ml vials fitted with Teflon-lined septum caps. Vials were filled with 15 ml of culture and 1 ml of acetylene was added in the 10 ml head space (10% gaseous fraction). Two vials for each condition were incubated under the same light and temperature conditions as the original culture. Every 2 h, the ethylene concentration in the head space was measured in duplicate in each vial (4 per condition, n = 2) by gas chromatography using an Agilent µ-GC 200 equipped with a Flame Ionization Detector. Acetylene reduction rates were calculated for each 2 h interval using a reduction ratio (C$_2$H$_2$:N$_2$) of 4:1 to convert acetylene reduction to N$_2$ fixation rates (Capone & Montoya 2001). The rates were then normalized per cell using the flow cytometry data.

Nutrient analyses

Samples for NH$_4^+$ analysis were collected in 40 ml SHOTT flasks and analyzed by the fluorescent method as described in Holmes et al. (1999) using a Trilogy fluorometer (Turner Designs, CDOM module) (detection limit = 11 nmol l$^{-1}$).

Samples for NO$_3^-$ concentrations were collected in acid-washed 20 ml polyethylene flasks and immediately poisoned with 200 µl HgCl$_2$ (i.e. final concentration of 20 µg ml$^{-1}$) (Kirkwood 1992) and stored at 4°C until analysis using an AutoAnalyzer 3 Digital Colorimeter (Bran Luebbe) according to standard automated colorimetric methods (Aminot & Kerouel 2007) (detection limit = 69 nmol l$^{-1}$).

Cell analyses

Samples for flow cytometry were taken at the beginning, middle and end of the dark period to check the stability of cell concentrations during the experimental period: 1.8 ml of culture was fixed with 0.2 ml of 30% glutaraldehyde and counted using a MoFlo.

For carbon (C) and N contents, 13 ml of culture were filtered 9 h after the beginning of the dark period through precombusted (6 h, 450°C) Whatman GF/F filters (diameter 25 mm, porosity $≈$ 0.7 µm), using a low vacuum pressure (<100 mm Hg). Following filtrations, filters were placed into 2 ml precombusted glass vials, dried for 48 h at 55°C and stored until analysis. Analyses were performed on an Integra-CN mass spectrometer calibrated using glycine every 10 samples.

Cell specific uptake rates of NH$_4^+$ and NO$_3^-$ were calculated from the rates of disappearance of NH$_4^+$ and NO$_3^-$ from the medium and then normalized to cell abundances obtained by flow cytometry analysis.

Statistical analyses

For each control and nitrogen treatment, cell abundance means were compared between the 3 time points using a 1-way ANOVA and a Fisher’s protected least significant difference test (n = 3, df = 8). For each nitrogen treatment, maximum N$_2$ fixation means and night-integrated N$_2$ fixation were compared to the control mean and the control night-integrated N$_2$ fixation using a paired Student’s *t*-test (4 measurements, n = 2, df = 1).

RESULTS

N$_2$ fixation: effect of NH$_4^+$

In the control treatment of the WH8501 strain (no nitrogen added), nitrogenase activity started 4 h after the beginning of the dark period, and reached a maximum of 10 × 10$^{-7}$ nmol N$_2$ cell$^{-1}$ h$^{-1}$ 9.3 h after the onset of the dark period (Fig. 1A). Nitrogenase activity remained detectable at the beginning of the light period but decreased quickly to become undetectable 2.8 h after the beginning of the day. We observed a measurable inhibition of maximum N$_2$ fixation with NH$_4^+$ additions, except at the lower end of the range of NH$_4^+$ additions (0.2 µmol l$^{-1}$) (Fig. 1B); the maximum N$_2$ fixation rate decreased significantly (t-test, p < 0.05) by 11.5 ± 1.2% (8.9 × 10$^{-7}$ nmol N$_2$ cell$^{-1}$ h$^{-1}$), 8.1 ± 0.5% (9.3 × 10$^{-7}$ nmol N$_2$ cell$^{-1}$ h$^{-1}$) and 37.7 ± 3.9% (6.3 × 10$^{-7}$ nmol N$_2$ cell$^{-1}$ h$^{-1}$) relative to the control after 1, 5 and 10 µmol l$^{-1}$ of NH$_4^+$ were added, respectively (Table 1, Fig. 1C–E).
In the control treatment of the strain WH0003, the N₂ fixation cycle exhibited a similar pattern compared to strain WH8501. N₂ fixation started 4.1 h after dark, reached a maximum of 10.5×10^{-7} nmol N₂ cell⁻¹ h⁻¹ after 9.1 h of darkness, and decreased quickly with light but was still detectable 1.4 h after the onset of the light period (Fig. 2A). However, the effect of NH₄⁺ additions on this strain was more...
important in terms of intensity of inhibition and synchronization of nitrogenase activity than that observed for the strain WH8501 (Fig. 2B–E). The N₂ fixation maximum was significantly higher for WH8501 than for WH0003 under the same conditions (10 to 20 nmol l⁻¹) as was observed in the control during the middle of the dark period (Fig. 2F). The added NH₄⁺ began being consumed within 3 h after the addition of 0.2, 1 and 5 µmol NH₄⁺ l⁻¹ (Fig. 1G–I), and within 7 h for 10 µmol NH₄⁺ l⁻¹ (Fig. 1J), and decreased to the original background concentration of 20 nmol l⁻¹ at the end of the experiment in all treatments (Fig. 1G–J). Experiments performed on strain WH0003 show that the concentration of NH₄⁺ was undetectable at the beginning of the experiment and increased throughout the dark period to reach 100 nmol l⁻¹ at the beginning of the light period (Fig. 2F). The added NH₄⁺ began being consumed within 3 h after the addition of 0.2 and 1 µmol NH₄⁺ l⁻¹ (Fig. 2G–H), and within 7 h for the 5 and 10 µmol NH₄⁺ l⁻¹ additions (Fig. 2I–J), reaching the same concentration (10 to 20 nmol l⁻¹) as was observed in the control during the middle of the dark period (Fig. 2G–J). In all treatments, concentrations returned to 100 nmol l⁻¹ by the end of the night.

For both strains, NH₄⁺ did not only affect the intensity and the timing of the maximum of N₂ fixation, but also affected the total integrated N₂ fixed during the dark cycle (Table 1, Fig. 5A). The inhibitory effect of NH₄⁺ on night-integrated N₂ fixation was more important for the strain WH0003 compared to WH8501; for example, an addition of 10 µmol NH₄⁺ l⁻¹ significantly inhibited (t-test, p < 0.05) the night-integrated N₂ fixation of the strain WH8501 by 36.9 ± 0.8%, whereas the strain WH0003 was inhibited by 83.3 ± 4.1% (Table 1, Fig. 5A).

Cell specific uptake rates of NH₄⁺ were similar for both strains for the 0.2 to 5 µmol NH₄⁺ l⁻¹ additions (Fig. 5B). However, the strain WH0003 exhibited higher uptake rates for the 10 µmol NH₄⁺ l⁻¹ addition, with a cell specific uptake rate of 2.8 × 10⁻³ nmol N cell⁻¹ h⁻¹ compared to the strain WH8501, for which the uptake rate for the 10 µmol l⁻¹ addition was 1.5 × 10⁻³ nmol N cell⁻¹ h⁻¹ (Fig. 5B).

Table 1. Crocosphaera watsonii. Inhibition of N₂ fixation maximum and night-integrated N₂ fixation (mean ± SD) of strains WH8501 and WH0003 under different dissolved inorganic nitrogen (DIN) enrichments (paired Student’s t-test, n = 2, df = 1). *Significantly different compared to control condition (p < 0.05)

<table>
<thead>
<tr>
<th>Strain</th>
<th>DIN addition</th>
<th>Final concentration (µmol l⁻¹)</th>
<th>Inhibition of N₂ fixation maximum (%)</th>
<th>Inhibition of night-integrated N₂ fixation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WH8501</td>
<td>NH₄⁺</td>
<td>0.2</td>
<td>3.0 ± 0.2</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>11.5 ± 1.2*</td>
<td>5.6 ± 0.1*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>8.1 ± 0.5*</td>
<td>21.5 ± 0.6*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>37.7 ± 3.9*</td>
<td>36.9 ± 0.8*</td>
</tr>
<tr>
<td></td>
<td>NO₃⁻</td>
<td>0.2</td>
<td>5.1 ± 0.5</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>5.1 ± 0.3</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>23.8 ± 3.3*</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>11.8 ± 0.9*</td>
<td>–</td>
</tr>
<tr>
<td>WH0003</td>
<td>NH₄⁺</td>
<td>0.2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>20.8 ± 2.7*</td>
<td>1.2 ± 0.1*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>40.6 ± 12.3*</td>
<td>37.3 ± 2.6*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>80.0 ± 24.7*</td>
<td>83.3 ± 4.1*</td>
</tr>
<tr>
<td></td>
<td>NO₃⁻</td>
<td>0.2</td>
<td>14.2 ± 2.1</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>10.8 ± 1.9</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>3.6 ± 0.8</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>–</td>
<td>5.0 ± 0.2</td>
</tr>
</tbody>
</table>

N₂ fixation: effect of NO₃⁻

Experiments indicate that NO₃⁻ additions only affected N₂ fixation for the WH8501 strain in the 5 and 10 µmol NO₃⁻ l⁻¹ treatments. In these cases, the maximum values of N₂ fixation decreased significantly (t-test, p < 0.05) by 23.8 ± 3.3% (7.7 × 10⁻⁷ nmol N₂ cell⁻¹ h⁻¹) and 11.8 ± 0.9% (8.9 × 10⁻⁷ nmol N₂ cell⁻¹ h⁻¹) relative to the control (Table 1, Fig. 3D–E). This maximum occurred 2 h after the control maximum (Fig. 3D–E).

For the WH0003 strain, the N₂ fixation maxima did not show any significant decrease, but a delay of 3.5 h after the control maximum in the 0.2 and 1 µmol NO₃⁻ l⁻¹ treatments, and a 1.8 h delay in the 5 and 10 µmol NO₃⁻ l⁻¹ treatments was observed (Fig. 4B–E).

When considering the total N₂ fixation integrated over the dark period, our results indicate that NO₃⁻ additions did not cause any significant inhibition for the 2 strains (Table 1).

N uptake

Experiments performed on strain WH8501 indicate that the initial concentration of NH₄⁺ was 20 nmol l⁻¹ at the beginning of the experiment (Fig. 1F). The added NH₄⁺ began being consumed within 3 h after the additions of 0.2, 1 and 5 µmol NH₄⁺ l⁻¹ (Fig. 1G–I), and within 5 h for +10 µmol NH₄⁺ l⁻¹ (Fig. 1J), and decreased to the original background concentration of 20 nmol l⁻¹ at the end of the experiment in all treatments (Fig. 1G–J).

Experiments performed on strain WH0003 show that the concentration of NH₄⁺ was undetectable at the beginning of the experiment and increased throughout the dark period to reach 100 nmol l⁻¹ at the beginning of the light period (Fig. 2F). The added NH₄⁺ began being consumed within 3 h after the addition of 0.2 and 1 µmol NH₄⁺ l⁻¹ (Fig. 2G–H), and within 7 h for the 5 and 10 µmol NH₄⁺ l⁻¹ additions (Fig. 2I–J), reaching the same concentration (10 to 20 nmol l⁻¹) as was observed in the control during the middle of the dark period (Fig. 2G–J). In all treatments, concentrations returned to 100 nmol l⁻¹ by the end of the night.

For both strains, NH₄⁺ did not only affect the intensity and the timing of the maximum of N₂ fixation, but also affected the total integrated N₂ fixed during the dark cycle (Table 1, Fig. 5A). The inhibitory effect of NH₄⁺ on night-integrated N₂ fixation was more important for the strain WH0003 compared to WH8501; for example, an addition of 10 µmol NH₄⁺ l⁻¹ significantly inhibited (t-test, p < 0.05) the night-integrated N₂ fixation of the strain WH8501 by 36.9 ± 0.8%, whereas the strain WH0003 was inhibited by 83.3 ± 4.1% (Table 1, Fig. 5A).

Cell specific uptake rates of NH₄⁺ were similar for both strains for the 0.2 to 5 µmol NH₄⁺ l⁻¹ additions (Fig. 5B). However, the strain WH0003 exhibited higher uptake rates for the 10 µmol NH₄⁺ l⁻¹ addition, with a cell specific uptake rate of 2.8 × 10⁻³ nmol N cell⁻¹ h⁻¹ compared to the strain WH8501, for which the uptake rate for the 10 µmol l⁻¹ addition was 1.5 × 10⁻³ nmol N cell⁻¹ h⁻¹ (Fig. 5B).
Experiments performed with NO$_3^-$ indicate slower or incomplete consumption of NO$_3^-$ over the course of the experiment compared with NH$_4^+$. For the strain WH8501, NO$_3^-$ was completely consumed after 0.5, 3.5, and 7.5 h for additions of 0.2, 1 and 5 µmol l$^{-1}$, respectively (Fig. 3G–I). In the 10 µmol l$^{-1}$ treatment, NO$_3^-$ was not exhausted and 4 µmol NO$_3^-$ l$^{-1}$ was still remaining in the medium 11.5 h after the initial addition (Fig. 3J).

Fig. 2. *Crocosphaera watsonii*. Effect of NH$_4^+$ additions on N$_2$ fixation rates (left panels) through the night period in cultures of strain WH0003 (mean ± SD, n = 4) and on NH$_4^+$ concentrations (right panels) for (A,F) untreated condition, for addition of (B,G) 0.2 µmol l$^{-1}$, (C,H) 1 µmol l$^{-1}$, (D,I) 5 µmol l$^{-1}$ and (E,J) 10 µmol l$^{-1}$. The x-axis represents the time: L = light, D = dark, followed by the corresponding hour after the beginning of the light or dark cycle. The y-axis of the right panels is a decimal logarithmic scale adjusted for the NH$_4^+$ concentration in the medium.
For the strain WH0003, NO$_3^-$ was completely consumed after 1.5, 3.5, 7.5 and 11.5 h, respectively for the 0.2, 1, 5 and 10 µmol NO$_3^-$ l$^{-1}$ treatments (Fig. 4G–J). Similar to NH$_4^+$ uptake, cell specific uptake rates of NO$_3^-$ increased with increasing amount of NO$_3^-$, except for the strain WH8501 at 5 µmol NO$_3^-$ l$^{-1}$, where uptake capacities reached a saturation at 5.1 × 10$^{-4}$ nmol N cell$^{-1}$ h$^{-1}$. For the 10 µmol NO$_3^-$ l$^{-1}$ addition for strain WH0003, the uptake rate still increased to a maximum of 2.0 × 10$^{-3}$ nmol N cell$^{-1}$ h$^{-1}$ (Fig. 5C).
It should be noted that the NO$_3^-$ additions did not result in any NH$_4^+$ contamination or excretion for the experiments performed with the strain WH8501 (Fig. 3G–J). NH$_4^+$ concentrations remained constant (20 nmol l$^{-1}$) regardless of the amount of NO$_3^-$ added.

In experiments performed with the strain WH0003, NH$_4^+$ concentrations increased up to 40 nmol l$^{-1}$ with NO$_3^-$ additions, possibly due to a small contamination with NH$_4^+$ (Fig. 4G–J), although the NH$_4^+$ concentration decreased within 3 h after addition to return to
Regardless of the type or magnitude of N amendment, the strain WH0003 showed an increase in NH$_4^+$ concentration up to 100 nmol l$^{-1}$ in the control as well as in all the treatments at the end of the dark period, indicating that this strain excretes NH$_4^+$ before the light period.

Cell abundances measured at 3 time points (at the end of the light period, during the middle of the dark period, and at the beginning of the new light period) in each condition did not change over the course of the experiments or between the treatments (1-way ANOVA, $p < 0.05$), validating the normalisation of N$_2$ fixation rates and uptake data by cell abundance.

Table 2. *Crocosphaera watsonii*. Cellular carbon and nitrogen content and C:N ratios of strains WH8501 and WH0003 under different dissolved inorganic nitrogen (DIN) enrichments 9 h after the beginning of the dark period. na: not available

<table>
<thead>
<tr>
<th>Strain</th>
<th>DIN addition</th>
<th>Cellular C (10$^{-4}$ nmol cell$^{-1}$)</th>
<th>Cellular N (10$^{-4}$ nmol cell$^{-1}$)</th>
<th>C:N ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>WH8501</td>
<td></td>
<td>5.0</td>
<td>0.8</td>
<td>5.2</td>
</tr>
<tr>
<td>NH$_4^+$</td>
<td>0.2</td>
<td>5.0</td>
<td>0.8</td>
<td>5.3</td>
</tr>
<tr>
<td>1</td>
<td>4.8</td>
<td>0.8</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.0</td>
<td>0.8</td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.6</td>
<td>0.8</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>NO$_3^-$</td>
<td>0.2</td>
<td>4.8</td>
<td>0.8</td>
<td>5.1</td>
</tr>
<tr>
<td>1</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6.0</td>
<td>0.9</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>WH0003</td>
<td></td>
<td>12.9</td>
<td>1.2</td>
<td>9.4</td>
</tr>
<tr>
<td>NH$_4^+$</td>
<td>0.2</td>
<td>13.5</td>
<td>1.3</td>
<td>9.1</td>
</tr>
<tr>
<td>1</td>
<td>13.8</td>
<td>1.3</td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12.3</td>
<td>1.4</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>17.8</td>
<td>1.4</td>
<td>11.1</td>
<td></td>
</tr>
<tr>
<td>NO$_3^-$</td>
<td>0.2</td>
<td>12.9</td>
<td>1.4</td>
<td>7.8</td>
</tr>
<tr>
<td>1</td>
<td>12.6</td>
<td>1.3</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>13.2</td>
<td>1.5</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>14.2</td>
<td>1.6</td>
<td>7.7</td>
<td></td>
</tr>
</tbody>
</table>
The cellular C content of strain WH0003 was higher compared to the control for the 10 µmol l−1 DIN additions, with values of 17.8 × 10−4 nmol C cell−1 for NH4+ and 14.2 × 10−4 nmol C cell−1 for NO3−. The N content increased with increasing DIN in the medium to reach 1.4 × 10−4 nmol N cell−1 with a 10 µmol l−1 addition of NH4+ and 1.6 × 10−4 nmol N cell−1 with the addition of 10 µmol NO3− l−1. C:N ratios thus varied from 7.7 to 8.1 with NO3− and from 7.8 to 11.1 with NH4+ additions.

DISCUSSION

Because some cyanobacteria have the ability to fix N2, most of the studies dedicated to N2 fixation have been performed in environments devoid of N. However, our understanding of marine nitrogen fixation is constantly evolving, and emerging satellite (Westberry et al. 2005), geochemical (Deutsch et al. 2001, 2007), and biological (Fernandez et al. 2011) evidence suggests that diazotrophy may not be limited to the nitrate-depleted surface waters of the oligotrophic ocean. This recognition encouraged us to investigate how 2 sources of combined nitrogen (NO3− and NH4+) will affect the diel N2 fixation cycle of Crocosphaera watsonii.

Validation of the spike time

Nitrogenase activity results obtained in this study indicate that Crocosphaera watsonii fix dinitrogen during the dark period, with a maximum of activity at the end of the night, and a rapid decrease after the onset of the light period. This result is in accordance with recent molecular studies based on nifH gene expression (Mohr et al. 2010, Pennebaker et al. 2010, Shi et al. 2010), which confirm that C. watsonii has a maximum enrichment factor of nifH transcripts at the beginning of the dark period and a minimum between the beginning and the middle of the light period. There is a delay of several hours between the maximum nifH expression recorded by Shi et al. (2010) and the maximum nitrogenase activity measured in this study, which is probably due to the time necessary to activate the functional enzyme. In order to study the potential effect of NH4+ and NO3− on nitrogenase activity, we decided for this study to perform the spike before the synthesis of the new pool of nitrogenase for the night (i.e. 90 min before the start of the dark period).

NH4+ effect on N2 fixation

Our results show that Crocosphaera watsonii can simultaneously fix N2 and utilize NH4+. These results are consistent with data obtained in exponentially growing batch cultures of Trichodesmium spp. (Mulholland & Capone 2001), which show a clear inhibition of nitrogenase activity by more than 50% after a 10 µmol NH4+ l−1 treatment. NH4+ is a metabolic end product of the N2 fixation reaction and is able to directly decrease the activity of the enzyme (Thomas et al. 1982) and thus probably resulted in a decrease of nitrogen fixation fluxes in our experiment. It is thus not surprising that the magnitude of N2 fixation inhibition was proportional to the magnitude of the NH4+ spike in our experiments.

NO3− effect on N2 fixation

One of the most striking results in our experiments was the very small degree to which NO3− inhibited N2 fixation, even at high concentrations (5 and 10 µmol l−1), which are representative of ambient NO3− concentrations found in upwelling systems or HNLC waters where N2 fixation occurs (Moutin et al. 2005, Bonnet et al. 2009, Fernandez et al. 2011). As the NO3− additions were performed before the maximum of nif gene transcript production (Shi et al. 2010), and because nitrogenase is synthesized de novo each night and degraded each day (Tuit et al. 2004, Saito et al. 2011), these results would indicate that high NO3− concentrations do not inhibit the synthesis of the enzyme nitrogenase in Crocosphaera watsonii. These data contrast with those obtained in Trichodesmium spp. cultures, in which pulses of 10 µmol NO3− l−1 inhibited N2 fixation by 35% in batch cultures (Mulholland et al. 2001), and up to 50% in continuous cultures (Holl & Montoya 2005). N2 fixation is energy-consuming, and NO3− reduction needs one third less energy (Karl et al. 2002). If the high rate of NO3− uptake was only to economize on energy, N2 fixation would be inhibited and NO3− assimilation would dominate consumption. This hypothesis could explain the inhibition of N2 fixation by NO3− for Trichodesmium spp. due to the shift of some cellular reserves and machinery to synthesize nitrate reductase (Mulholland et al. 2001), but not the maintenance of nitrogenase activity by Crocosphaera watsonii found in this study. Furthermore, to be synthesized, nitrogenase and nitrate reductase require molybdenum (Mo) (Bagchi et al. 1985). The Mo metabolism of Trichodesmium...
N-nutrition of diazotrophs

For 10 µmol l⁻¹ DIN additions, WH8501 showed saturating uptake kinetics, while DIN uptake rates for strain WH0003 continued to increase over the range of DIN additions. This limitation of uptake for WH8501 could explain the lower inhibition of N₂ fixation relative to WH0003. The capacity of strain WH8501 to use NH₄⁺ is limited because of the plateau in uptake rates. Furthermore it cannot modulate its cellular N content to respond to variations in environmental conditions; the maximum inhibition of N₂ fixation by NH₄⁺ is only 32%, showing the limit of N metabolism in this strain and proving that it could not be much more inhibited in these culture conditions. For NH₄⁺ additions, the N nutrition from N₂ fixation represents from 0.1 to 30.2% and from 0.5 to 47.3% of the total N uptake (NH₄⁺ uptake + N₂ fixation), respectively, for 10 and 0.2 µmol NH₄⁺ l⁻¹ treatments of strains WH8501 and WH0003, respectively.

For NO₃⁻ additions, strain WH8501 shows saturating NO₃⁻ uptake kinetics while strain WH0003 is able to assimilate NO₃⁻ at concentrations of 10 µmol l⁻¹ without any saturation in uptake rates. Furthermore, NO₃⁻ uptake does not reduce N₂ fixation rates in either strain. In these cases, N nutrition based on N₂ fixation represents from 2.1 to 12.3% and from 0.6 to 2.8% of the total N uptake (NO₃⁻ uptake + N₂ fixation), respectively, for 5 and 1 µmol NO₃⁻ l⁻¹ treatments of strain WH8501 and for 10 and 0.2 µmol NO₃⁻ l⁻¹ treatments of strain WH0003.

By comparison, the addition of 10 µmol NO₃⁻ l⁻¹ inhibited N₂ fixation by Trichodesmium spp. under comparable culturing conditions by up to 30% com-

spp., which maintains an internal pool of Mo (Tuit et al. 2004), is different from the one of C. watsonii, which takes up a new pool of Mo every night (Tuit et al. 2004). Moreover, C. watsonii has 3 to 300 times lower intracellular Mo content than Trichodesmium spp. under obligate diazotrophy (Tuit et al. 2004), indicating potentially lower Mo requirements for nitrogenase synthesis and better ability to synthesize nitrate reductase. We did however notice a delay from 2 to 4 h in the occurrence of the N₂ fixation maximum in NO₃⁻ enriched treatments, reflecting the possible competition between N₂ fixation and NO₃⁻ uptake for energy, reserves and machinery in the cells.

These experiments indicate that micromolar NO₃⁻ additions induced immediate consumption of NO₃⁻, proving that Crocosphaera watsonii is able to take up nitrate during the night and continues to fix N₂. These results indicate that N₂ fixation in the ocean would not be inhibited by pulses of DIN, such as Saharan dust deposition or mixing events. Other recent culture studies indicate that N₂ fixation by C. watsonii is ~60 to 80% reduced, although not entirely stopped, by 5 to 16 µM NO₃⁻, after the cultures are acclimated for 10 generations to these NO₃⁻ concentrations and are grown with 0.5 to 1.0 µM PO₄−, after the cul-
tures are acclimated for 10 generations to these NO₃− concentrations and are grown with 0.5 to 1.0 µM PO₄− (A. N. Knapp unpubl. data). This result suggests that while maximum rates of N₂ fixation by C. watsonii are unlikely in waters with significant NO₃− concentrations, lower rates of N₂ fixation are still possible in N-rich areas such as the Peru-Chile upwelling system (Fernandez et al. 2011).

Comparison of the two Crocosphaera watsonii strains

In the control treatments, the night-integrated N₂ fixation of the strain WH0003 was higher (13%) than in the WH8501 strain. This result is consistent with data obtained by Webb et al. (2009) who attributed higher rates of N₂ fixation by C. watsonii to the lower cellular C:N ratio of the WH8501 strain (5.2) compared to the strain WH0003 (9.4) in control conditions.

One night after DIN additions, regardless of DIN type and concentration, the cellular C:N ratio remained relatively low and stable (Table 2) for the strain WH8501, indicating that this strain is able to maintain stable cellular quotas. In contrast, the C:N ratio for the strain WH0003 varied between treatments, with an excess of C (Table 2), while the N content increased with the addition of DIN compared to the control, which is in accordance with its higher cell specific uptake rates of DIN (compared to WH8501). This imbalance is partially compensated for by the concomitant higher intracellular C compared to the control; the strain WH0003 is known to produce and excrete high quantities of extracellular polysaccharides (EPS, rich in C) compared to WH8501 (Webb et al. 2009) and it is possible that WH0003 decreased the excretion of EPS under high DIN conditions to balance the C:N ratio in the cells, but further studies would be required to precisely understand those mechanisms.
pared with control conditions, and N nutrition for these *Trichodesmium* cultures based on N\(_2\) fixation still represented 8% (Holl & Montoya 2005). Proportionally, *Crocosphaera watsonii* is more efficient than *Trichodesmium* spp. at taking up DIN while keeping its ability to fix dinitrogen at high rates. However, after DIN pulses, N\(_2\) fixation represents a small part of the total N uptake.

CONCLUSION

These culture experiments report the first data on N\(_2\) fixation sensitivity to combined nitrogen forms for *Crocosphaera watsonii*, a representative of unicellular diazotrophs, and indicate that these organisms are efficient at assimilating NH\(_4^+\) and NO\(_3^-\) while simultaneously fixing N\(_2\). We show that N\(_2\) fixation is clearly inhibited by NH\(_4^+\), proportionally to the amount of NH\(_4^+\) added. The most striking result is that unicellular diazotrophs continue to fix N\(_2\) without inhibition, even after micromolar NO\(_3^-\) additions. This study implies that actively N\(_2\)-fixing populations may not be restricted to the nitrate depleted surface waters of the oligotrophic ocean as previously thought, but probably inhabit larger ecological niches and geographical distributions. This wide distribution is currently confirmed by the recent increasing number of field studies reporting the presence of active diazotrophs in N-rich ecosystems, including nutrient enriched estuarine and coastal waters (Short & Zehr 2007, Rees et al. 2009), eddies (Church et al. 2009), and OMZs (Fernandez et al. 2011). Contrary to *Trichodesmium* spp., unicellular diazotrophs have also been found deeper in the euphotic zone (Moisander et al. 2010), and to remain active throughout a larger timescale over the annual cycle, including the spring bloom (nitrogen repleted conditions) and the summer (phosphate depleted conditions), in Mediterranean temperate waters (Garcia et al. 2006, Bonnet et al. 2011).

However, *Crocosphaera watsonii* is the only marine unicellular diazotroph to date available in culture and it would be interesting to know if our results apply more broadly to other marine diazotrophs, such as heterotrophic bacteria or the uncultivated and widely distributed unicellular cyanobacterial Group A (Zehr et al. 2008, Moisander et al. 2010). This newly sequenced diazotroph lacks genes for assimilatory nitrate or nitrite reduction (Tripp et al. 2010), and is thus potentially even less sensitive to high nitrate concentrations compared to the Group B *C. watsonii* tested in this study.

Acknowledgements. The authors received financial support from the Institut de recherche pour le développement (IRD) and the Laboratoire d’Océanographie Physique et Biogéochimique. PhD scholarships for J.D. came from the French Ministry of Research and Education. We would like to thank A. Barani and G. Gregory from the Regional Flow Cytometry Platform for Microbiology (PRECYM) and the Oceanology Center of Marseilles for the cytometry analysis. Authors are grateful to O. Grosso for nutrient analysis, to A. Knapp, B. Quégüner, R. Campbell and 4 anonymous reviewers for valuable comments on the manuscript, and to E. Webb for the generous gift of strains of *Crocosphaera*.

LITERATURE CITED

Bonnet S, Grosso O, Moutin T (2011) Planktonic dinitrogen fixation along a longitudinal gradient across the Mediterranean Sea during the stratified period (BOUM cruise). Biogeosciences 8:2257–2267

Chen YB, Zehr JP, Mellon M (1996) Growth and nitrogen fixation of the diazotrophic filamentous nonheterocystous cyanobacterium *Trichodesmium* sp. IMS 101 in defined

Codispoti LA (2007) An oceanic fixed nitrogen sink exceeding 400 Tg N a⁻¹ vs the concept of homeostasis in the fixed-nitrogen inventory. Biogeosciences 4:233–253

cosphaera watsonii, isolated from the open ocean. Environ Microbiol 11:338–348

