
MARINE ECOLOGY PROGRESS SERIES
Mar Ecol Prog Ser

Vol. 441: 185–196, 2011
doi: 10.3354/meps09387

Published November 15

INTRODUCTION

Zooplankton play an important role in aquatic
ecosystems as (1) indicators of environmental chan -
ges (Beaugrand et al. 2002, Hays et al. 2005, Beau-
grand & Kirby 2010) and (2) an important link
between primary production and higher trophic lev-

els (Suthers & Rissik 2008, Sarmento et al. 2010).
Therefore, zooplankton have been routinely col-
lected during many environmental monitoring pro-
grams around the world (Hsieh et al. 2005, Tadokoro
et al. 2005, Edwards et al. 2009, Heine & Koslow
2009). Traditionally, zooplankton specimens are
identified and counted using microscopy. However,
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the traditional approach is labor-intensive and time-
consuming, limiting our ability to analyze zooplank-
ton samples and understand processes controlling
aquatic ecosystem dynamics (Suthers & Rissik 2008,
Gorsky et al. 2010). Therefore, an important issue in
aquatic ecology concerns how to improve the effi-
ciency in plankton analysis and make the data more
comparable at different spatial and temporal scales
(Wiebe & Benfield 2003, Perry et al. 2004).

Automated or semi-automated computer-aided
systems can improve the efficiency in sample analy-
ses and may even deliver more accurate and consis-
tent results than human taxonomists in some cases
(Culverhouse et al. 2003, Benfield et al. 2007, Mac -
Leod et al. 2010). Recently, a large amount of effort
has been invested in developing automated plankton
identification systems (Ortner et al. 1979, Balfoort et
al. 1992, Boddy et al. 2000, Hu & Davis 2005, Luo et
al. 2005, Benfield et al. 2007, Sosik & Olson 2007,
Gas parini 2009, Gislason & Silva 2009). ZooScan
integrated with imaging software (ZooProcess) and
classification software (Plankton Identifier) has been
suggested to be a useful system for automated zoo-
plankton image acquisition, biomass calculation, and
taxonomic classification (Grosjean et al. 2004, Gorsky
et al. 2010). ZooScan has a standard protocol for zoo-
plankton image acquisition, so that the measured
variables for each of the extracted objects can be
inter-comparable between different machines. Al -
though ZooScan has been shown to be an efficient
and reliable system for enumeration and measure-
ment of particles, its performance in automated clas-
sification remains unsatisfactory (Gorsky et al. 2010).

Due to similarity among or incomplete information
for digitalized specimens, not all digitalized images
can be recognized correctly by machine-based meth-
ods (Edwards & Morse 1995, Gaston & O’Neill 2004).
Therefore, a critical question is how to pick out the
objects most likely being misclassified in automated
classification for further processing (e.g. manual re-
classification) (Grosjean et al. 2004). Here, we pro-
pose a solution by estimating the predictive confi-
dence for automated classification based on Bayesian
probability. With predictive confidence, we can re -
ject objects of low confidence from the automated
classification and pass them on to human experts for
further checking and re-classification. After objects
of low confidence are manually checked and re-
 classified, the final accuracy based on the semi-
 automatic method may be greatly improved.

Another limitation in current automated zooplank-
ton classifications is the low efficiency in optimizing
the number of categories. Based on the literature

(Fernandes et al. 2009), the best number of catego -
ries in automated zooplankton classification is deter-
mined by repeating different iterations with different
combinations of categories. After that, the end-user
needs to choose the best one among different itera-
tions by considering the balance between taxonomic
resolution and number of categories, which is time-
consuming and generally results in loss of taxonomic
resolution as a trade-off for recognition accuracy
(Fernandes et al. 2009). The approach based on
Bayesian probability can overcome this deficiency,
because the theoretical probability of any aggre-
gated category is simply computed by summing the
posterior probabilities of the categories aggregated
(Wang et al. 2007). In other words, the classifier can
provide the results of automated classification for any
possible taxonomic level (any level of aggregation)
and the corresponding predictive confidence with
only a single calculation at the most detailed level.

In the present study, we propose a framework
based on the Bayesian theorem for automated zoo-
plankton classification with an emphasis on predic-
tive confidence and rapid category aggregation. We
used a 4 yr zooplankton dataset from the East China
Sea to: (1) test the performance of a naïve Bayesian
classifier (NBC) in automated zooplankton classifica-
tion; (2) estimate the predictive confidence from the
empirical relationship between Bayesian proba -
bilities and recognition accuracies in different
 categories; and (3) test the final performance of our
proposed semi-automated method in zooplankton
classification, assuming that human experts can cor-
rectly re-classify all rejected objects of low predictive
confidence.

METHODS

Bayesian probabilistic model

The key issue is to develop a method to estimate
posterior probability and the associated predictive
confidence for each automated classification. Here,
we adopted a Bayesian probabilistic model. In the
Bayesian theorem (Duda et al. 2000, Bolstad 2007),
the probability of the hypothesis is defined as the
likelihood multiplied by the prior probability. The
likelihood is determined by the data, while the prior
probability is a given value based on existing know -
ledge. In the present study, the classifier is based on
NBC (Duda et al. 2000). For each object, the posterior
probability of each potential category is defined as
follows:
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(1)

where P(Cj⏐F) is the posterior occur-
rence probability of zooplankton cate-
gory Cj given the input feature vectors
{F1,…, Fn}. For each object, a vector of
posterior probabilities for predeter-
mined zooplankton categories is ob -
tained, and the predicted category is
determined as the category with the
maximum value of posterior probabil-
ity (Fig. 1). The expression p(F⏐Cj) is
the likelihood probability density func-
tion (PDF) for the category Cj, which is
estimated using kernel density estima-
tion (Chiu 1996, Jones et al. 1996). P(Cj)
is the prior probability of Cj in all po -
tential categories {C1, …, Cn}, which is
simply taken as the proportion of the
categories in a given community: (the
number of Cj)/(total number of ob -
jects). For each object, the machine-
predicted category and the associated
posterior probability is thus determi -
ned. The Bayesian probabilistic model
was implemented based on the Naive-
Bayes functions in the Statistics Tool-
box of MatLab.

At this stage, the predicted category
for an object has been determined by
the value of posterior probability from
NBC. Next, we need to calculate the
predictive confidence of the object for
that category. To do this, we estimated
the predictive confidence of a classifi-
cation from the empirical relationship
be tween posterior probabilities and re -
cognition accuracy based on the train-
ing dataset. As shown in Fig. 1, we col-
lected all objects in the training dataset
that are predicted to be the same cate-
gory (say, Category X) and obtain the
empirical distribution of posterior pro -
babilities for Category X. Among these objects, cer-
tainly some are correctly predicted but others are
not. We then rank (from big to small) those posterior
probabilities for the objects classified as Category X
and plot the cumulative recognition accuracy versus
the ranked posterior probability. By doing so, we can
obtain the predictive confidence for any classification
based on the empirical relationship between poste-

rior probability and cumulative recognition accuracy
(accuracy for the collection of objects being classi-
fied) of each category in the training dataset as fol-
lows:
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Fig. 1. Determining predictive confidence. Step 1: For each image, a vector of
posterior probabilities {P1, …, P32} for the predetermined 32 categories are gen-
erated with the trained classifier (using the training dataset), and the predicted
group is determined as the category that has the maximum value of posterior
probability. For example, if a total of n images in the training dataset were
classified into Category 21 (C21), we can get an n × 2 matrix (posterior proba-
bility, true or false predicted) for C21. Step 2: After ranking the posterior proba-
bilities (P’ ) of these n images, we obtain the cumulative predictive accuracy
(termed predictive confidence) for every unique posterior probability, {D1,…,
Dm}, for C21. Step 3: With {D1,…, Dm} and the corresponding predictive confi-
dence {pa1, …, pam}, we can generate the empirical relationship between pos-
terior probabilities and predictive confidences (generated by a large amount of
real data from the training dataset) for C21. Step 4: For each novel image from
the validation dataset, the naïve Bayesian classifier can classify the image into
a specific category (in this example, C21) with a posterior probability. Step 5:
We project this value of posterior probability onto the empirical curve gener-
ated from Step 3. As such, we can determine the predictive confidence for a 

specific classification using the empirical distribution generated in Step 3
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where F(x, j) is the empirical predictive confidence
for a specific posterior probability x in the predicted
category j. {D1,j, …, Dm,j} represents m distinct values
in the original vector of posterior probability {P1,j, …,
Pn,j} of category j in the training dataset with an
ascending order. And pak,j is the empirical recogni-
tion accuracy of category j when considering all
objects with the posterior probability equal to or
above Dk,j in the training dataset (Fig. 1).

Now, we have constructed the classifier and the
empirical relationship between recognition accuracy
and posterior probabilities for each category. Based
on the posterior probability of NBC, any novel image
from the validation set can be classified into a certain
category with the predictive confidence (in terms of
the potential accuracy that one can anticipate) based
on the empirical equation (Eq. 2) of that category.

Framework for semi-automated classification

Our framework for a Bayesian probabilistic model
for automated zooplankton classification and cate-
gory aggregation is presented in Fig. 2. In our frame-
work, firstly, the classifier was constructed at the
most detailed taxonomic level with the training set.
For each training object, the classifier provided the
posterior probability for each pre-defined category at
the most detailed taxonomic level. The end-user can
then determine the accepted taxonomic level in clas-
sification (or aggregation), and the posterior proba-
bility values of that level can be simply calculated by
aggregating related categories. With the posterior
probability, the predictive confidence can be esti-
mated using the empirical equation in Eq. (2). Thus,
when a novel image is examined, it can be classified
into a specific category with the posterior probability
and predictive confidence.

Importantly, with the estimated predictive confi-
dence, we can single out the objects of confidence
lower than the accepted level (determined by the
end-user) and pass them on to human experts for
manual re-classification. In addition, with the poste-
rior probability, we can carry out category aggrega-
tion (for example, into a lower taxonomical resolution
or based on the user’s research purposes) to achieve
a better accuracy.

Data availability and application

The performance of the proposed framework in
automated zooplankton classification was tested

using the East China Sea zooplankton dataset, a 4 yr
dataset with 154289 objects. Zooplankton samples
were collected in the East China Sea from 2006 to
2009 using a 330 μm mesh net with a mouth of
160 cm diameter (sampling sites and methods de -
tailed in Supplement 1 at www.int-res.com/articles/
suppl/m441p185_supp.pdf). Pretreatment and scan -
ning of the samples followed the procedures in the
ZooScan user manual. We scanned >1500 images per
sample (site). The operation of scanning per sample
took <30 min. After scanning, objects were extracted
and measured using Zooprocess (version 5.07) auto-
matically (see Gorsky et al. 2010 for descriptions of
measured variables). Then, the objects were sorted
into different taxonomic categories manually by
human experts for developing the automated classifi-
cation model and for validation, following previous
studies (e.g. Grosjean et al. 2004, Gorsky et al. 2010,
García-Comas et al. 2011). A total of 154289 objects
were sorted into 25 planktonic categories and 3 non-
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living categories with the sorting procedures follow-
ing Grosjean et al. (2004) and Fernandes et al. (2009).
The 5 most abundant planktonic categories were
Copepoda_like (copepods that could not be further
identified by human experts based on ZooScan
images), Copepod Cyclopoida, Copepod Temoridae,
Gelatinous forms, and Invertebrate egg; they con-
tributed 47.4, 7.9, 5.1, 4.9, and 4.8% of the total abun-
dance of zooplankton, respectively. The non-plank-
tonic particles summed to 57 954 objects (37.6%).

A preliminary analysis found that a large propor-
tion of the non-planktonic category ‘Detritus’ would
contaminate other categories in the automated classi-
fication. To investigate the issue of contamination
from different kinds of ‘Detritus’, the category ‘Detri-
tus’ was divided into 5 sub-groups according to their
size, because size is reported as an important factor
in machine-based classification (Bell & Hopcroft
2008). Finally, we arrived at a total of 25 planktonic
and 7 non-planktonic categories (see Fig. 3).

We first constructed an unbalanced training set by
randomly selecting 50% of the objects in each cate-
gory from the whole dataset, and used the other 50%
of the objects as the validation set. We further con-
structed a balanced training set by randomly select-
ing 300 objects in each category within the unbal-
anced training set while using the same validation
set as the unbalanced training case. We used
300 objects because a previous study reported that
200 to 300 training vignettes per category are suffi-
cient (Gorsky et al. 2010). If the number of objects in
any rare category is below 300, we extra-scanned
other zooplankton samples in the East China Sea and
collected specific objects to supplement the balanced
training set.

The classifier was trained with feature data ex -
tracted by the ZooScan system (see Gorsky et al.
2010 for the measured variables). The empirical rela-
tionship between the posterior probability and cumu-
lative recognition accuracy was estimated using the
training set. Because zooplankton composition var-
ied in space, the site-specific prior probabilities were
used in the present study.

In model validation, the likelihood p(F⏐Cj) of each
input vector was calculated according to the pre-cal-
ibrated PDF. Then with site-specific prior probabili-
ties, the posterior probability P(Cj⏐F) of each prede-
fined category was calculated following Eq. (1). As
described above (section ‘Bayesian probabilistic
model’), a novel object can be classified into a certain
category associated with posterior probability and
predictive confidence. Based on the predictive confi-
dence for each prediction, one can decide whether

the item should be accepted or rejected for human
re-classification or passed to category aggregation.

Performance assessment

The performance of the model was evaluated using
the true positive rate (recall), false positive rate (con-
tamination), and precision based on the confusion
matrix (Kohavi & Provost 1998). The true positive rate
is the proportion of individuals in the dataset being
correctly classified. The false positive rate is the pro-
portion of individuals incorrectly classified as a cer-
tain category, and precision is the proportion of indi-
viduals belonging to a category that is correctly
recognized.

Note that, in evaluating the performance of our
classifier, if an object belonging to the category of
‘Copepoda_like’ (a group of all kinds of copepods
that could not be further identified by human
experts) was predicted to belong to any specific cate-
gory of copepods, we would consider such a classifi-
cation to be correct, because any category of cope-
pods is within the scope of ‘Copepoda_like’. The
reasoning is that since even human experts could not
correctly identify it, we would not expect our
machine to identify it.

Justification for using NBC

We compared the performance of NBC with other
classifiers provided in the ZooScan integrated system
(Gasparini 2009, Gorsky et al. 2010), including 5-NN,
S-SVC linear, S-SVC RBF, Random Forest, C4.5, and
Multilayer Perceptron. All algorithms were trained
with the same training set as NBC. Then the perfor-
mances of these classifiers were also tested with the
same validation dataset as for the NBC. The com -
parison indicates that NBC provides a reasonable
overall and taxon-specific accuracy, although over-
all accuracy is not the best (Supplement 2 at 
www.int-res.com/articles/suppl/m441p185_supp.pdf).
Never theless, we choose NBC because it provides
posterior probability, which facilitates quick category
aggregation and estimation of predictive confidence.
We note that a relatively high-accuracy algorithm
named ‘Discriminant vector forest’ was reported by
Grosjean et al. (2004), which can provide a severity
rating as some sort of measure of predictive confi-
dence. However, the algorithm was not detailed in
the report and cannot be disclosed due to the copy-
right issue (P. Grosjean pers. comm.).
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RESULTS

Performance of NBC

In validation, the NBC achieves a reasonable per-
formance (Fig. 3) (Supplements 2 & 3 at  www. int-
res.com/articles/suppl/m441p185_supp.pdf). The over -
all recall accuracy of NBC for the 25 planktonic
categories was 0.71 in unbalanced and 0.70 in bal-
anced training. In terms of category-specific recall
accuracy (Fig. 3a), both unbalanced and balanced
training of NBC was unstable for rare taxa (Cate-
gories 1 to 8, each containing <0.5% of all objects in
our validation set), with accuracy ranging from 0.18
to 0.87. For abundant taxa, recall accuracy is rela-
tively stable, with the value ranging from 0.57 to

0.87, except for Category 17 (Copepod Eucalanidae),
most of which were recalled as other copepods (see
confusion matrices in Supplement 3).

Judging from the false positive rates, the contami-
nation of NBC is very low in both unbalanced and
balanced training, with the value below 0.02 for most
categories (Fig. 3b). However, the low contamination
still caused a low precision for many taxa (Categories
1 to 18, each containing <2% of all objects in our val-
idation set), and only the 7 most abundant taxa (Cat-
egories 19 to 25) had a relative stable value for preci-
sion, which ranged from 0.51 to 0.96.

For the 7 non-planktonic categories, the overall
recall accuracy and precision was 0.56 and 0.74,
respectively, in unbalanced training, and 0.52 and
0.70, respectively, in balanced training. As shown in

Fig. 3, both recall accuracy and preci-
sion decreased with the increase of their
size. Because there is no ecological sig-
nificance in distinguishing different
non-planktonic objects, we aggregated
them into 1 non-planktonic group to
achieve better accuracy by summing the
Bayesian probability of these catego -
ries. After aggregation, the final overall
recall accuracy and precision of the
aggregated non-planktonic category
was improved to 0.67 and 0.88, respec-
tively, in unbalanced training and 0.66
and 0.88, respectively, in balanced
training.

In summary, the overall accuracy of
25 planktonic categories and 1 aggre-
gated non-planktonic category with
unbalanced and balanced training was
0.69 and 0.68, respectively. Such per -
formance is similar to the algorithms
provided in Plankton Identifier of the
ZooScan integrated system (Sup ple -
ment 2). Note that un balanced and
 balanced training achie ved similar per-
formance for the 25 planktonic and
7 non- planktonic  categories (Sup ple -
ments 2, 3 & 4 at www.int-res.com/
articles/suppl/m441p185_supp.pdf).

Semi-automatic classification based on
predictive confidence

The empirical relationship between
posterior probability and cumulative
recognition accuracy of each category

190

Fig. 3. (a) Number of objects and recall (true positive accuracy) and (b) conta-
mination (false positive rate) and precision in validation at the most detailed
taxonomic level with the balanced and unbalanced training set using the
naïve Bayesian classifier. Categories: 1: Ostracod Cypridinidae, 2: Cladocera
Podon, 3: Copepod Sapphirinidae, 4: Larva_zoea, 5: Pteropod, 6: Larva_nau-
plii, 7: Euphausiids, 8: Amphipoda, 9: Larva_veliger, 10: Other Ostracoda, 11:
Copepod Oithonidae, 12: Luciferidae, 13: Other chaetognath, 14: Chaetog-
nath Flaccisagitta-like, 15: Appendicularia, 16: Larva_furcilia, 17: Copepod
Eucalanidae, 18: Larva_calyptopis, 19: Cladocera Evadne, 20: Copepod Eu-
chaetidae, 21: Invertebrate egg, 22: Gelatinous forms, 23: Copepod Temori-
dae, 24: Copepod Cyclopoida, 25: Copepoda_like, 26: Shadow, 27: Fiber, 28: 

Detritus_1, 29: Detritus_2, 30: Detritus_3, 31: Detritus_4, 32: Detritus_5

http://www.int-res.com/articles/suppl/m441p185_supp.pdf
http://www.int-res.com/articles/suppl/m441p185_supp.pdf
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showed that recognition accuracy in -
creases with posterior probability
both in unbalanced and balanced
training (Supplement 4), which
 indicates that the objects with a
higher posterior probability are more
likely to be correctly classified. How-
ever, the acceptable value of the pos-
terior probability for a pre-defined
accuracy varied dramatically among
categories (Supplement 4). For exam-
ple, in unbalanced training, a poste-
rior probability of 0.83 can achieve a
recognition accuracy of 0.60 for
 Category 17 (Copepod Eucalanidae),
while a posterior probability of 1.00
cannot attain a recognition accuracy
of 0.60 for some categories (such as
Categories 1, 3, 6, 9, and 10). To over-
come this variation, we determined
the accepted objects based on predic-
tive confidence rather than using their posterior
probability. We pre-defined a predictive confidence,
investigated the empirical distribution of posterior
probabilities versus cumulative recognition accuracy
for each category (Supplement 4), and decided
the limit of posterior probability required to achieve
the pre-determined predictive confidence for each
category.

Our approach successfully estimated the predictive
confidence in automated zooplankton classification;
that is, the validation showed that the objects with
the lowest confidence have the highest probability of
being misclassified both in balanced and unbalanced
training (Table 1). For example, with a confidence
value of 0.10, the accepted objects only achieved an
overall accuracy (25 planktonic and 1 aggregated
non-planktonic categories) of 0.70 and 0.69 in unbal-
anced and balanced training, respectively. When the
accepted confidence levels increased from 0.10 to
0.98, the overall accuracy in accepted objects was
improved from 0.70 to 0.97 in unbalanced training
and from 0.69 to 0.98 in balanced training. Moreover,
if all rejected objects (the objects of predictive confi-
dence below user-accepted levels) were correctly re-
classified by human experts, the corresponding final
precision could be improved to 1.00. Suppose the
end-user-accepted confidence was 0.80, then among
the objects 31% would be rejected in the unbalanced
training case (33% of the objects rejected in bal-
anced training). And if all rejected objects were cor-
rectly re-classified, the final overall accuracy could
reach 0.92 in unbalanced and balanced training, with

a significant improvement (2-tailed paired t-test, p <
0.001) for both recall accuracy and precision for all
categories, especially for rare taxa (Fig. 4) (Supple-
ment 3). Generally, the performances of unbalanced
and balanced training sets are similar, suggesting
that 300 images for each category in training should
suffice for our purposes in the semi-automatic
approach. Note that manually re-checking 30% of
images (~500 images) took less than 1 h.

DISCUSSION

Performance of the semi-automated 
Bayesian model

In the present study we have proposed a semi-
automated Bayesian model for plankton classifica-
tion with the guidance of predictive confidence. Cur-
rently, although many efforts have been invested in
optimizing different machine learning algorithms in
automated zooplankton classification, the recogni-
tion accuracy of machine-based methods is still not
good enough to replace manual processing of zoo-
plankton samples (Bell & Hopcroft 2008, Fernandes
et al. 2009, Irigoien et al. 2009, Gorsky et al. 2010). To
improve the efficiency of manual processing, Gros-
jean et al. (2004) pioneered a semi-automated me -
thod by calculating the severity rating to determine
and re-classify ‘suspected’ objects. Even though it
was not detailed in that report, we suspect that the
severity parameter was estimated by synthesizing

191

Confidence Unbalanced training Balanced training
level            Ratio   Acc. 1  Acc. 2  Acc. 3         Ratio    Acc. 1   Acc. 2   Acc. 3

0.10              0.99     0.70      0.03     0.71           0.98      0.69      0.03      0.70
0.20              0.96     0.72      0.04     0.73           0.95      0.72      0.05      0.73
0.30              0.88     0.77      0.10     0.80           0.87      0.77      0.10      0.80
0.40              0.85     0.80      0.11     0.83           0.84      0.79      0.10      0.83
0.50              0.83     0.82      0.12     0.85           0.82      0.81      0.11      0.84
0.60              0.79     0.84      0.15     0.87           0.77      0.84      0.16      0.88
0.70              0.73     0.87      0.22     0.90           0.69      0.87      0.25      0.91
0.80              0.69     0.89      0.27     0.92           0.67      0.89      0.27      0.92
0.90              0.62     0.92      0.33     0.95           0.58      0.92      0.36      0.95
0.95              0.48     0.95      0.46     0.98           0.44      0.95      0.47      0.98
0.96              0.46     0.95      0.47     0.98           0.41      0.96      0.49      0.98
0.97              0.40     0.96      0.51     0.99           0.18      0.97      0.62      0.99
0.98              0.15     0.97      0.64     1.00           0.11      0.98      0.65      1.00

Table 1. Ratio of accepted objects to all objects in the validation dataset
(Ratio), overall accuracy of accepted objects (Acc. 1), overall accuracy of
rejected objects (Acc. 2), and the final overall accuracy, assuming that all
rejected objects were correctly re-classified (Acc. 3) in unbalanced and
 balanced training at different accepted confidence levels (statistics based on 

25 planktonic and 1 non-planktonic categories)
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the results of linear discriminate analysis, learning
vector quantization, and random forest classifiers.
According to their results, final accuracy could be
improved from 0.75 to a maximum of 0.94 by re-
 classifying all suspected objects (Grosjean et al.
2004). So far, this approach is the only reported
method for estimating predictive confidence in
machine-based zooplankton classification. Unfortu-
nately, no technical details were provided in the pub-
lished paper (Grosjean et al. 2004),
and the algorithm is not available to
the public due to copyright issues
(P. Grosjean pers. comm.).

Here, we take advantage of the pos-
terior probability provided by the
NBC to estimate predictive confi-
dence. The application on the East
China Sea zooplankton dataset sug-
gested that our method for estimating
predictive confidence may be an im-
provement over the severity rating in
several ways, by comparing the pub-
lished data (Grosjean et al. 2004).
Firstly, our approach is more efficient.
Predictive confidence in our model is

directly ‘born’ with the classifier, while Grosjean’s
method needs to synthesize the results from several
classifiers to estimate confidence. Secondly, our ap-
proach is more accurate in esti mating misclassified
objects. In Grosjean’s case, final accuracy was im-
proved by 15 percentage points (from 0.75 to 0.90) af-
ter 31% of the objects were re-classified, while with
our approach using unbalanced training, the final ac-
curacy was improved by 23 percentage points (from
0.69 to 0.92) after 31% of the suspected objects were
re-classified. And in balanced training, the final accu-
racy was improved by 24 percentage points (from
0.68 to 0.92) after 33% of the suspected objects were
re-classified. Moreover, in our model, the maximum
accuracy of semi-automated classification can reach
1.00, whereas in Grosjean’s case, the best accuracy
can only be improved to 0.94, because 6% of the ob-
jects that were simultaneously misclassified by the 3
classifiers used (Grosjean et al. 2004) cannot be sin-
gled out. Thirdly, the predictive confidence devised
here is more than just a parameter indicating how
likely an object can be accurately classified by the
machine in a relative sense; rather, it links directly to
recognition accuracy (Fig. 1).

To further investigate the severity rating approach,
we calculated the consistency index using the 6
classifiers in the ZooScan integrated system to esti-
mate confidence (known as a bagging approach)
using the East China Sea zooplankton data. We
found that this kind of severity rating (Table 2) is
less efficient and accurate compared with the semi-
automatic NBC approach. In the unbalanced train-
ing case, the final accuracy only improved by 17
percentage points (from 0.79 to 0.96) after 38% of
the suspected objects were re-classified. And in bal-
anced training cases, the final accuracy impro ved
by 25 percentage points (from 0.73 to 0.98) after
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Severity Unbalanced training Balanced training
rating          Ratio   Acc. 1  Acc. 2  Acc. 3         Ratio    Acc. 1   Acc. 2   Acc. 3

1                   1.00     0.79        –        0.79           1.00      0.73         –         0.73
2                   1.00     0.79      0.00     0.79           1.00      0.73      0.00      0.73
3                   0.98     0.80      0.24     0.80           0.93      0.76      0.28      0.78
4                   0.89     0.84      0.39     0.86           0.76      0.83      0.39      0.87
5                   0.77     0.88      0.48     0.91           0.58      0.90      0.50      0.94
6                   0.62     0.93      0.57     0.96           0.36      0.94      0.61      0.98

Table 2. Severity rating of the 6 classifiers in the ZooScan integrated system
based on balanced and unbalanced training. Ratio of accepted objects to all
objects in the validation dataset (Ratio), overall accuracy of accepted objects
(Acc. 1), overall accuracy of rejected objects (Acc. 2), and the final overall
accuracy, assuming that all rejected objects were correctly re-classified
(Acc. 3). The severity rating indicates the number of classifiers having the 

same prediction. –: no objects rejected by severity rating

Fig. 4. Final category-specific (a) recall accuracy and (b)
 precision in balanced (7) and unbalanced (n· ) training cases,
assuming that the objects with a low confidence (<0.80)
are correctly re-classified. See Fig. 3 legend for the names
of Categories 1 to 25. Category 26 is the aggregated non-

plankton



Ye et al.: Automated plankton classification

64% of the suspected ob jects were re-classified.
Moreover, this approach is time-consuming because
it requires the execution of several algorithms and
the synthesizing of results.

Efficiency of Bayesian approach in 
category aggregation

Our proposed method is flexible and efficient in
aggregating categories. The traditional approach of
category aggregation requires the re-running of the
training process with new combinations of categories
if end-users change the taxonomic resolution (Fer-
nandes et al. 2009, Gorsky et al. 2010). By contrast,
the Bayesian classifier can provide classification
results for any potential level of aggregation by
aggregating the posterior probabilities of related cat-
egories, with only 1 training at the most detailed tax-
onomic level (Wang et al. 2007). Single training in
our Bayesian approach is certainly more efficient
than multiple training as provided in the previous
method. This feature is especially useful for plankton
research because plankton ecologists often need dif-
ferent taxonomic resolution for different research
purposes. For instance, in biodiversity research, ecol-
ogists generally require detailed species information
to calculate different kinds of biodiversity indices
(Edwards & Morse 1995, Irigoien et al. 2004),
whereas in functional-group studies, ecologists need
to combine different species with the same ecological
traits into a single functional unit to study their rela-
tionships with environmental changes (Quéré et al.
2005, Romanuk et al. 2010).

Ecological applications

Our approach may have broad application in envi-
ronmental monitoring and ecological research. As
has been shown in Gorsky et al. (2010), the ZooScan
integrated system can provide rapid digital archiv-
ing, enumeration, size measurement, and data shar-
ing of plankton specimens in a non-destructive way.
Indeed, if we accept all machine predictions (without
further human checking), the calculated total abun-
dance and biomass based on outputs of the different
classifiers are generally acceptable in both unbal-
anced and balanced training (Supplement 5 at
www.int-res.com/articles/suppl/m441p185_supp.pdf).
However, when we considered category-specific
abundance estimation, the results for rare taxa were
generally not accurate (Supplement 3). In such cases,

the semi-automatic approach can significantly im -
prove the estimation (Supplement 3).

By contrast, the calculated taxa richness (number of
planktonic groups defined in this study) and Shannon
diversity (calculated from group composition) is not
consistent with the observed values (Supplement 6 at
www.int-res.com/articles/suppl/m441p185_supp. pdf).
As a consequence, the low accuracy for rare taxa ham-
pers some ecological applications of the system, such
as biodiversity-related research. Our semi-automatic
approach can overcome this difficulty by improving
accuracy for both rare and abundant taxa with only
some fraction of suspected objects re-classified by hu-
man experts. For example, after re-che cking 31 and
33% of suspected objects (predictive confidence <0.80)
in unbalanced and balanced training cases respec-
tively, the accuracy of final taxa richness and Shannon
diversity calculated from the output of our method was
improved significantly (2-tailed paired t-test, p < 0.001).
In the unbalanced training case (Fig. 5), before re-clas-
sifying the suspected objects, the reliability (R2 of ob-
served versus estimated from machine) of richness and
Shannon diversity estimate is 0.52 and 0.73, respec-
tively. Notably, after 31% of the suspected objects were
re- classified, the reliability (R2) of the richness and
Shannon diversity estimate was improved dramatically
to 0.91 and 0.97, respectively. In the balanced training
case (Fig. 6), after 33% of the suspected objects were
re-classified, the reliability of the richness and Shannon
diversity estimate was improved from 0.55 to 0.91 and
from 0.72 to 0.96, respectively.

One might argue that the taxonomic resolution
obtained from the ZooScan integrated system is too
low for diversity research. However, according to our
ZooScan data in the East China Sea, we found that
taxa richness and Shannon diversity increases from
high latitudes to low latitudes (Supplement 7 at
www.int-res.com/articles/suppl/m441p185_supp. pdf),
which is consistent with the general global pattern
of latitudinal distribution of zooplankton diversity
(Hillebrand 2004, Irigoien et al. 2004, Beaugrand et
al. 2010). In fact, the usefulness of lower taxonomic-
resolution data in diversity and environmental re -
search has been suggested in research across a
large spatiotemporal scale (e.g. Törnblom et al. 2011,
Llope et al. 2011). Here, we suggest that the cap -
ability and efficiency of the ZooScan system in col-
lecting consistent taxonomic data is still useful in
diversity research, especially in research encompass-
ing a large spatiotemporal scale when synthesizing
zooplankton data from different organizations is
needed. Moreover, in the future, when high taxo-
nomic-resolution data are available from improved
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Fig. 5. Estimates of (a) taxa richness
and (b) Shannon diversity were im -
proved significantly af ter the objects
of low con fidence (<0.80) were re-
classified in the unbalanced training
case. NBC: naïve Bayesian classifier

Fig. 6. Estimates of (a) taxa richness
and (b) Shannon diversity were im -
proved significantly after the objects
of low confidence (<0.80) were re-
classified in the balanced training
case. NBC: naïve Bayesian classifier
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automated systems (e.g. with improved image reso-
lution or  feature extraction), our method can be
 readily applied to obtain more accurate and highly
resolved classi fication.

CONCLUSIONS

We have proposed a novel approach for auto-
mated zooplankton classification with an emphasis
on predictive confidence and rapid category aggre-
gation based on posterior probability within a
Bayesian framework. With the estimated predictive
confidence, we can single out objects of low confi-
dence and pass them on for human identification or
for further category aggregation to improve accu-
racy. The application of the proposed framework on
the East China Sea zooplankton samples showed
that the Bayesian semi-automated zooplankton clas-
sification model has good performance with either
unbalanced or balanced training. The performances
of unbalanced (50% of the data) and balanced (300
images for each category only) training sets are sim-
ilar, suggesting that 300 images for each category in
training should suffice for our purposes in the semi-
automatic approach. Our method of defining predic-
tive confidence is more efficient and accurate for
estimating misclassified objects than the previously
reported method. Our semi-automated approach
achieves significant improvement in recognition
accuracy, which improves the ecological applica-
tions of automated plankton classification, such as
an improved estimation of taxa richness and Shan-
non diversity. In addition, our framework is adap-
tive. Our approach can be applied to the plankton
data collected from FlowCAM (Alvarez et al. 2011),
ZooImage (Bachiller & Fernandes 2011), as well as
other imaging systems, which may provide higher-
resolution taxonomic data (as these techniques can
capture more detailed taxonomic characteristics).
Furthermore, other classification algorithms could
be modified to fit in our Baye sian framework to pro-
vide predictive confidence and flexibility in cate-
gory aggregation. Currently, automatic classification
systems have been developed for many fields, such
as phytoplankton, insects, plants, etc. (MacLeod et
al. 2010). Our approach may help improve classifi-
cation accuracy in these systems.
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