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INTRODUCTION

One of the key challenges facing ecologists is the
prediction of climate change impacts on biological
systems, so that appropriate adaptation strategies for
conserving biodiversity and its important ecosystem
functions may be implemented. Early studies used
climate envelope modeling to predict future distribu-
tions (Huntley et al. 2004, Thuiller et al. 2005). This
approach ignores the important role of biological
interactions in influencing distributions and assumes
that species’ ranges will be able to track shifting
 climate conditions (Warren et al. 2001). Recently,
several excellent studies have redressed the paucity
of information on likely effects of climate change on
biological interactions (e.g. Matesanz et al. 2009,
Maestre et al. 2010, Schweiger et al. 2010). Yet de -
spite the importance of dispersal processes in influ-
encing the distributions of terrestrial and aquatic

taxa (e.g. Nathan & Muller-Landau 2000, Sousa et
al. 2007), considerations of how climate change will
modify dispersal remain rare (but see Menge et al.
2009).

In the marine environment, rafting—whereby or -
ganisms ‘hitch a ride’ on buoyant material in surface
waters—is an important dispersal process that is
likely to be impacted by climate change, but that has
received little attention. Rafting has been confirmed
or inferred based on distributional or genetic evi-
dence for >1200 species, comprising diverse taxa
(e.g. invertebrates, fish, birds, mammals; Thiel &
Gutow 2005b). Many of the species that raft do not
have a pelagic larval stage and are incapable of
autonomous dispersal across the ocean (Thiel &
Gutow 2005b). Other rafting organisms do have
planktonic larval stages, but are able to disperse
larger distances where rafts extend their time in the
plankton (e.g. Gillespie et al. in press).
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The floating items that serve as rafts may be of nat-
ural or anthropogenic origin, and of abiotic or biotic
material (Thiel & Gutow 2005a). Natural substrata in -
clude volcanic pumice, tar balls (from natural seeps),
ice, and plant and animal material. Anthropogenic
substrata include manufactured wood, tar balls (from
oil industry), Styrofoam, and plastics of various sizes,
shapes, and surface characteristics. Among natural
substrata, macroalgae and seagrasses (hereafter col-
lectively termed macrophytes) and natural wood (i.e.
trunks and branches) are the most common and eco-
logically significant (Hinojosa et al. 2011, Thiel et
al. 2011).

Macrophytic rafts begin their journey after detach-
ment from the substratum (Fig. 1). This is followed by
a period of transport in surface waters by wind and
water movement, until eventually they sink, disinte-
grate, or become cast upon land (Fig. 1). The quality
of macrophytic rafts as dispersal vectors is influenced
by physical and biological factors that influence their
resource provision and longevity (Thiel 2003, Rot -
häusler et al. 2011a,b). Traits of the macrophytic
material influence breeding opportunities for rafting
organisms (e.g. Ingólfsson 2000), the availability of
food resources for rafting organisms (e.g. Ohta &
Tachihara 2004), and the efficacy of the raft in pro-
tecting organisms from predation and abiotically
harsh conditions (e.g. Dempster & Kingsford 2004).
Levels of herbivore pressure (Rothäusler & Thiel
2006, Vandendriessche et al. 2007b, Rothäusler et al.
2011d) and flow conditions (e.g. water temperature

and ultraviolet radiation; Rothäusler et al. 2011a)
influence raft longevity. Thus, relative to other raft
materials (e.g. wood, volcanic pumice, plastic macro -
litter), macrophytic rafts are highly susceptible to
changing climate.

The goal of this ‘As We See It’ article is to present a
series of predictions on how symptoms of climate
change (e.g. warming water temperatures, increas-
ingly intense storms, altered circulation patterns, and
a decreasing ocean pH; IPCC 2007) will affect the
supply, quality, transport, and persistence patterns of
macrophytic rafts. We discuss the possible ecological,
biogeographical, and evolutionary consequences of
such changes for rafting coastal organisms. We con-
clude with a list of research priorities and provide
suggestions for consideration of dispersal processes
into species distribution models.

SUPPLY OF RAFT MATERIALS

The supply of macrophytes for rafting is dependent
on the availability of source populations from which
the floating substratum can be derived, and the
mobilization of material (Fig. 1). Most species that
serve as rafts spend their early life history attached to
benthic substratum and require detachment from the
substratum in order to float (Lüning 1990, Thiel &
Gutow 2005a). In the following paragraphs, we make
a case that climate change (IPCC 2007) will increase
the rate at which macrophytes detach from benthic
substrata by (1) modifying the processes of natural
senescence, (2) altering rates of dislodgement by
 herbivores, and (3) through increases in storm inten-
sity (Table 1). We also outline how changes in the
 productivity and distribution of macrophytes might
 cascade to their role as rafts.

Many species of seagrass and macroalgae display
periods of die-back which coincide with changes in
water temperature (e.g. Wetzel & Penhale 1983, Ang
1985, Kerr & Strother 1990). During such die-backs,
large amounts of macrophytic material are released
into the water column (e.g. Kingsford 1992). Recent
research has demonstrated that this observation
might be explained by rising temperatures reducing
tissue life span (Hosokawa et al. 2009). Hence, as
coastal oceans continue to warm, enhanced rates of
shedding may be seen in some aquatic macrophytes.

Climate change is also anticipated to lead to an
increase in the dislodgement of macrophytic material
from benthic substrata by herbivores (Table 1). Graz-
ers can weaken the holdfast of algae, causing them to
detach from the primary substratum (Tegner et al.
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1995). Furthermore, urchin grazing can cause de -
tachment of large amounts of seagrass (Klumpp et al.
1993). Metabolic theory predicts that with warming,
the metabolic rates of herbivores will increase (Brown
et al. 2004). This will enhance rates of herbivore
 foraging and growth, increasing top-down effects. To
some degree, this could be counteracted by macro-
phyte defenses against herbivores (e.g. secondary
metabolites; Macaya et al. 2005), but this will incur
costs to macrophytes.

Less well understood is whether the altered hydro-
dynamic regimes predicted under climate change
will enhance dislodgement of macrophytic material
from the benthos. Climate change is predicted to
enhance the intensity of storms in many areas, but
decrease their frequency (IPCC 2007). Storms in -
crease drag forces on plants, greatly enhancing break-

age of stipes and detachment of holdfasts (Duggins
et al. 2003), particularly where these have already
been weakened by other processes such as herbivory
(Tegner et al. 1995). Where climate change leads to
irregular, extreme events, it might be expected that
macrophytes will not be adapted to withstand wave
forces, and high rates of dislodgement may occur
(Table 1). Morphological adaptations to wave expo-
sure, such as enhanced stipe flexibility, increased
stipe diameter, and decreased spinousity that reduce
drag and increase strength (Koehl 1986, Duggins et
al. 2003, Wernberg & Vanderklift 2010), generally
require press disturbance to be induced.

Global climate change not only has the capacity to
modify the supply of raft material by influencing
rates of detachment, but also by altering the distribu-
tion and productivity of source populations of macro-
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Overall predicted response        Primary climate change driver                 Potential consequences for 
of rafts to climate change            and mechanism                                          hitchhikers

Table 1. Summary of predicted climate change impacts on plant rafts and their likely consequences for hitchhiking organisms. 
Up/down arrows represent increase/decrease

↑ SUPPLY of rafts due to
increases in the rate of
detachment of plants from
benthic substrates, and
increases in the productivity
of fast-growing species under
warmer temperatures

↑ Intensity of storms due to accelera-
tion of hydrodynamic forces causing
dislodgement of plants
↑ Herbivory of plant stems due to
temperature-induced increases in
grazer metabolism
↑ Senescence and leaf shedding due
to temperature-induced die-back

↑ Dispersal opportunities due to increases in the
abundance of rafts

↓ QUALITY of rafts due to
replacement of seagrasses
and kelps with ephemeral
algae in coastal areas

↑ Water temperatures favoring faster-
growing, more palatable, short-lived
raft species with smaller average size,
less habitat complexity, and less
resistance to physical breakup
↑ Sea levels leading to loss of shallow-
water plants that are unable to migrate
up the shoreline, or where available
habitat is limited

↓ Dispersal opportunities due to increases in the
rate that rafts are consumed or degraded
↓ Protection from predators due to lower habitat
complexity and smaller raft sizes
↓ Size and diversity of rafting organisms due to
decreases in average raft size and habitat
complexity

↓↑ TRANSPORT patterns of
rafts

↓↑ Circulation patterns due to a
reduction in global temperature dif fer -
ential and concomitant shifts in pre -
vailing wind patterns, leading to inten -
si fication in some regions (e.g. coasts
and seas adjacent to poleward western
boundary currents, such as the eastern
coasts of Australia and the US) and re -
ductions in others (e.g. North Atlantic)

↓↑ Dispersal duration depending on how
circulation patterns affect raft trajectories 
(e.g. ↓ connectivity with slower rates of drift)

↓ PERSISTENCE of rafts due
to increases in raft degrada-
tion, loss of buoyancy, strand-
ing on shorelines, and replace-
ment of slow-decomposing
species (e.g. kelps) with fast-
decomposing, palatable,
opportunistic algae

↑ Wave height causing increased
fragmentation of rafts
↑ Intensity of storms leading to
degradation of rafts through scouring,
burial, and reduced light penetration
↑ Water temperatures accelerating
microbial breakdown and herbivore
consumption of rafts

↑ Potential for organisms to be deposited in
unsuitable habitat if rafts disintegrate or lose
buoyancy before reaching a suitable destination
↓↑ Dispersal duration (with concomitant
implication for species ranges) depending on
whether rafts are pushed onshore or offshore
↓ Dispersal duration due to production of less
buoyant and faster-degrading rafts
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phytes. Most macrophytes display thermally defined
growth optima and have distributions that are deter-
mined by their tolerance to high summer maxima
and low winter minima (Short & Neckles 1999, Adey
& Steneck 2001). In particular, kelps, which are among
the most important sources of floating mat erial and
which dominate cold-water coastal zones, become
physiologically stressed at high sea temperatures
(Tegner et al. 1996, Gerard 1997). Under  climate
warming, cold-water species are predicted to shift
pole ward and eventually contract in range, whereas
warm-water species are predicted to increase in
abundance and expand their distributions (Helmuth
et al. 2006, Sorte et al. 2010). In coastal environ-
ments, where seagrass may contribute to  shorter-
distance dispersal of rafting organisms, warming
coupled with anthropogenic nutrient loading is pre-
dicted to reduce the availability of macrophytic
material for rafting by favoring growth of epiphytic
algae over seagrasses and shrinking seagrass distrib-
utions (e.g. Micheli et al. 2008, Russell et al. 2009).
Away from the influences of urban settlements, kelps
may experience enhanced productivity as a conse-
quence of an elevated CO2 environment (Hepburn et
al. 2011). Where hitch hikers do not display similar
distributional changes as their macrophytic rafts, an
un coupling between supplyandhitchhikingmayresult.

RAFT QUALITY

Aquatic macrophytes vary in their quality as rafts,
in terms of both their food value and ability to trans-
port organisms. High-quality rafts can support dense
and diverse communities of invertebrates over sus-
tained periods of time, offering them a source of
nutrition and protection from predators. In contrast,
lower-quality rafts support few individuals of few
taxa, for only short periods of time. Shifts in the com-
munity composition of algal assemblages as a conse-
quence of interacting effects of climate change and
other stressors will influence the size, buoyancy, and
palatability of rafts. In particular, in coastal regions,
where the combined effects of warming and nutrient
enrichment lead to a shift from kelps to ephemeral
species (e.g. Connell & Russell 2010), large impacts
on raft quality may result.

In comparison to the rafts produced by kelp and
 fucoid algae, rafts produced by fast-growing red and
green algae are typically small in size. Diminishing
the raft size reduces the number and the maximum
body size of fauna that can be supported before the
raft starts to sink (Thiel & Gutow 2005b). Furthermore,

decreasing raft sizes might be expected to re duce the
number of microhabitats available to hitchhikers.
Consequently, larger rafts typically support greater
abundances and diversities of fauna (Thiel & Gutow
2005b). The prediction, therefore, is that where the
 interacting effects of coastal development and climate
change lead to shifts from large macro algae to
ephemeral and turfing species, the rafts thereby pro-
duced will support fewer species, of fewer taxa.

Additionally, where kelps are replaced with turfing
species (Connell & Russell 2010), raft formation is
likely to be restricted to narrow windows of time that
do not necessarily correspond to the timing of
recruitment events of rafting fauna. Due to their gas-
filled pneumatocysts, many species of brown algae
maintain positive buoyancy throughout the year. By
contrast, most red and green algae are only buoyant
when gas bubbles get trapped between or within the
algal thallus (Dromgoole 1982, Back et al. 2000). This
may only occur in the daytime, when the alga is pho-
tosynthesizing (Dromgoole 1982), in spring and sum-
mer months when photosynthesis is greatest (Back
et al. 2000, Gagnon et al. 2011), or when nutrient
availability is high (Richardson & Cullen 1995). Where
a mismatch occurs between the timing of plant
 buoyancy and recruitment events of hitchhikers, the
capacity for broad-scale dispersal of organisms may
be severely reduced.

Even where buoyant, rafts of ephemeral macroal-
gae may be short-lived as a result of rapid consump-
tion by grazers and rapid rates of microbial break-
down. Brown algae and seagrasses are often heavily
defended with secondary metabolites that deter
grazers (e.g. Hay & Steinberg 1992) which, in some
instances, continue to be produced following detach-
ment of the macrophyte from its primary substratum
(Rothäusler & Thiel 2006). Ephemeral algae, by con-
trast, frequently trade investment in such defenses in
favor of high rates of growth and large reproductive
output, rendering them more susceptible to con-
sumers (Valentine et al. 2004). Although palatable
rafts may provide a food resource for consumers, the
trade-off is decreased raft persistence (Rothäusler et
al. 2009; Table 1). Where herbivores rapidly consume
algal rafts, they, and any other organisms associated
with rafts (e.g. suspension feeders), may then be left
in open water without suitable habitat.

In areas where climatic change does not lead to
shifts in the species of macrophytes contributing to
rafts, changes in the quality of constituent species
may still occur. Many macrophytes display a high
degree of phenotypic plasticity with respect to factors
such as light, temperature, water motion, and even
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CO2 and O2 concentrations (Johnson & Koehl 1994,
Kawamata 2001). Where global climate change leads
to enhanced storminess and increasingly large seas,
macrophytes may respond through changes in size,
morphology, and tissue mechanics, each of which
will influence raft quality for hitchhikers.

RAFT TRANSPORT

Floating materials are transported by wind, waves,
and ocean currents (Thiel & Gutow 2005a). Across
large spatio-temporal scales, the velocities (Pickard
& Emery 1990) and trajectories (Bushing 1994,
 Hobday 2000) of rafting material frequently match
those of major ocean currents. At smaller scales, wind
speeds and directions are important in determining
dispersal patterns (see Thiel & Gutow 2005a). Lati -
tudinal shifts in the strength and extent of major
nearshore boundary currents, such as the Gulf Stream
or East Australian Current, are expected under most
climate change scenarios (Ridgway 2007). Already,
anthropogenic forcing has contributed to changes
in wind patterns and poleward movement of  extra-
tropical storm tracks in both hemispheres (IPCC
2007). How changes in the trajectories and rates of
raft transport affect organisms exhibiting rafting
behavior as a key part of their life history will depend
upon the tolerance of these rafters to the changed
dispersal conditions.

Raft trajectories influence the biogeography of
rafts and rafting organisms by affecting connectivity
among populations (e.g. Thiel & Haye 2006, Fraser et
al. 2009, 2010, 2011, Nikula et al. 2010). Therefore,
changes to hydrodynamic processes under climate
change will affect connectivity by influencing dis -
persal opportunities. The overall outcome could be
considered positive or negative depending on the
identity of the raft or rafting species. For example,
changes in patterns of raft transport that lead to
increased connectivity might be considered a posi-
tive outcome for threatened species, but a negative
outcome if it increases the spread of marine pests.
Indeed, invasive and introduced species are known
to associate with rafts (Minchinton 2006), and there is
some evidence to suggest that changes in climate
have facilitated invasions by altering raft transport
(Martinez et al. 2007). The reversal and strengthen-
ing of currents during an El Niño−Southern Oscilla-
tion event produced an alternative transport path-
way that facilitated the invasion of the Tuamotu
archipelago (French Polynesia) by the brown alga
Turbinaria ornata (Martinez et al. 2007).

RAFT PERSISTENCE

The life of a raft typically ends as a result of 1 of
3 processes: raft destruction, loss of buoyancy, or
stranding on a shoreline (Thiel & Gutow 2005a; Fig. 1).
Climate change is predicted to decrease raft longe -
vity by acting on each of these processes (Table 1).

First, climate change will influence rates of raft
destruction by altering wave and wind climate. The
persistence of floating material is inversely related to
water and wind motion; increases in either of these
forces tend to lead to fragmentation of raft aggrega-
tions (Marmorino et al. 2011). Climate models predict
significant increases in wave height and wind speed
in some regions (e.g. North Atlantic, Wang et al. 2004;
North Sea, Grabemann & Weisse 2008), although this
pattern will not be universal (IPCC 2007). Under such
conditions, a decreased life expectancy of rafts may
be anticipated.

Second, increasing temperatures are likely to accel-
erate raft decay by influencing the interaction strength
between herbivores and primary producers (Rot -
häusler et al. 2009, 2011b), and by increasing the rate
of decay of rafting materials (Rothäusler et al. 2011a).
Metabolic theory predicts that as the temperature of
an organism approaches its thermal optimum, meta-
bolic rate will increase (Brown et al. 2004). For algae−
invertebrate systems, herbivore vital rates scale more
rapidly than algal growth rates with warming, re -
sulting in a net effect of enhancement of top-down
 control (O’Connor et al. 2009). Field and laboratory
observations confirm that warming of the magnitude
predicted by climate models (e.g. IPCC 2007) will in
many instances produce a net loss of macrophytic
material in rafts (Hobday 2000, Gutow 2003, Vanden-
driessche et al. 2007a), despite the potential for phys-
iological acclimation and compensatory growth by
plants in response to smaller increases in tempera-
ture (Rothäusler et al. 2011c) and herbivore pressure
(Cerda et al. 2009). Effects of grazers will be particu-
larly severe where they destroy structures, such as
pneumatocysts, that are critical in maintaining buo -
yancy (Thiel & Gutow 2005a). Similarly, damage to
plant reproductive structures (e.g. sporophylls in
Macrocystis kelps) will limit the overall dispersal
potential and potential for establishment of new
 populations (Rothäusler et al. 2011a,d).

Third, changes in circulation patterns and prevail-
ing wind directions are also likely to result in large
changes in raft persistence under future climate sce-
narios. Changes in circulation patterns are difficult to
predict and remain uncertain (IPCC 2007). Neverthe-
less, in some parts of the world, a shift in winds from
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on- to offshore is likely to decrease raft longevity and
the likelihood that rafts will intersect shorelines,
while in others, a shift in winds from off- to onshore
will potentially increase raft longevity. In the case
of coastal organisms advected alongshore via plant
rafts, a mechanism must exist to bring the raft and its
passengers inshore, away from the prevailing cur-
rents, in order for recruitment to occur. At broader
(oceanic) scales, slowing of the thermohaline circula-
tion as a result of global warming (IPCC 2007) could
slow the rate of transport of rafts, which could limit
dispersal opportunities to those organisms that are
not able to withstand long transport durations.

CONCLUSIONS AND RESEARCH PRIORITIES

In summary, we predict that climate change will
lead to an enhanced supply of increasingly smaller
and short-lived macrophytic rafts, which due to their
rapid degradation times would be dispersed only
short distances (Table 1). The size of these rafts will
preclude transport of larger organisms, and they will
support an overall lower diversity of species than at
present (Table 1). Simultaneously, climate change
will act on the biology of hitchhiking species, poten-
tially accelerating development and reducing the
duration of early life history stages, which are partic-
ularly critical for the dispersal of sessile invertebrate
species (O’Connor et al. 2007, Cowan & Sponaugle
2009). Climate impacts on hitchhikers will reinforce
the trend to reduced dispersal distances and hence
lower connectivity.

Given the potential for climate change to have
large impacts on dispersal processes such as rafting,
it should be included in models predicting changes in
species distributions under future scenarios. Other-
wise, models may underestimate climate impacts,
leading to inappropriate adaptation strategies for
conserving biodiversity. Transforming the conceptual
model presented in Fig. 1 to a fully quantitative and
predictive model will require further experimenta-
tion to elucidate climate effects on key biological
interactions and ongoing ocean monitoring to better
resolve factors influencing transport and dispersal
processes. Recent studies have made good progress
in advancing our understanding of how abiotic (e.g.
temperature, salinity, light) and biotic (e.g. grazing)
factors influence raft longevity (e.g. Vandendries sche
et al. 2007b, Rothäusler et al. 2009, 2011a,b). Never-
theless, with most studies on this topic coming from a
few prolific researchers, conclusions are for the most
part confined to a small number of raft identities (e.g.

Macrocystis spp.) and are geographically limited.
Studies extending process-level understanding to
other types of raft (representing the different classes
of macrophytic rafts) and broader geographical ranges
(to encompass a wider range of flow conditions) are
needed. Further studies should consider the inter -
active effects of biotic and abiotic factors on the
buoyancy and persistence of rafts, with the view that
macrophytic materials are dynamic in terms of their
ability to respond to stress. Multidisciplinary studies,
combining use of tags, GPS surface drifters, and
genetic analyses are needed to better understand
how long-range dispersal influences distributions
(e.g. Muhlin et al. 2008).

Nationally coordinated ocean monitoring programs
(e.g. the Australian Integrated Marine Observing
System IMOS, http://imos.org.au/about.html) should
be utilized to collect region-specific information on
organisms that use rafts as a vector for dispersal, as
well as the identity of key raft materials. For instance,
autonomous underwater ocean gliders are proving to
be a relatively cost-effective method for collecting
large amounts of data on ocean conditions. Further-
more, shorter-term climate shifts, such as those
caused by the El Niño− Southern Oscillation and the
Pacific Decadal Oscillation, could be used as case
studies to better understand how dispersal processes
respond to climatic change. Only with a complete
understanding of the underlying processes will we
be able to incorporate dispersal into models for pre-
dicting outcomes of climatic change and adaptive
management scenarios.
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