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INTRODUCTION

Eelgrass Zostera marina is circumglobally distrib-
uted, ranging in latitude from warm temperate
waters to near arctic conditions (Setchell 1929, den
Hartog 1970, Green & Short 2003, Moore & Short
2006). Z. marina displays a tolerance to wide ranging
temperature and salinity conditions and has distinct
life history strategies allowing the species to exploit

intertidal to subtidal zones and from open ocean en-
vironments to the interior of brackish water estuaries
(Setchell 1929, Harrison 1993, Meling-López & Ibarra-
Obando 1999, van Katwijk & Wijgergangs 2004).

The most common life-history strategy observed in
Zostera marina populations is the perennial form
where plants persist for several years primarily
through asexual growth (den Hartog 1970; Tomlin-
son 1974; Lincoln et al. 1990). Perennial Z. marina
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populations have also been documented to express
behavior similar to the biennial life history model
(Setchell, 1929). After germinating, seedling growth
in biennial populations occurred via clonal expan-
sion only and flowering stem development and fruit-
ing were not observed until after a period of 1 to 2 yr
of growth (Setchell 1929; Thayer et al. 1984). More
recently an annual life history strategy has been
described for Z. marina populations, where mature
plants consist of reproductive (flowering) shoots only
and all plants complete their life cycle (seeds germi-
nate, flower, produce seeds) and die within 12 mo
(Keddy & Patriquin, 1978, Gagnon et al. 1980, De
Cock 1981, Harlin et al. 1982, Phillips et al. 1983a,
Robertson & Mann 1984, Santamaría-Gallegos et al.
2000).

Although they have been documented throughout
the species’ geographic distribution, annual forms of
Zostera marina are primarily found in areas charac-
terized by stressful environmental conditions such
as ice scour (Robertson & Mann 1984), extreme tem-
peratures (Phillips et al. 1983a, Santamaría-Gallegos
et al. 2000), and interactions between physical dis-
turbances such as grazers and strong storms (van
Lent & Verschuure 1994). Phillips et al. (1983a) sug-
gested that the large annual population in the Gulf
of California may have developed in response to
recurring high summer water temperatures experi-
enced at the southern limit of the species distribu-
tion. At Bahia Kino, where the most extensive Z.
marina meadows in the Gulf of California occur,
water temperatures reach 32°C in July, resulting in
100% mortality of Z. marina shoots (Phillips & Back-
man 1983). In this meadow, the entire population is
sustained year to year by the production of seeds
from annual plants (Meling-López & Ibarra-Obando
1999).

In the western Atlantic, the southern limit of
Zostera marina distribution occurs in North Carolina
where there is an estimated 80 937 ha of submerged
aquatic vegetation including Z. marina, widgeon
grass Ruppia maritima and shoal grass Halodule
wrightii (Street et al. 2005). With the warm climate
and proximity of the Gulf Stream, temperatures in
North Carolina coastal waters reach ≥30°C in sum-
mer and mortality of Z. marina is high during this
period (Thayer et al. 1984). Z. marina dominated
meadows lose most of their aboveground biomass
by early fall in response to the high thermal stress
experienced at this southerly latitude (Kenworthy
1981, Thayer et al. 1984). Flowering frequency in
the population is also relatively high (11 to 32%;
Thayer et al. 1984, Fonseca et al. 1985) and seed -

lings are ubiquitous throughout the system (authors’
pers. obs.). Long-term observations in seagrass mead-
ows in Back and Core Sounds in Carteret County,
North Carolina suggest that there are both peren-
nial and annual populations (K. Kenworthy pers.
obs.). Recent observations (authors’ pers. obs.) in a
well studied site in the Newport River Estuary
(Thayer et al. 1977, 1984, Penhale 1977) indicated
that a formerly perennial Z. marina meadow was
expressing characteristics of an annual population:
100% shoot mortality was observed in the early
fall (October to November) of 2004, 2005, and 2006,
yet each year the meadow was reestablished by
seedlings (authors’ pers. obs.). Although the occur-
rence of annual populations at the southern limit in
the Atlantic does not seem as prevalent as in the
Pacific populations in the Gulf of California, given
the similarities of thermal stressors between these
geographical regions there is reason to predict that
Z. marina populations in North Carolina should
benefit from a strategy with a higher proportion of
sexual reproduction.

It is the goal of this paper to (1) investigate domi-
nant life history strategies and local environmental
conditions in southern western Atlantic Zostera ma -
rina populations; (2) quantify differences in repro-
ductive phenology (biomass and density of vegeta-
tive and reproductive shoots, total seed production,
total seed bank density, and viable seed bank den-
sity) between observed life history strategies; and
(3) compare reproductive strategies within these
thermally stressed populations to established life
 history paradigms.

MATERIALS AND METHODS

Study sites

We selected 2 sites in North Carolina for our study
(Fig. 1). Phillips Island (NC1; 34° 43’ N, 76° 41’ W) is
located on a shallow small semi-enclosed shelf in the
Newport River Estuary in Carteret County. The sea-
grass bed is dominated by Zostera marina with small
isolated patches of Ruppia maritima. Morgans Island
(NC2, 34° 66’ N,76° 52’ W), located ~14 km southeast
of Phillips Island in Back Sound on a shallow open
shelf, is a mixed bed of Z. marina and Halodule
wrightii with a minor amount of R. maritima. Both
sites are shallow, with mean lower low water (MLLW)
depths <0.25 to 0.5 m (Penhale 1977, Thayer et al.
1977). Within each site a 30 × 30 m area was delin-
eated for sampling.
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Study site characterization

Bottom water temperature (°C) was recorded at
each site every 15 min throughout the study period
with 3 HOBOware Pro (Onset Computer) water tem-
perature sensors deployed on the sediment surface.
Salinity (PSU) and dissolved oxygen (DO; mg l−1)
were measured monthly from August 2007 to Octo-
ber 2008 with a Yellow Spring Instruments model
650 sonde. During each site visit, three 500 ml water
samples were collected by hand, filtered (Gelman
Supor, 0.45 µm), and frozen until analyzed for dis-
solved inorganic nitrogen (DIN; NOx, NH4

+) and dis-
solved inorganic phosphorus (DIP; PO4

3–) with a
Lachat Instruments  auto analyzer (Liao 2002, Knepel
& Bogren 2002, Smith & Bogren 2002). Water sam-
ples were also filtered and analyzed for chlorophyll a
(Strickland & Parsons 1972) and total suspended
solids (TSS). TSS was quantified from a well-mixed
sample of known volume. The sample was filtered
through a GF/F filter and the residue retained on the
filter was dried to constant weight at 103 to 105°C
and reported as mg l−1.

At each site, 5 sediment cores (10.4 cm diameter,
10 cm depth) were collected in July and De cember
2007 and in June and September 2008 to quantify
organic content and sediment exchangeable nutri-
ents. The upper 6 cm of the core was removed then
subdivided. Percent organic matter was determined

by drying a sediment sub-section at
60°C until a constant dry weight (DW)
was reach ed. Samples were then
weighed, combusted at 500°C for 5 h,
and weighed again. Percent organic
matter was calculated as the differ-
ence in weights (Erftemeijer & Koch
2001). Sediment exchangeable nutri-
ents were extracted with a volume
KCl (2 M) equal to twice the sediment
volume, shaken on a rotary shaker for
1 h at room temperature, centrifuged
6 min at 1252 g, filtered (Gelman
Supor, 0.45 µm), and frozen in sterile
Whirlpak® bags until analyzed. NH4

+

was determined by the technique of
Solorzano (1969). DIN (NOx) and DIP
(PO4

−3) were determined on a Lachat
Instruments auto analyzer (Liao 2002,
Knepel & Bogren 2002, Smith &
Bogren 2002). Additionally, in Decem-
ber 2007, percent sand, silt, and clay
fractions were determined using a
wet sieve method (Plumb 1981).

Zostera marina characterization

Five Zostera marina biomass cores (22 cm dia meter,
10 cm depth) were haphazardly collected monthly
from both NC1 and NC2 from July 2007 through No-
vember 2008. Samples were sieved (1.0 cm mesh)
and washed clean of sediment in the field and all
plant material was immediately transported back to
the lab for processing. Biomass samples were sorted
as reproductive shoots or non-reproductive shoots,
and as surviving shoots or newly germinated seed -
lings. Reproductive shoots were defined as erect
shoots that contained multiple rhipidia (De Cock 1981)
and seedlings were determined by the presence of a
seed coat or by a curved rhizome base (Setchell 1929,
Taylor 1957b). Vegetative shoot density, reproductive
shoot density, and the number of seeds per reproduc-
tive shoot were recorded. Vegetative shoots were
then separated from the rhizome directly below the
leaf sheath into aboveground and belowground bio-
mass. Only living belowground biomass, whitish to
light brown in color and attached to shoots, was pro-
cessed. Belowground biomass was analyzed as total
belowground biomass and not divided by reproduc-
tive state because some plants produced both vegeta-
tive and reproductive shoots. All biomass samples
were dried at 60 °C to a constant weight.
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Seed production and seed bank characteristics

The maximum potential number of seeds produced
at each site was calculated monthly from August
2007 through October 2008 as the product of the
average number of seeds per reproductive shoot and
the average number of reproductive shoots m−2 (van
Lent & Verschuure 1994). At each site, 5 sediment
cores (4 cm diameter, 10 cm length) were collected in
July and December 2007 and again in June, Septem-
ber, October and November 2008 to quantify total
and viable sediment seed bank densities. All cores
were wet-sieved (0.5 mm mesh) to separate the
seeds; all seeds were counted and stored overnight in
ambient seawater at 4°C. The percentage of seeds
retained within the sediment seed bank was quanti-
fied using the difference between the potential and
measured seed bank densities.

Viability of all collected seeds was tested using
tetrazolium staining (Lakon 1949, AOSA 1981, Mc -
Farland & Shafer 2011). Seed embryos were removed
from their seed coats and soaked in a 1% tetrazolium
chloride solution for 24 h before examination on a dis-
secting scope at 10× magnification (Lakon 1949, AOSA
1981, Conacher et al. 1994). Seeds with a pink to brown
stained cotyledon and axial hypocotyl were consid-
ered viable (Taylor 1957a, Harrison 1993). The per-
centage of viable seeds retained within the sediment
seed bank was quantified compared to the total num-
ber of seeds collected in the seed bank at each site.

Statistical analyses

Water column TSS and sediment organic content
and percentages of sand, silt and clay between sites
and over time were analyzed separately with non-
parametric statistics as the data were non-normally
distributed (TSS and sediment organic content:
Friedman’s Chi Square; percent sand, silt and clay:
Kruskal- Wallis and Kolmogorov-Smirnov Tests; SAS
System for Windows). Monthly averaged water col-
umn temperature, salinity, DO, chlorophyll a, DIN,
DIP and sediment DIN and DIP data were trans-
formed when necessary and analyzed with repeated
measures ANOVA to compare the effects of time, site
and the interactions of these factors (Zar 1996).

Repeated measures ANOVA (PROC GLM; SAS
System for Windows) was employed to test the effects
of site and time on vegetative and reproductive shoot
aboveground biomass, total belowground biomass,
the proportion of reproductive shoots, and the pro-
portion of viable seeds in the seed bank. Prior to

analysis, data were transformed when necessary
(biomass: square root transformation; proportion
data: arcsine square root transformation), normality
was confirmed, and homogeneity of variance was
verified with Cochran’s test (Zar 1996).

Differences in vegetative and reproductive shoot
density, seed production, and seed bank density
between sites were analyzed using negative bino-
mial regression with time and site as factors (PROC
GENMOD; SAS System for Windows) (Allison 1999).
Negative binomial regression is a generalized form
of Poisson regression which corrects for overdisper-
sion in count data (Allison 1999). For all significant
(p < 0.05) model terms odds ratios were calculated
using Wald chi square statistics (SAS System for Win-
dows). Likelihood ratio tests for all parameter esti-
mates were also calculated and compared to the
Wald Chi Square Statistics (Allison 1999).

RESULTS

Study site characterization

Water column temperature varied significantly over
time across both sites (p < 0.001). Temperature was
sig nificantly greater at NC1 than NC2 during the
spring and summer months (p < 0.001; Fig. 2A). Daily
temperature (mean ± SE) ranged from 7.2 ± 0.1°C to
30.3 ± 0.1°C at NC1 and from 4.8 ± 0.1°C to 29.8 ±
0.1°C at NC2. When comparing temperatures collected
every 15 min across the summer months (June to Au-
gust), temperatures were above 25°C for 88.5% and
93.1% of the time at NC1 and NC2, respectively (Fig. 3).

Water column DO and salinity varied significantly
over time across both sites (p < 0.001 for all) and were
significantly greater at NC2 than NC1 (p < 0.001;
Fig. 2B, C). Water column chlorophyll a (chl a) was
significantly greater at NC1 than NC2 (p < 0.001) and
va ried significantly over time with highest values
ob served during summer months (p < 0.001; Fig. 2D).
TSS followed a similar pattern to chlorophyll a and
was significantly greater at NC1 than NC2 (p < 0.001;
Fig. 2E). Water column NOx and NH4

+ were similar
between sites (NOx p = 0.369; NH4

+ p = 0.099) but
were significantly different over time although no
distinct seasonal patterns among years were evident
(NOx p = 0.042; NH4

+ p = p < 0.001; Fig. 2F, G). Water
column PO4

3– was also significantly greater at NC1
(p = 0.008) and differed significantly over time with
lowest values in early winter (p = 0.008; Fig. 2H).

Sediment organic content and percentages of sand,
silt and clay were the only sediment characteristics
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to differ significantly between sites. NC1 had finer
grained sediment composition (silt p = 0.004; clay p =
0.007; Table 1) and significantly greater sediment
organic content (p < 0.001) than NC2. Organic con-
tent did not change significantly over time (p =
0.789). Sediment NH4

+ (p = 0.069) and PO4
3– (p =

0.887) did not differ significantly between sites but
did differ significantly over time (p < 0.001 for both).

Zostera marina characterization

There were no perennial plants at NC1 and all
Zostera marina shoots originated from seedlings. At
NC2, perennial plants surviving through summer
contributed to population growth in the fall and in the
next spring. There was no significant difference in
vegetative aboveground biomass between sites (p =
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0.648; Table 2A), although there was a difference
over time (p < 0.001; Table 2A). Maximum above-
ground vegetative biomass for both sites occurred in
July in both 2007 and 2008 (Fig. 4A). Aboveground
vegetative biomass (all values mean ± SE) was
 completely absent from NC1 in November 2007 and
again in September and October 2008 while biomass
de creased to the lowest recorded value, 13.80 ±
5.00 g DW m−2, in October 2007 at NC2 (Fig. 4A).

Reproductive aboveground biomass at both sites
varied over time (p < 0.001; Table 2A), reaching a
maximum in March 2008 then decreasing until com-
pletely disappearing in July 2008 (Fig. 4B). Total
reproductive shoot biomass and the proportion of
reproductive to total shoot biomass was significantly
greater at NC1 (maximum 30.93 ± 2.41 g DW m−2)
than NC2 (maximum 15.66 ± 2.93 g DW m−2; p =
0.003; Table 2A).

Belowground biomass was significantly greater at
NC2 compared to NC1 (p < 0.001) and varied signifi-
cantly over time (p < 0.001; Table 2B; Fig. 4C).
Belowground biomass was completely absent No -
vember 2007 and reached a seasonal low in No -
vember 2008 at NC1 while reaching a seasonal
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during June, July, and August 2008

Site and date       % organic matter       NH4
+ (µM)                  PO4

3– (µM)               % sand                   % silt                   % clay

NC1                                                                                                                                                                                   
Jul 2007                       3.0 ± 0.2                14.7 ± 2.9               0.9 ± 0.1                      —                          —                          —
Dec 2007                      3.3 ± 0.3                 8.9 ± 2.9                0.8 ± 0.2               79.7 ± 1.0             14.3 ± 0.7               6.0 ± 0.5
Jun 2008                       3.5 ± 0.8               42.1 ± 17.0              0.9 ± 0.3                      —                          —                          —
Sep 2008                      2.8 ± 0.1                21.3 ± 7.5               0.2 ± 0.1                      —                          —                          —

NC2                                                                                                                                                                                   
Jul 2007                       1.3 ± 0.1                20.4 ± 6.4               1.5 ± 0.5                      —                          —                          —
Dec 2007                      1.3 ± 0.2                12.7 ± 0.8               0.6 ± 0.2               90.6 ± 1.9               6.5 ± 1.4               3.0 ± 0.5
Jun 2008                       0.7 ± 0.1                15.2 ± 1.6               3.8 ± 1.2                      —                          —                          —
Sep 2008                      1.2 ± 0.2                14.3 ± 2.4               0.0 ± 0.0                      —                          —                          —

Table 1. Sediment data (monthly mean ± SE) for 2 sites in North Carolina (NC1 and NC2)

Factor df Type III Mean F p
SS SS value

(A) Aboveground
Vegetative
Between Sites
Site 1 0.11 0.11 0.22 0.648
Error (site) 8 4.04 0.51

Within Sites
Time 15 291.19 19.41 31.58 <0.001*
Time × Site 15 56.92 3.79 6.17 0.003*
Error (time) 120 73.78 0.61

Reproductive
Between Sites
Site 1 2.65 2.65 17.52 0.003*
Error (site) 8 1.21 0.15

Within Sites
Time 4 3.23 0.81 10.1 <0.001*
Time × Site 4 0.83 0.21 2.59 0.055
Error (time) 32 2.56 0.08

(B) Belowground
Total
Between Sites
Site 1 30.79 30.791010 <0.001*
Error (site) 4 0.12 0.03

Within Sites
Time 15 20.06 1.40 26.51 <0.001*
Time × Site 15 11.88 0.79 14.95 <0.001*
Error (time) 60 3.18 0.05

Table 2. Zostera marina. Results of repeated measures,
ANOVA for biomass of (A) vegetative and reproductive
shoots aboveground and (B) total belowground for 2 sites
in North Carolina over the 2007−2008 growing season. 

*p < 0.05
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low in October 2007 and November 2008 at NC2
(Fig. 4C). The proportion of belowground biomass
to total biomass was also greater at NC2 compared
to NC1.

Vegetative shoot density was 2.5 times greater at
NC2 than NC1 throughout the study period (p <

0.001; Table 3). NC1 maximum abundance oc curred
in February, then decreased over time re sulting in a
complete loss of shoots after September 2008. Den-
sity increased again with germination of new
seedlings in November 2008. NC2 maximum vegeta-
tive shoot density occurred in April, 2 mo later than
at NC1. While exhibiting seasonal declines, Zostera
marina density at NC2 was never below 531 ± 248
shoots m−2 (Fig. 5A).

Reproductive shoot densities were similar between
sites (p = 0.889; Table 3). NC1 flowering shoot den-
sity reached a maximum in March 2008 (603 ± 157
reproductive shoots m−2; Fig. 5B), while NC2 density
peaked in May 2008 (463 ± 224 shoots m−2). The pro-
portion of reproductive shoots, ranged from 33 ± 3%
at NC1 to 26 ± 13% at NC2 of total shoots during
the period of maximum reproductive shoot density
(March to May 2008; Fig. 5C).

Seed production and seed bank characteristics

The average number of rhipidia per reproductive
shoot, the number of seeds per rhipidia, and the
potential seed production per area were similar
between sites (Tables 3 & 4). Although not sig -
nificantly different, potential seed production was
 nu merically greater at NC1 (61 563 seeds m−2) com-
pared to NC2 (41 146 seeds m−2). This is reflected in
the seed bank were total density was 3.4 times
greater at NC1 than NC2 (p < 0.0001; Table 3). Seeds
were always present in the sediment at both sites,
although <1% of the estimated seeds produced in
2008 were retained within the sediment seed bank at
NC2 and <2% were re tained in NC1. Seed bank via-
bility was variable, but on average, densities of
viable seeds were 27.2 times greater at NC1 than
NC2 (p = 0.003; Table 3). No viable seeds were
observed in the seed bank following the period of
maximum germination (Table 5).

DISCUSSION

Life history strategies

Different Zostera marina populations have been
characterized as either perennial, biennial, or an -
nual forms (Setchell 1929, Keddy & Patriquin
1978, Thayer et al. 1984). An alternative model
was described for Z. marina in the southwestern
Netherlands where a bed with attributes of both
perennial and annual life histories was documented
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suggesting that some populations exist with a con-
tinuum of strategies that include perennial and
annual life histories as end members (van Lent
& Verschuurre 1994). Our observations in North
Carolina suggest that the occurrence of a similar
alternate life history strategy for Z. marina popula-
tions at the southern limit of the species’ distribu-
tion in the western North Atlantic.

Within a previously described perennial Zostera
marina bed at NC1 (Penhale 1977, Thayer et al. 1977,
1984), we documented a population with a combina-
tion of perennial and annual characteristics. Follow-
ing a complete loss of biomass, the population was
reestablished by seedlings. A portion of the newly
established seedlings reproduced asexually through
clonal growth, similar to populations with a perennial

life history. However, some seedlings
produced only reproductive shoots, a
characteristic of annual plants. In
addition to the senescence of repro-
ductive shoots in the late spring,
there was a second complete loss of
vegetative shoot biomass at NC1 after
just 1 growing season. After the loss
of flowering shoots, the surviving
plants continued to grow asexually,
suggesting that the complete loss of

biomass in the fall was due to other factors (i.e. tem-
perature, bioturbation). Thus the Z. marina popula-
tion described at NC1 displayed a mixture of peren-
nial and annual life histories which we characterized
as a ‘mixed-annual’ life history strategy.

Parameter                       df                 Est                 SE                 X2                 p           Odds ratio Wald 95% CL
                                                                                                                                                                            Low              High

Vegetative
Intercept 1 4.28 0.08 2745.61 <0.001*
Site 1 −0.9 0.12 56.95 <0.001* 0.41 0.32 0.51
Dispersion 1 0.47 0.06

Reproductive
Intercept 1 2.43 0.17 214.88 <0.001*
Site 1 0.03 0.22 0.02 0.889 1.03 0.67 1.58
Dispersion 1 0.51 0.11

Nps

Intercept 1 5.61 0.23 600.26 <0.001*
Site 1 0.54 0.32 2.84 0.092 1.72 3 246.53
Dispersion 1 1.25 0.21

Nsb

Intercept 1 0.28 0.18 2.52 0.112
Site 1 1.22 0.23 29.78 <0.001* 3.42 2.2 5.31
Dispersion 1 0.86 0.21

Nvb

Intercept 1 4.23 1.05 16.14 <0.001*
Site 1 3.3 1.13 8.62 0.003* 27.18 3 246.53
Dispersion 1 7.66 3.53

Table 3. Zostera marina. Negative binomial regression model analyzing the effects of site on vegetative shoot density, repro-
ductive shoot density, maximum estimated number of produced seeds (Nps), total seed bank density (Nsb), and viable seed 

bank density (Nvb). Odds ratios calculated based on the parameter estimates. *p < 0.05

Sexual reproductive output NC1 NC2

No. of reproductive shoots m−2 330 ± 51 243 ± 57
No. of rhipidia per shoot 3.5 ± 0.2 3.5 ± 0.4
No. of seeds per rhipidia 11 ± 1 10 ± 1
Maximum no. of seeds produced m−2 12 699 ± 1982 8515 ± 2003

Table 4. Zostera marina. Sexual reproductive effort at sites NC1 and NC2
 during the 2007 to 2008 growing season. Means ± SE across all months when 

reproductive shoots were present (February to July)

Date Density (m−2) % viable
NC1 NC2 NC1 NC2

Jul 2007 190 ± 97 211 ± 74 33 ± 21 13 ± 13
Dec 2007 232 ± 84 211 ± 100 0 ± 0 0 ± 0
Jun 2008 906 ± 246 147 ± 42 18 ± 9 0 ± 0
Nov 2008 232 ± 91 147 ± 26 0 ± 0 0 ± 0

Table 5. Zostera marina. Seed bank density and percentage 
of viable seeds at sites NC1 and NC2. Means ± SE
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Attributes of a mixed-annual life history

Zostera marina seedlings in the mixed-annual bed
at NC1 flowered within 6 mo of germination. This
was much earlier than perennial populations within
the region which exhibit biennial characteristics and
do not flower until their second year of growth (Sil-
berhorn et al. 1983, Phillips et al. 1983b, Thayer et al.
1984). They also produced a greater number of flow-
ering shoots per m−2 (maximum 603 ± 157 shoots m−2)
than established perennial beds nearby at NC2 (79 ±

110 to 463 ± 224 shoots m−2; Phillips et al. 1983b, this
study). In addition, a larger proportion of reproduc-
tive shoots (33 ± 3%) were found in the mixed-
annual population compared to perennial beds (<10
to 28% of total shoots; Jacobs & Pierson 1981, Silber-
horn et al. 1983, Thayer et al. 1984, Olesen 1999).
This is, however, significantly less than typical
annual meadows where 100% of the shoots flower
(Keddy & Patriquin 1978, Robertson & Mann 1984,
Meling-López & Ibarra-Obando 1999), and more sim-
ilar to average densities of reproductive shoots pro-
duced in perennial populations.

The greater effort put into sexual reproduction in
mixed-annual beds compared to perennial popula-
tions may come at the cost of bed maintenance and
expansion through asexual reproduction. Energy
necessary for vegetative expansion of Zostera marina
is stored in non-structural carbohydrate reserves
which are primarily found in the rhizomes (Burke et
al. 1996). Belowground biomass (means ± SE) in the
mixed-annual bed (95.08 ± 5.04 g DW m−2) was sig-
nificantly lower than perennial beds in North Car-
olina (268.81 ± 76.17 g DW m−2; Thayer et al. 1984)
and in the lower Chesapeake Bay (155 g DW m−2;
Orth & Moore 1986) and more similar to annual pop-
ulations observed in the Gulf of California at Punta
Chueca (51 ± 17 g DW m−2; Meling-López & Ibarra-
Obando 1999) and in Bahía Concepción (26 g DW
m−2; Santamaría-Gallegos et al. 2000). Robertson &
Mann (1984) hypothesized that the lower below-
ground biomass found in annual compared to peren-
nial populations was related to the shorter develop-
ment time in the abbreviated lifecycle of annual
populations. Like annual beds, the mixed-annual bed
NC1 grows for only a portion of the year and has less
time to develop belowground biomass than perennial
beds. More energy is allocated to the development of
reproductive shoots resulting in a greater propor-
tion of biomass in aboveground compared to below-
ground structures, mainly as flowers and seeds.

Survival of Zostera marina beds that die back
annually is dependent on the production of flowers
and viable seeds. The mixed-annual population
yielded more seeds than the perennial site but had a
lower maximum potential seed abundance (61 563
seeds m−2) than reported in annual populations in
Nova Scotia (78 224 seeds m−2; Keddy 1987) and
in the Sea of Cortez, Mexico (100 376 seeds m−2;
 Meling-López & Ibarra-Obando 1999). This reduced
number of seeds may have severe negative conse-
quences for true annual populations as the seed bank
may not contain enough seeds to allow for a suffi-
cient number of shoots to germinate and re-establish
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the bed. However, by reproducing both sexually and
asexually newly germinated seedlings in the mixed-
annual bed may grow and become established more
rapidly than seedlings which only produce repro -
ductive shoots (Keddy & Patriquin 1978; van Lent &
Verschuure 1994). Therefore, while seed production
in mixed-annual beds is limited compared to annual
populations, the ability to reproduce both sexually
and asexually may compensate for the lack of
seed material through relatively rapid expansion and
establishment.

In areas with stressful environmental conditions,
the production of a greater number of viable seeds
may be more beneficial than maintaining year round
biomass. This is especially important at the southern
limit of Zostera marina distribution in North Carolina
where water temperatures can exceed the upper
limit of the optimum range of the species (25°C) for a
high percentage of July and August (Penhale 1977,
Thayer et al. 1977, 1984). Water temperatures above
25°C can significantly reduce photosynthetic rates,
increase respiration, inhibit leaf growth, and in -
crease Z. marina mortality (Marsh et al. 1986, Nejrup
& Pedersen 2008, Hosokawa et al. 2009; Höffle et al.
2011). Large scale loss of perennial Z. marina pop -
ulations in the Chesapeake Bay was attributed to
stressful environmental conditions including water
temperatures exceeding 30°C for only a few weeks in
2005 (Moore & Jarvis 2008). Large scale seed germi-
nation and seedling establishment contributed to
recovery in Chesapeake Bay (Jarvis & Moore 2010),
highlighting the importance of seeds for recovery
from large scale declines (Plus et al. 2003, Greve et
al. 2005, Lee et al. 2007).

In addition to seed production, another very impor-
tant factor in considering the potential importance of
the mixed-annual life history is the timing of flower-
ing during the life cycle of the plants. Perennial pop-
ulations that include plants with biennial characteris-
tics do not flower until at least their second year of
growth (Setchell 1929, Silberhorn et al. 1983, Thayer
et al. 1984). Thus, when a biennial population expe-
riences a high rate of mortality the potential for seed
production in the next growing seasons is dimin-
ished. This population may be re-established by
seeds produced during the previous growing season,
but there may be few or no ‘second year’ biennial
plants to produce flowers and replenish the seed
bank. Since the seed bank is transient and can only
be replenished by the production of new flowers,
seed stocks will be even more depleted if there is a
second stress event during the next growing season
(Jarvis & Moore 2010). Seed banks function to

replenish populations annually and as a recovery
mechanism following large scale disturbances (Plus
et al. 2003, Greve et al. 2005, Jarvis & Moore 2010). If
the seed bank is depleted by consecutive years of
stressful conditions resulting in large scale loss of
biomass in perennial beds, this may result in the
complete loss of the effected population (Jarvis &
Moore 2010). Populations expressing the mixed-
annual life history strategy have seedlings that are
able to flower during their first year ensuring the
seed bank is replenished with viable seeds. There-
fore the mixed-annual population is able to persist
in areas with stressful environmental conditions
which may otherwise limit or exclude perennial
 populations.

Regardless of the strategy by which seeds are pro-
duced, they must remain viable in the sediment seed
bank until conditions are favorable for germination,
after which seedlings can replace adults within the
established population (Baker 1989, Murdoch & Ellis
2000). At NC1 and NC2 the seed bank density
declined so that by the fall of 2008, following the
period of maximum germination for this region (Sil-
berhorn et al. 1983, Thayer et al. 1984), <2% of that
year’s estimated seed production remained viable in
the sediment. Similar large losses of seeds, ranging
from 25 to 78% of total seed production, have been
reported for both annual and perennial Zostera
marina beds (Santamaría-Gallegos et al. 2000, Har-
well & Orth 2002b, Morita et al. 2007). These losses
may be the result of dispersal (Harwell & Orth 2002a,
Källström et al. 2008), decay (Morita et al. 2007),
 predation (Fishman & Orth 1996), or germination
(Harper 1977).

The persistence of vegetative shoots after the
senescence of reproductive shoots is another feature
of the mixed-annual life history strategy that distin-
guishes it from annual populations. Annual popula-
tions of Zostera marina produce only reproductive
shoots which senesce at the end of the flowering
period (Keddy & Patriquin, 1978, Gagnon et al. 1980,
De Cock 1981, Harlin et al. 1982, Phillips et al. 1983a,
Robertson & Mann 1984, Santamaría-Gallegos et al.
2000). The complete loss of biomass and survival of
the population in seed form may provide a mecha-
nism to escape stressful environmental conditions via
the seed bank (Phillips et al. 1983a, Robertson &
Mann 1984, van Lent & Verschuure 1994, Santa-
maría-Gallegos et al. 2000). However, if stressful
environmental conditions are ameliorated, annual
beds are not capable of maintaining a population
after the loss of reproductive shoots. The vegetative
shoots in the mixed-annual population documented
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here continued to persist for up to 3 mo following the
last observation of reproductive shoots. Vegetative
reproduction by mixed-annual plants enables the
population to perenniate and expand when the exter-
nal factors responsible for mortality and complete
loss of biomass are absent.

SUMMARY AND CONCLUSIONS

Growing near its southern range limit in the west-
ern North Atlantic, populations of Zostera marina
express a range of life histories including both peren-
nial and annual forms as well as a combination
of both strategies. A mixed-annual life history de -
scribed for NC1 illustrates an alternate mechanism
for persistence through both short-term and ex ten -
ded periods of environmental stress. Reproducing
both sexually and asexually during the first year of
growth maximizes inter-annual survival of Z. marina
populations by ensuring maintenance of the existing
bed through clonal propagation as well as providing
a source of seeds to replenish the population the next
growing season (Table 6). We hypothesize that the
mixed-annual life history improves the probability
for Z. marina populations to persist in stressful envi-
ronments. Rather than relying on a single life history

strategy, some populations in North Carolina can use
a range of strategies to overcome the high rate of
mortality in a thermally stressed environment.

We suggest that neither annual nor perennial or
biennial life history strategies always provide a supe-
rior mechanism for population persistence. For exam-
ple, perennial meadows are able to maintain their
populations with clonal reproduction, but are suscep-
tible to multiple consecutive years of large scale loss
due to a lack of viable seed bank replenishment
(Jarvis & Moore 2010; Table 6). Annual meadows
are able to overcome stressful environmental condi-
tions through the annual production of repro duc -
tive shoots and a viable seed bank, but these
 populations are not able to fully exploit available re -
sources through out the entire growing season due to
a lack of vege tative reproduction (Keddy & Patriquin
1978, Phillips et al. 1983a, Hootsmans et al. 1987,
Meling-López & Ibarra-Obando, 1999; Table 6). Zos -
tera marina is a species that has evolved over millions
of years in ephemeral coastal environments (Les et
al. 1997, Waycott et al. 2006) and we hypothesize that
the species has developed a variety of life history
strategies that range between perennial and annual
depending on environmental conditions.

Seagrass meadows are being lost from coastal eco -
systems at a global rate of 110 km2 yr−1 (Waycott et al.
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Life history     Year 1                                            Year 2                                                                              Year 3

Stress
Perennial        All plants die; viable seeds in     Bed recovers from seedlings; within year all              No bed recovery
                       seed bank from previous year    plants die; no viable seeds remain in seed bank
                       flowering

Annual           All plants die; viable seeds         Bed recovers from seedlings; flowers; within year     Bed recovers from 
                       remain in seed bank from           all plants die; viable seeds remain in seed bank         seedlings and persists
                       previous year flowering

Mixed-            All plants die; viable seeds          Bed recovers from seedlings; flowers; within year     Bed recovers from
annual            remain in seed bank from           all plants die; viable seeds remain in seed bank         seedlings and persists
                       previous year flowering

No stress
Perennial        Plants persist; viable seeds         Bed persists from vegetative growth and                    Bed persists from
                       in seed bank from previous        seedlings; flowers; plants persist; viable seeds           largely vegetative
                       year flowering                               remain in seed bank

Annual           All plants die; viable seeds         Bed re-grows from seedlings; flowers; all plants        Bed recovers from
                       remain in seed bank from           die; viable seeds remain in seed bank                         seedlings and persists
                       previous year flowering

Mixed-            Annual plants die; viable            Bed persists from vegetative growth and                    Bed persists from
annual            seeds in seed bank from              seedlings; flowers; annual plants die; viable seeds    vegetative growth
                       previous year flowering               remain in seed bank                                                      and seedlings

Table 6. Zostera marina. Description of life history strategies expressed in beds near the species’ southern limit in the western
North Atlantic under both stressed and non-stressed conditions. For this table, stress is assumed to occur at the end of the 

growing season after flowers have senesced and seeds have been produced
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2009) and are predicted to continue declining as con-
ditions become increasingly stressful due to global
climate change (Short & Neckles 1999, Harley et al.
2006). This period of unprecedented environmental
transition may result in large scale shifts in the distri-
bution of species (Rogers & McCarty 2000, Scavia et
al. 2002) and, in the most extreme cases, greater mor-
tality of sensitive species at local and regional levels
(Rogers & McCarty 2000, Najjar et al. 2010). The
mixed-annual life history described here represents
one possible life history strategy within this range,
which may provide the mechanism necessary for
Zostera marina populations to persist during times of
environmental transition. Understanding how the life
history strategies of seagrasses may affect their dis-
tribution and persistence of a species on local and
regional scales is vital for effective prediction of
responses to environmental and anthropogenic stres-
sors and ultimately the management of these coastal
resources.
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