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INTRODUCTION

Monitoring programmes are a key component of
ecological research and adaptive management. To
discriminate among competing hypotheses about the
state and dynamics of populations and communities,
researchers need to collect relevant field data. In the
context of marine conservation and sustainable ex -
ploitation of marine resources, there is a need for

estimates of the system state and its trends in order to
decide on appropriate management actions. Ade-
quate monitoring of the population(s) responses to
management actions is the cornerstone of adaptive
maritime spatial planning and successful marine
resource management (Day 2008, Douvere & Ehler
2011).

Monitoring programmes for animal or plant popu-
lations are typically based on obtaining estimates of a
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ABSTRACT: Underwater visual surveys are frequently used in monitoring programmes of marine
populations. Species occupancy, defined as the probability of presence in a sampling unit, is a
commonly used state variable. Imperfect detectability is a serious issue in such studies and, if
ignored, may lead to incorrect inferences and erroneous management decisions. In this paper, we
propose a methodology and field protocol for underwater visual surveys implemented by multiple
observers. This approach can be applied for an unbiased occupancy estimation of marine species
by explicitly incorporating imperfect detection into the modelling process. Based on a case study
carried out in a Greek coastal area (Saronikos Gulf), the benefits of the proposed approach were
demonstrated. Using a sufficient number of observers, the probability of recording false absences
(i.e. the probability that the target species was present in a site but not detected) was minimized
and occupancy estimation was greatly improved. For the whelk Stramonita haemastoma in the
case study area, single-observer occupancy estimates were negatively biased and varied signifi-
cantly (between 0.64 and 0.89) depending on the observer, while with the proposed methodology,
using 5 observers, the obtained occupancy estimate had the value of 0.93. The probability of false
absence was high in the single-observer case (between 0.10 and 0.30), and rather low with any
combination of 3 observers (<0.025), while it dropped to practically 0 with 5 observers. As demon-
strated in the case of the alien green alga Codium fragile fragile, occupancy models provide a flex-
ible framework for relating occupancy to spatial and environmental covariates, testing ecological
hypotheses and producing predictive distributional maps. Overall, the presented methodology
and its potential extensions could prove extremely useful in a variety of applications in the marine
environment.
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state variable, appropriately replicated in space and
time. The most commonly used state variables are
population density, abundance and percent cover.
However, such estimations are often costly and re -
quire substantial effort (e.g. Lancia et al. 1994, Pol-
lock et al. 2002, MacKenzie et al. 2006) or may be
unfeasible for various reasons, e.g. in the case of rare
or elusive species (Thompson 2004). Alternatively,
species occupancy, defined as the proportion of area,
patches or sampling units occupied (or as the proba-
bility of presence in a sampling unit) may be seen as
a low-cost surrogate (MacKenzie et al. 2006). More-
over, in some cases occupancy is the appropriate
state variable and would be chosen in the first place,
e.g. in studies of distribution and range (Scott et al.
2002), alien invasions (Hanspach et al. 2008), meta -
population studies (Moilanen 2002), community
studies (Martinez-Solano et al. 2003, Weber et al.
2004) and large-scale monitoring (Manley et al.
2004).

The estimation of occupancy is based on presence−
absence data. It is often confounded by detection
probability, i.e. the probability of correctly recording
the presence of an individual or species within the
area of interest. The detection of a species in a sam-
pling unit confirms its presence with certainty,
assuming that there is no misidentification (Royle &
Link 2006). However, failure to detect the species
may be due either to the actual absence of the spe-
cies or to the failure to detect the species that is actu-
ally present at the site during the survey (a ‘false
absence’; MacKenzie et al. 2006). This could be due
to e.g. the inability of the observer to identify the tar-
get species, the cryptic behaviour of the species that
may be hidden in crevices or burrowing or camou-
flaged, and its high mobility. Hence, the true absence
of a species from a sampling unit is often impossible
to be inferred solely from presence− absence data.
Failure to properly account for imperfect detectabil-
ity may lead to incorrect inferences about the system
and erroneous management decisions; occupancy is
underestimated, colonization rates are biased, and
habitat relationships may well be misleading, partic-
ularly if detectability also changes among different
habitats (Moilanen 2002, Tyre et al. 2003, Gu & Swi-
hart 2004, MacKenzie et al. 2006).

A set of methods that permit inference about occu-
pancy based on presence−absence data have been
developed, taking into account the imperfect detec-
tion of the target species (Nichols & Karanth 2002,
MacKenzie et al. 2006 and references therein, Dora -
zio et al. 2006). All methods involve multiple visits to
each site, where the target species is either detected,

with probability p, or not detected, with probability
1 − p. The goal is to estimate the proportion of sites
that are occupied, ψ, accepting that the target spe-
cies is not always detected.

MacKenzie et al. (2006) provided a synthesis of the
literature on estimating occupancy-type metrics,
while explicitly accounting for detection probability.
The methods described by MacKenzie et al. (2006)
have been widely applied in the terrestrial and fresh-
water environments for various taxa, such as am phi -
bians (Campbell Grant et al. 2009, Sewell et al. 2010),
birds (Dorazio & Royle 2005, Ferraz et al. 2007),
mammals (O’Connell et al. 2006, Weller 2008, Moritz
et al. 2008) and insects (MacKenzie et al. 2006, Pellet
2008).

A variety of techniques accounting for imperfect
detectability, mostly based on distance sampling (e.g.
Katsanevakis 2009, Ronconi & Burger 2009) and
mark− recapture (e.g. D’Anna & Pipitone 2000, Brad-
shaw et al. 2007), have been used in the marine envi-
ronment. However, methods for estimating occu-
pancy of marine species from presence− absence
surveys that take into account imperfect detectability
have not been applied yet. Studies on the distribu-
tional range of marine species, marine alien inva-
sions, species richness or large-scale monitoring
have generally ignored detectability issues. Pre -
sence− absence underwater surveys are being widely
used to estimate occupancy, but they routinely
assume that detectability is perfect (i.e. equal to 1)
and thus commonly underestimate occupancy and
species richness of demersal communities (MacNeil
et al. 2008a,b, Kanary et al. 2010). In an assessment
of the structure of coral reef fish communities in Tan-
zania, detection probabilities of 47 reef fish families
varied substantially among fish family groups and
among sites, and ranged between 0.05 and 0.54
(MacNeil et al. 2008a). That study also found that
schooling behaviour, reef fish functional group and
fish length can affect reef fish detectability. The very
low detectability figures reported by MacNeil et al.
(2008a) highlight the need to account for detectabil-
ity in presence−absence underwater surveys, to
make unbiased estimations of species occurrence.

In this study, we propose a methodology and field
protocol for occupancy estimation of marine species
during underwater visual surveys by explicitly
incorporating imperfect detection into the modelling
process. The proposed approach is an adaptation of
the single-season occupancy models of MacKenzie
et al. (2006). It is applicable to diver-based (with
SCUBA or snorkelling) underwater visual surveys
(UVS), but can easily be extended to video-based
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surveys with the use of towed cameras, remotely
operated vehicles or autonomous operated vehicles.
The proposed approach was applied in a snorkelling
UVS in the Saronikos Gulf (Aegean Sea, Eastern
Mediterranean).

MATERIALS AND METHODS

Scheme of occupancy surveys

An area of interest can be considered as a popula-
tion of sampling units for which a value of 1 or 0 can
be assigned, denoting the presence or absence,
respectively, of the target species within their bound-
aries. Sampling units may be spatially defined in the
study area in a systematic way (e.g. grid cells of spe-
cific size, transects of specific length) or chosen from
discreetly occurring natural formations and habitats
(e.g. colonies of sponges on a sandy bottom, patches
of seagrass, underwater caves, island coastlines of an
archipelago). The appropriate sampling design is
generally driven by the hypothesis. However, the
final selection can sometimes be just a matter of
scale. A number of s sites are selected from the pop-
ulation of all sampling units. Inference about the
study area is made from the collection and analysis of
presence−absence data at the s sites. Such inference
can be based on either a design-based approach (e.g.
random sampling or stratified random sampling) or a
model-based approach, where occupancy status is
modelled in relation to environmental or spatial co -
variates. These models are used to predict occupancy
in the entire study area based on the distributional
patterns of covariates.

UVS methods are used to detect the presence of at
least 1 individual of the target species at each site. It
is assumed that there is no false detection because of
misidentification or other reasons. The sites are also
assumed to be closed to changes in occupancy dur-
ing the survey, meaning that no new sites are being
occupied and no sites are abandoned during the sur-
vey; this period of population closure is defined as ‘a
season’. Further modifications for highly mobile spe-
cies that violate this assumption are considered in the
‘Discussion’. A species may or may not be detected
when present at a site, and its detection is assumed to
be independent of the detection of the species by
another observer or the detection of the species at
other sites.

In the general scheme of a single-season occu-
pancy survey (MacKenzie et al. 2006), each of the s
sites is visited K times by the same or different

observers, i.e. K surveys of each site are conducted.
In this paper, we propose that each marine site is sur-
veyed once by K observers, simultaneously but inde-
pendently searching for the target species. The
detections of each observer would represent a ‘sur-
vey’ sensu MacKenzie et al. (2006); a single visit to
each site would suffice to collect the necessary pre -
sence− absence data for estimating both occupancy
and probability of detection.

The resulting presence−absence data for each site
surveyed by all observers is a sequence of detections
(1) and non-detections (0) that form a detection his-
tory Hi of the target species at each site. The set of
these detection histories is used to estimate the pro-
portion of sites occupied by the species, based on the
general approach described by MacKenzie et al.
(2002, 2006). Data gathered from independent ob -
servers were considered as independent multiple
surveys of the same site.

Modelling occupancy and detectability

Occupancy ψ is jointly modelled with probability of
detection p under a model-based approach, with
models being based on straightforward probabilistic
arguments describing the underlying processes that
may have caused a given detection history to be
observed (MacKenzie 2005). On the basis of the con-
ceptual model, there are 2 stochastic processes oc -
curring that affect the detection of the target species
at a site (MacKenzie et al. 2006). A site might be
either occupied (with probability ψ) or unoccupied
(with probability 1 − ψ) by the target species. If the
site is unoccupied, the target species will not be
detected. If the site is occupied, at each survey j the
target species will either be detected (with probabil-
ity pj) or pass undetected (with probability qj = 1 − pj).

For example, consider the detection history Hi =
101 (denoting that site i was surveyed by 3 ob -
servers, with the target species being detected by
the first and third observers). The probability of this
history would be Pr(Hi = 101) = ψp1q2p3. For sites
where the target species is never detected there are
2 possibilities: the species is either present but
never detected, or genuinely absent. Thus, Pr(Hi =
000) = ψq1q2q3 + (1 − ψ). By deriving such expres-
sions for each of the s observed detection histories,
assuming independent observations, the likelihood
of the data will be

(1)

where p is the vector of detection probabilities.
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Incorporating covariates

The potential relationships between model para-
meters (occupancy and detection probabilities) and
the characteristics of the sites (e.g. habitat type,
depth, slope) or environmental (e.g. annual average
surface temperature, current intensity, water turbid-
ity) and geographical variables (longitude, latitude)
can be investigated. In addition, different observers
can have quite dissimilar capabilities as regards the
detection of the target species (MacNeil et al. 2008b),
and the observer effect should normally be consid-
ered. Moreover, the probability of detecting the tar-
get species in a specific location is often a direct func-
tion of the species’ local abundance. Covariates
(related to all of the above) are incorporated by using
the logistic model 

θi = exp(Yi β) · (1 + exp(Yi β))–1 (2)

where θi is the probability of interest (occupancy or
detection probability), Yi are the covariates to be
modelled, and β denotes the vector of the  co variate
coefficients to be estimated (MacKenzie et al. 2006).
Standard maximum likelihood techniques are ap -
plied to obtain estimates of the model parameters.

Model selection and multi-model inference

An information theory approach may be followed
in order to infer occupancy patterns. According to
this approach, data analysis is assumed to be the
integrated process of an a priori specification of a set

of candidate models (based on the science of the
problem), model selection based on the principle of
parsimony according to the Akaike information crite-
rion (AIC; Akaike 1973) and the estimation of para-
meters and their precision (Burnham & Anderson
2002). The principle of parsimony implies the selec-
tion of a model with the smallest possible number of
parameters for adequate representation of the data, a
bias versus variance trade-off. Furthermore, rather
than estimating parameters using only the ‘best’
model, parameters (i.e. occupancy and detection
probabilities) can be estimated using several or even
all of the models considered. This procedure is
termed multi-model inference and has several theo-
retical and practical advantages (Burnham & Ander-
son 2002, Katsanevakis 2006).

Case study 

Study area and target species

The proposed approach was applied in a snork el -
ling UVS in the Saronikos Gulf (Greece, Eastern
Medi terranean; Fig. 1). The aim of the survey was to
estimate occupancy patterns for a range of benthic
species of the shallow water rocky subtidal commu-
nities. In this paper, we present results for 2 species:
the gastropod Stramonita haemastoma (Linnaeus
1767: Buccinum) and the alien green alga Codium
fragile (Suringar) Hariot subsp. fragile.

Stramonita haemastoma is a pre datory cosmopoli-
tan whelk that may reach up to ca. 80 mm in shell

length and is found in rocky littoral
habitats in warm temperate waters. It
is a keystone species in many loca-
tions, greatly determining the struc-
ture and organization of intertidal
communities. Although in the Atlantic
Sea the species may attain densities of
dozens to hundreds of individuals per
m2, in the Medi terranean Sea its den-
sities are much lower (Rilov et al.
2001).

The green alga Codium fragile frag-
ile (hereafter C. fragile) is one of the
most common alien macroalgae in the
Mediterranean Sea. It originates from
the North Pacific Ocean and has
spread to both hemispheres, mainly
due to shipping (Carlton & Scanlon
1985). Populations of the species are
relatively restricted in Greece; they
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are only found at a small number of sites (mostly near
ports and polluted environments) (Tsiamis et al.
2010). It was first observed in the Saronikos Gulf in
1998 (Tsiamis & Panayotidis 2007).

Design and field protocol

In total, 54 sites of hard substrate were surveyed
during summer 2009 (Fig. 1). At each sampling site, a
200 m line was deployed in shallow waters <5 m
deep, using a diving reel. Five observers (all marine
scientists with various levels of experience in UVSs,
trained for the identification of the target species)
surveyed the transect independently (with a time lag
of a few minutes) during fixed 20 min time intervals,
searching for the target species. For Codium fragile,
the observers recorded not only its presence but also
the number of individuals de tected; these data were
classified into 2 relative abundance categories: (1) ≤5
detected individuals, (2) >5 detections.

Effect of multiple observers

In this study, we used the Stramonita haemastoma
dataset to demonstrate the effect of the number of
independent observers on the occupancy estimate. A
model that assumed constant occupancy ψ within the
study area and different detection probabilities pj for
each observer was fit to the presence−absence data.
The model was fitted for all different combinations of
2, 3, 4 or 5 observers. The probability of a ‘false
absence’, i.e. the probability that the species was
present in a site, given that it was not detected, was
estimated as

(3)

(MacKenzie et al. 2006). In the hypothetical case of a
single-observer survey, occupancy was naively esti-
mated as the ratio of the number of sites where the
species was detected to the total number of surveyed
sites.

Testing multiple hypotheses for occupancy patterns

The Codium fragile dataset was analysed following
an information-theoretic approach and multi-model
inference, i.e. estimation of occupancy and detection
probabilities taking into account all plausible models
and not just the best one. Our aim was to demon-

strate how occupancy patterns may be inferred by
testing multiple hypotheses, while also taking into
account detectability issues. Specifically, we tested
the following hypotheses for the occupancy of C.
fragile in the study area: (O1) occupancy was con-
stant; (O2) occupancy varied with the distance from
the highly industrialized and polluted port of Piraeus.
Three assumptions for de tect ability were investi-
gated: (D1) detectability was constant across sites
and observer-independent; (D2)  de tect abi lity was
observer-dependent; (D3) de tect abil ity differed in
relation to species abundance. Eight occupancy mod-
els were fitted for each target species by combining
the 2 assumptions for occupancy with the 3 assump-
tions for detectability (Table 1). Seven covariates
were used in these models: (1) dist, which was the
standardized value of the distance of each site from
the port of Piraeus, i.e. (value − mean)/SD; (2) obs,
collectively representing obs1, obs2, obs3, obs4, obs5,
where obsi = 1 if the survey was conducted by
observer i, 0 otherwise; (3) abund, which was 0 if ≤5
individuals were detected in a site, 1 otherwise
(Table 1). The software PRESENCE v. 3.1 (Hines
2006) was used to fit the candidate models.

AIC and AIC differences, ΔAICi = AICi – AICmin,
were computed over all candidate models. To quan-
tify the plausibility of each model, given the data and
set of 6 models, the Akaike weight w of each model
was calculated, where

(4)

ψ ψ ψ ψfa = − ⋅ − + −⎡
⎣
⎢

⎤
⎦
⎥

= =

−

∏ ∏( ) ( ) ( )1 1 1
1 1

1

p pj
j

K

j
j

K

wi i jj
= − −∑exp( . ) exp( . )0 5 0 5Δ Δ
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Model notation Covariates                 Assumptions
                                Occupancy   Detectability

ψ(·) p(·)                            –                     –                  O1, D1
ψ(·) p(obs)                        –              Observer           O1, D2
ψ(·) p(abund)                  –            Abundance         O1, D3
ψ(·) p(obs+abund)          –             Observer &           O1, 
                                                       abundance        D2 & D3

ψ(dist) p(·)                    Dist.                  –                  O2, D1
ψ(dist) p(obs)                Dist.           Observer           O2, D2
ψ(dist) p(abund)          Dist.          Abundance         O2, D3
ψ(dist) p(obs+abund)  Dist.          Observer &           O2, 
                                                       abundance        D2 & D3

Table 1. Set of candidate models for occupancy and detect -
ability of Codium fragile in the study area. The underlying
assumptions are: (O1) occupancy was constant; (O2) oc -
cupancy varied with the distance from the port of Piraeus;
(D1) detectability was constant across sites and observer-
 independent; (D2) detectability was observer-dependent;
(D3) detectability differed in relation to species abundance.
Constant occupancy or detection probability is denoted as 

ψ(·) or p(·), respectively. Dist.: Distance
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The Akaike weight is considered as the weight of
evidence in favour of model i being the actual best
model for the available set of models (Akaike 1983,
Burnham & Anderson 2002). To assess absolute
goodness of fit, a Pearson’s chi-squared statistic was
used based on the parametric bootstrap procedure
described by MacKenzie & Bailey (2004). Estimates
of the relative importance of predictor variables j
were made by adding up the Akaike weights across
all the models in the set where each variable oc -
curred [w+( j)]; the larger the sum of Akaike weights
the more important that variable was, relative to the
other variables (Burnham & Anderson 2002).

Model-averaged estimates of ψ and p were calcu-
lated by the formula

(5)

where denotes a model averaged estimate of para-
meter θ (Burnham & Anderson 2002). The uncondi-
tional standard error of θ was estimated as

(6)

where is the variance of θ according to
model gi, conditional on the model (Burnham &
Anderson 2002).

RESULTS

Effect of multiple observers on occupancy 
estimations — the Stramonita haemastoma example

In our case study, S. haemastoma was found in 50
of the 54 surveyed sites by at least 1 of the 5 ob -
servers. The occupancy of the species in the study
area (using the data from all 5 observers) was esti-
mated as ψ = 0.93 with a 95% CI of 0.82−0.97. How-
ever, detectability varied among observers, ranging
between 0.70 and 0.96. Due to the varying compe-
tence of the 5 observers to detect the species, results
from hypothetical single-observer presence−absence
surveys greatly varied. Such single-observer occu-
pancy estimates ranged between 0.64 and 0.89, de -
pending on the observer (Fig. 2); in every case, occu-
pancy was underestimated, as none of the observers
managed to detect the species at all 50 sites.

When using multiple observers, despite differing
detectability among observers, the variation in occu-
pancy estimates was reduced. The higher the num-
ber of observers, the lower the variation in estimated
values (Fig. 2), indicating that with multiple ob -
servers the effect of an inefficient observer on occu-
pancy estimation becomes less important. The higher

the number of observers, the lower is the effect any
single observer has on the estimated occupancy. It is
also evident from Fig. 2 that the gain in accuracy of
the occupancy estimates was large when the number
of observers increased from 1 to 2, smaller when the
number of observers increased from 2 to 3, and mar-
ginal at further increases in the number of observers.

The probability of a false absence ψfa was relatively
high in the case of 1 observer (range: 0.10−0.30) but
became practically null (0.0002) with 5 observers
(Fig. 3). With 3 observers, ψfa was <0.025 for every
combination of observers (average ψfa = 0.011), while
with 4 observers, ψfa was <0.005 in every case
(Fig. 3).

Multi-model inference of occupancy patterns —
the Codium fragile example

Based on the full model, ψ(dist) p(obs×abund), there
was no evidence of poor model fit (χ2 test, p = 0.60).
The best model (w = 80.2%) was ψ(dist) p(abund),
which supported assumptions O2 and D3 (Table 2).
Model ψ(dist) p(obs+abund), which assumed O2, D2
and D3, was also somewhat supported by the data (w
= 18.6%). All other models had essentially no support
(Table 2) and may thus be omitted from further con-
sideration.

The expressions of the best [ψ(dist) p(abund)] and
second best [ψ(dist) p(obs+abund)] models were,
respectively:

θ̂

ˆ ˆθ θ= ∑wi i
i

se( ˆ ) var(ˆ | ) ( ˆ ˆ )
/

θ θ θ θ= + −⎡⎣ ⎤⎦∑w gi i i i
i

2
1 2

var(ˆ | )θi ig

100

Fig. 2. Stramonita haemastoma. Estimated occupancy in the
study area based on presence−absence data collected by 1, 2,
3, 4 or 5 observers. In each case of <5 observers, estimates for
all possible combinations of observers (gray diamonds) are
provided; the average estimated occupancy is also given 

(black rectangles, with error bars showing SD)
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                                ψ =  exp(–1.299–1.522dist) ×
                      [1+exp(–1.299–1.522dist)]–1

              p =  exp(–0.234+2.78abund) ×
                      [1+exp(–0.234+2.78abund)]–1

                                
                                ψ =  exp(–1.373–1.492dist) ×
                      [1+exp(–1.373–1.492dist)]–1

              p =  exp(A)[1+exp(A)]–1

                                A =  –0.769obs1 +1.126obs2 –0.263obs3 +
                      1.126obs4 –0.753obs5 +2.73abund

With distances being standardized according to the
formula dist = (x − 40060) / 29041, where x is the
coastline distance from the port of Piraeus in metres.

Between the 2 assumptions for occupancy, O2 had
substantial support [w+(O3) = 99.1%] and prevailed
against O1 [w+(O1) = 0.9%]. The coefficients of dist
were negative in both supported models, and thus it
is concluded that the occupancy of Codium fragile
declined with the distance from the port of Piraeus.
Among the detectability assumptions, D3 had the
highest support [w+(D3) = 99.7%], D2 had little sup-
port [w+(D2) = 18.9%], and D1 had essentially no
support [w+(D1) = 0.2%]. Hence, detectability may
not be considered constant but differing in relation to
species abundance; the hypothesis that p differs de -
pending on the observer may not be excluded. Based
on the best model, p was 0.42 for the low-abundance
sites and 0.93 for the sites of high abundance. The

probabilities of false absences were generally low
(<2.5%) for all sites.

Occupancy of Codium fragile in the study area
based on the average model predictions (between
the 2 supported models, weighted by w) is presented
in a map (Fig. 4), where the decline in occupancy
with increasing distance from the port of Piraeus is
clearly evident.

DISCUSSION

Unbiased occupancy estimation 
by multiple-observer surveys

The proposed approach offers an efficient way to
ob tain unbiased occupancy estimates by allowing
de tection probabilities to be jointly estimated.
 Presence− absence visual surveys in the marine envi-
ronment, as was evident in the cases of Stramonita
haema stoma and Codium fragile suffer from both
low and variable detection probabilities. For S.
haema stoma, although quite abundant in the study
area, the probability of a false absence reached as
high as 30% for 1 observer. In the case of S. haemas-
toma, simple presence−absence surveys by single
observers produced inaccurate results. Depending
on the observer, occupancy estimates were nega-
tively biased by as much as 31%. In the case of long-
term monitoring studies or comparisons across envi-
ronmental or spatial gradients, ignoring imperfect
detectability might lead to misleading temporal or
spatial population patterns.

101

Model                                −2l           K         ΔAIC     w (%)

ψ(dist) p(abund)             107.59         4           0.0         80.2
ψ(dist) p(obs+abund)     102.51         8           2.9         18.6
ψ(·) p(abund)                  118.99         3           9.4          0.7
ψ(dist) p(·)                       121.69         3          12.1         0.2
ψ(·) p(obs+abund)          113.81         7          12.2         0.2
ψ(dist) p(obs)                  117.03         7          15.4         0.0
ψ(·) p(·)                            132.97         2          21.4         0.0
ψ(·) p(obs)                       128.31         6          24.7         0.0

Table 2. Summary of the model selection procedure examin-
ing factors predicting the probability of presence ψ of
Codium fragile in 200 m standardized transects along the
coastline of the Saronikos Gulf (during summer 2009), using
simple logistic regression. Twice the negative log-likelihood
(−2l), the number of parameters in the model (K), the rela-
tive difference in Akaike information criterion (AIC) values
compared to the top-ranked model (ΔAIC), and the AIC
model weights (w) for all candidate models (as defined in
Table 1) are reported. Models are ranked according to w

Fig. 3. Stramonita haemastoma. Probability of a ‘false ab-
sence’, ψfa, from a site in the study area (i.e. probability of
presence given that the species was not detected), based on
presence−absence data collected by 1, 2, 3, 4 or 5 observers.
In each case of <5 observers, probabilities were estimated
for all possible combinations of observers (gray diamonds);
the average ψfa is also provided (black rectangles, with error 

bars showing SD)
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The observer effect is of paramount importance es-
pecially when spatial or temporal comparisons are
made based on surveys conducted by different ob -
servers (e.g. Benedetti-Cecchi et al. 1996, MacKenzie
et al. 2006, MacNeil et al. 2008b). The possibility of er-
roneously noting significant differences in occupancy
due to observer-related differences in de tect ability is
high when based on single-observer surveys. The in-
crease in the variability of estimates due to unac-
counted observer-related variation in de tect ability,
which could easily mask temporal trends, is equally
important. Using repetitive observations made at the
sampling sites by multiple observers re duces the ob-
server effect and offers solutions to all of these issues.

There is undoubtedly a point beyond which it is
more efficient to invest in spatial replication than to
increase the number of observers. Increasing the
number of surveyed sites would make it easier to
detect significant effects (modelled covariates) in oc -
cupancy models. In the case of Stramonita haema -
stoma, it appears that 3 observers would suffice; the
gain from further increasing the number of ob servers
was small and not worth the extra cost and effort
(however, this would depend on the accuracy re -
quired for the intended project/goal). As the ultimate
goal of an occupancy survey is to achieve a desired
level of precision in the estimation of occupancy with
minimal effort, the number of required observers
appears to be a key aspect in designing occupancy
studies based on our proposed methodology. It has
been proven that when detection probabilities are

high, it is more efficient to survey
more sampling units (sites) rather than
to in crease the number of surveys per
sampling unit (i.e. number of ob -
servers in our case), but as the detec-
tion probability decreases, more sur-
veys per site are necessary (Tyre et al.
2003). MacKenzie & Royle (2005) and
MacKenzie et al. (2006) provided spe-
cific advice on the number of repeated
surveys per sampling unit considering
the variance of the occupancy estima-
tor under specific sampling schemes.

Modelling occupancy patterns

The modelling framework pro -
vided by MacKenzie et al. (2006) is
based on 2 stochastic processes — for
occupancy and detectability — that
define whether the target species is

detected at a site. By jointly modelling each of the 2
processes, this framework provides a direct means of
investigating potential relationships with various
environmental and spatial parameters, such as habi-
tat type, distance from a pollution source, latitude,
sea water temperature or salinity. Wildlife managers
increasingly wish to ex tract more than an estimate of
a state variable from their surveys and frequently
want to relate animal occupancy to spatial and envi-
ronmental variables. Inferred patterns from monitor-
ing studies might provide useful insights about sys-
tem be haviour and generate hypotheses that can be
tested with manipulative experiments. In the case of
the in vasive alien species Codium fragile, the fact
that the probability of occupancy was highest near
the polluted port of Piraeus and declined with
increased distance from the port generates 2
hypotheses that de serve further investigation: (1) the
species has been introduced in the study area via
shipping, initially near the port of Piraeus; (2) the
species is resistant to marine pollution and might
more easily get established in polluted areas due to a
competitive advantage.

The information theory approach frees researchers
from the limiting concept that the proper approxi-
mating model is somehow ‘given’. When the data
support evidence of more than 1 model, model aver-
aging the predicted response variable across models
is advantageous in reaching a robust inference that is
not conditional on a single model (Burnham & Ander-
son 2002, Katsanevakis 2006).
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Violation of model assumptions

Sites are assumed to be ‘closed’ to changes in occu-
pancy during the survey period, i.e. the occupancy
status remains constant. In the case of violation of the
closure assumption, it is expected that the occupancy
estimator will be unbiased if species move in and out
of the sampling unit in a random way, although occu-
pancy will now refer to proportions of sites ‘used’ by
the target species (MacKenzie 2005). However, if
movement into and out of the sampling unit is not
random during the survey period (e.g. due to emigra-
tion, immigration or reproduction), occupancy will be
biased. In particular, models relating occupancy to
environmental and spatial covariates might give spu-
rious results. For example, assume a survey is con-
ducted along a coastline that is oriented across a lat-
itudinal gradient, and (for reasons of cost efficiency)
sites are surveyed consecutively along this gradient.
If, during the survey, immigration of the target spe-
cies into the study area causes an increase of overall
occupancy, a false latitudinal gradient of occupancy
will be inferred, because both true occupancy and
the latitude of surveyed sites would be correlated
with time. Any pattern of non-random animal move-
ments even at much finer spatial or temporal scales
might be a source of bias, unless properly modelled.

In the case of unmodelled occupancy heterogene-
ity (variation of occupancy probability among sites),
the bias is relatively unknown compared to other
model assumptions and more simulation studies are
required. The estimated occupancy may appropri-
ately reflect the average level of occupancy in the
study area, but the variance is expected to be overes-
timated (MacKenzie et al. 2006). Unmodelled hetero-
geneity in detection probability p generally leads to
negatively biased occupancy estimates. Low detec-
tion probabilities coupled with large variations
(among sites or surveys) tend to increase the bias
(Royle & Nichols 2003). Bias is further exaggerated in
studies involving a small number of sites or a few
repeated surveys at each site (MacKenzie et al.
2006).

Although the proposed approach can be applied to
any type of marine species (benthic, demersal or
pelagic), occupancy estimates of mobile species
might be biased due to violation of the assumption of
independent detectabilities among surveys. Mobile
species, especially fish, might be affected substan-
tially by the presence of observers, and can be classi-
fied into 4 major categories of behavioural response
(Kulbicki 1998): (1) ‘neutral’, i.e. not affected; (2)
‘shy’, i.e. stay away from the observer; (3) ‘curious’,

i.e. attracted by the presence of an observer; and (4)
‘secretive’, i.e. tending to hide in holes or crevices as
an observer approaches. Having a number of
observers consecutively surveying the same site may
introduce bias when targeting ‘shy’, ‘secretive’ or
‘curious’ species. Detectability of ‘shy’ and ‘secretive’
species might decline with successive surveys, as the
species would tend to flee or hide after being dis-
turbed by an observer, while the opposite could be
true for ‘curious’ species. Part of the bias due to such
behavioural responses of mobile species to observers
could be avoided by defining appropriate survey-
specific covariates when modelling detection proba-
bilities, e.g. by defining a covariate yij = 1 if site i was
surveyed by another observer before survey j, and 0
otherwise. Alternatively, the time interval between
successive surveys carried out by different observers
could be increased to allow observer-related effects
to deflate in the meantime.

It is assumed that the observed presence of a spe-
cies in a sampling unit is accurate. However, the pos-
sibility of misidentification during underwater sur -
veys cannot always be excluded. Some species are
difficult to identify in situ and can be easily confused
with other species. In particular, when surveys are
conducted by inexperienced observers or volunteers,
the possibility of false positive records might be high.
Even with low rates of false positive errors, the bias in
occupancy rates can be extreme. Royle & Link (2006)
developed a model for site occupancy that allows for
false records of both absence and presence.

Potential applications in the marine environment

Several methods have been developed to deal with
detectability when estimating the abundance of
marine populations (e.g. Buckland et al. 2001, 2004,
Katsanevakis 2009). All of these approaches perform
best when the numbers of individuals observed are
relatively high. However, adequate sample sizes are
difficult to obtain for rare and elusive species, which
are often of management concern because of low
population sizes and often limited geographical
ranges (Thompson 2004). For such rare or elusive
species (often endangered and/or under a protection
status), occupancy is a good surrogate of abundance,
as relatively small sample sizes are sufficient
(MacKenzie et al. 2004). The presented approach is a
good choice for revealing spatial distribution pat-
terns and monitoring trends, and it is particularly
suitable for endangered and protected species due to
its non-destructive nature.
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Marine biological invasions represent a recognized
worldwide threat impacting biodiversity and local
economies, and there is strong interest from the sci-
entific community and international organizations to
monitor invasive species (CBD 2000, EC 2008,
 Zenetos et al. 2010). In large-scale monitoring pro-
grammes that may span whole countries or wider
regions (e.g. for the implementation of the Marine
Strategy Framework Directive in Europe; EC 2008,
2010) the methodology proposed in this paper would
be an appropriate, efficient and less biased (in rela-
tion to simple presence−absence surveys) approach
to estimate the spatial distribution and range of inva-
sive species. Multi-season occupancy surveys would
additionally provide good estimates of invasion rates
and help us understand the underlying dynamics of
colonization. Such information would be valuable for
managers and decision-makers in the process of
assessing impacts of biological invasions, conducting
risk analysis and taking mitigation measures.

Major long-term distributional shifts in the marine
fauna as a response to climate change have been
reported (e.g. Last et al. 2011, Philippart et al. 2011).
Dramatic shifts in the distributional range of marine
species have been projected for the following de -
cades, leading to local extinctions, species invasions
and substantial ecosystem disturbances (Cheung et
al. 2009). There is a need for a concerted effort to col-
lect and analyse distributional data for marine biota,
especially for species dwelling in shallow coastal
areas, which are more affected by the in crease of sea
water temperature. The proposed methodology for
occupancy estimation and modelling offers a good,
cost-effective solution for such long-term large-scale
monitoring.

Novel tools and techniques from geographical in -
formation science, advanced machine-learning algo -
rithms and presence−absence or presence-only data
have been integrated to model complex species−
environment relationships (e.g. Pittman & Brown
2011). Improving the quality of data by reducing the
probability of false absences, especially when these
probabilities correlate with the environmental vari-
ables used in the species−environment models,
would improve the accuracy of species distribution
pre dictions. Integration of the proposed multi-
observer approach with such advanced distribution
and habitat suitability models could increase their
predictive performance.

In conclusion, the results of this study emphasize
the importance of detectability in the context of
 presence− absence underwater visual surveys while
proposing a cost-effective multiple observer ap -

proach that is best suited for the marine realm and
successfully addresses the issue of false absences.
This approach along with its potential extensions can
prove to be a valuable tool in a variety of applications
relating but not limited to the monitoring of marine
populations.
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