INTRODUCTION

Bathymodioline mussels (Bivalvia, Pteriomorphia, Mytilidae, Bathymodiolinae) are widespread in deep-sea reducing environments, ranging from hydrothermal vents and cold seeps to wood and whale falls (Cavanaugh et al. 2006, Dubilier et al. 2008). This cosmopolitan distribution may be attributed to their nutritional flexibility, in that they are capable of obtaining nutrition from filter feeding (Page et al. 1991, Riou et al. 2010a) supplementary to nutrition obtained from single or dual symbioses with sulfide-oxidizing (thiotrophic) and methanotrophic bacteria (Distel et al. 1995, DeChaine & Cavanaugh 2006, Duperron et al. 2006). This mixotrophic lifestyle may allow bathymodiolines to survive fluctuations in energy sources more effectively than other invertebrate symbioses, which in turn may facilitate a broader environmental range (Distel et al. 1995).

ABSTRACT: Deep-sea mussels of the subfamily Bathymodiolinae (Bivalvia, Pteriomorphia, Mytilidae) are dominant members of hydrothermal vent communities across the globe and have been found within every known hydrothermal vent biogeographic province. Thus, the apparent rarity of bathymodiolines at vents of the Juan de Fuca Ridge (JdF) is a notable exception. We examined mussels collected from the JdF over a span of 18 yr to clarify the classifications of mussel hosts and their symbiotic bacteria, and the relationships between sparsely distributed individuals. Several specimens, previously classified as Bathymodiolus and Adipicola, were reassigned as Adipicola sp. JdF based on new phylogenetic evidence and previous morphological studies. Adipicola sp. JdF are the most deeply branching members of Adipicola identified to date. Ultrastructural, molecular phylogenetic, and stable carbon isotope analyses indicated that Adipicola sp. JdF mussels harbor bacterial chemoautotrophic symbionts that appear to be extracellular and that are closely related to symbionts of other bathymodioline hosts. This study demonstrates that a sparsely distributed, yet cohesive, population of Adipicola has inhabited JdF vents for at least the past 18 yr. Moreover, the presence of extracellular symbionts in Adipicola sp. JdF at hydrothermal vents stands in contrast to the evolutionary patterns proposed for bathymodiolines in general. Adipicola sp. JdF represents an exception to the trend of bathymodiolines harboring extracellular symbionts living exclusively in shallow marine wood and bone habitats (<1000 m), indicating that bathymodiolines are more flexible with regard to habitat and symbiont characteristics than previously considered.

KEY WORDS: Symbiosis · Bathymodiolus · Mussel · Adipicola · Extracellular · Chemoautotrophy · Juan de Fuca
**Bathymodiolus** is the most widely distributed of the bathymodioline genera, with representatives in every known hydrothermal vent biogeographic province (Van Dover et al. 2002). Newly discovered mussels at hydrothermal vents are typically assigned to this genus based on shell and tissue morphological characters, which serve to distinguish Bathymodiolus from other bathymodioline genera (Dell 1987, Gustafson et al. 1998). Recent molecular phylogenetic analyses have refined bathymodioline taxonomy, revealing the paraphyly of genera previously thought to be monophyletic based on morphological characters (*Idas, Adipicola, and Bathymodiolus*), thus demonstrating the importance of molecular characters in complementing taxonomic assignments based primarily on morphology (Jones et al. 2006, Samadi et al. 2007, Lorion et al. 2010).

Large aggregations of *Bathymodiolus* mussels are conspicuously absent from the spreading centers of the northeastern Pacific Ocean, making accurate phylogenetic characterization of the few sparsely distributed mussels all the more difficult. Several specimens collected in the early 1990s from the Middle Valley segment of the Juan de Fuca Ridge (JdF) were assigned to the genera *Idas* or *Adipicola* based on morphology and tissue ultrastructure (Table S1 in the supplement). It had a brown, modioliform shell ~30 mm in length, with large brownish pink, fleshy gills typical of bathymodioline mussels. Portions of the gill were excised aboard ship and frozen at ~80°C for molecular and stable isotope analyses. Gill sections for ultrastructural analyses were fixed in 3% glutaraldehyde in 0.1M sodium cacodylate with 0.4M NaCl (pH 7.4), stored at 4°C, post-fixed in 1% osmium tetroxide, stained en bloc in 1% uranyl acetate, and embedded in Spurr’s resin. Thin sections were stained with lead citrate (Reynold’s stain) and 2% uranyl acetate and examined on a JEOL 2100 electron microscope. The remaining tissue and shell were preserved in 70% ethanol and deposited in the Harvard University Museum of Comparative Zoology mollusk collections (www.mcz.harvard.edu/Departments/Malacology) (MCZ 374309).

We examined bathymodioline host and symbiont phylogeny using sequences from portions of 3 host genes, mitochondrial cytochrome c oxidase subunit I (COI; 366 nt), NADH dehydrogenase subunit 4 (ND4; 441 nt), and 18S rRNA (18S; 1604 nt), and 1 symbiont gene, 16S rRNA (16S; 1234 nt). Genomic DNA extracted from foot and gill tissue, using the DNeasy kit (Qiagen), was used for Polymerase Chain Reaction (PCR) amplification of host and symbiont genes, respectively. Primers and PCR conditions are listed in Table S2 in the supplement. Amplicons were purified using the Qiaquick kit (Qiagen), cloned into the StrataClone PCR cloning vector pSC-B (5 clones per gene) (Agilent Technologies), and sequenced at the Dana-Farber/Harvard Cancer Center DNA Resource Core on an ABI3730xl (Applied Biosystems). Sequences were assembled and manually edited in Sequencher v4.7 (Gene Codes Corporation). GenBank/DDBJ/EMBL accession numbers for sequences used in this study are listed next to taxon names in phylogenetic trees. The COI sequence (579 nt) for *Adipicola* MV referenced in this study was kindly provided by J. Lorion (Japan Agency for Marine-Earth Science and Technology). Genomic DNA from paratypes of *Benthomodiolus lignicola* fixed in formalin, provided by the Te Papa Tongarewa/Museum of New Zealand (Wellington), was extracted from gill tissue as above, but PCR amplification with universal

**MATERIAL AND METHODS**

A single mussel, here referred to as JdF2008, was discovered in bulk invertebrate collections obtained by the submersible ‘Alvin’ in July 2008 on the Endeavor segment of the Juan de Fuca Ridge (AT15-34, Dive 4413, 47° 58’ N 129° 05’ W; ~2189 m depth; Table S1 in the supplement). It had a brown, modioliform shell ~30 mm in length, with large brownish pink, fleshy gills typical of bathymodioline mussels. Portions of the gill were excised aboard ship and frozen at ~80°C for molecular and stable isotope analyses. Gill sections for ultrastructural analyses were fixed in 3% glutaraldehyde in 0.1M sodium cacodylate with 0.4M NaCl (pH 7.4), stored at 4°C, post-fixed in 1% osmium tetroxide, stained en bloc in 1% uranyl acetate, and embedded in Spurr’s resin. Thin sections were stained with lead citrate (Reynold’s stain) and 2% uranyl acetate and examined on a JEOL 2100 electron microscope. The remaining tissue and shell were preserved in 70% ethanol and deposited in the Harvard University Museum of Comparative Zoology mollusk collections (www.mcz.harvard.edu/Departments/Malacology) (MCZ 374309).
bacterial primers for the 16S rRNA gene failed to yield any amplification products.

Bayesian inference was used to determine symbiont and host phylogenetic placement using MrBayes v3.1.2 (see the supplement). A structure-based 16S alignment was conducted using RNAstatsa v0.8.1 (Stocsits et al. 2009) with the *E. coli* 16S RNA structure (J01695) as a reference (Cannone et al. 2002). Nucleotide positions of stems and loops were extracted from the RNAstatsa alignment and used as input for the MrBayes doublet model. Alignments for host genes were performed with ClustalW (Thompson et al. 1994) and edited manually in MacClade 4.08 (Maddison & Maddison 2000). Model selections for each gene used in the MrBayes analyses are listed in Table S3 in the supplement.

*JdF* 2008 mussel tissues were subsampled for stable carbon and nitrogen isotope analyses. Briefly, symbiont-containing gill and symbiont-free foot tissues were flash-combusted to CO$_2$ and N$_2$ using standard methods (Sulzman 2007) and analyzed on a GVI IsoPrime at the Boston University Stable Isotope Laboratory. Results are reported relative to Vienna PeeDee Belemite and atmospheric N$_2$ for carbon and nitrogen standards, respectively.

**RESULTS AND DISCUSSION**

Phylogenetic, ultrastructural, and stable isotope evidence, in combination with previous morphological studies, demonstrated that mussels collected from the Middle Valley (*Adipica MV*) and Endeavor (*Bathymodiolus* sp. and *JdF* 2008) segments of the *JdF* are members of the same species, *Adipica* sp. *JdF*, and harbor extracellular chemoautotrophic symbionts. These shared attributes are presented and discussed in detail below.

Phylogenetic evidence indicated that the *JdF* mussels are a single species, falling within the subfamily Bathymodiolineae. Mytilid 18S and ND4 phylogenies supported placement of *JdF* 2008 within Bathymodiolineae (posterior probability, $P_p = 1$; Fig. S1 in the supplement) and a sister relationship to all other bathymodiologies ($P_p = 0.98$; Fig. S2 in the supplement). The close relationship of *JdF* 2008 and *Benthomodiolus lignicola* in the 18S and ND4 phylogenies (Figs. S1 & S2) was likely due to the lack of genetic data for *Bathymodiolus* sp. or *Adipica* MV in these datasets. The COI phylogeny, with sequences for all 3 *JdF* mussels, indicated that they cluster separately from *Benthomodiolus* species and from paraphyletic *Adipica* species (Fig. 1). Further, the COI phylogeny supported monophyly of *Adipica* MV, *Bathymodiolus* sp., and *JdF* 2008 with $P_p = 0.99$.

The well-supported monophyly and high level of mitochondrial sequence identity among the *JdF* mussels suggests that they most likely belong to the same species. The *JdF* mussel COI sequences are 99% identical (362/366 nt), falling within the range found among different populations of the same species (98 to 100% in *Bathymodiolus beckerae* from the West Florida Escarpment and Blake Ridge), and much higher than the identity between bathymodiologies (69.4 to 88.7%) (Won et al. 2002, Van Dover et al. 2003). Collectively, the phylogenetic analyses and sequence identity support the conclusion that the *JdF* mussels belong to the same species.

A previous morphological study provides evidence which, considering the ultrastructural and phylogenetic data, suggests that *Adipica* takes precedence as the genus designation for the *JdF* mussels. The bathymodioline collected from Middle Valley (*Adipica MV*) was previously assigned to the genus *Adipica* based on characters of the pedal and byssal retractor muscles and the relative sizes of the inner and outer demibranchs (Gustafson et al. 1998). Given the current molecular analyses demonstrating that *Adipica* MV, *Bathymodiolus* sp., and *JdF* 2008 belong to the same species, these mussels are provisionally re-designated as *Adipica* sp. *JdF*, and herein each specimen is referred to by its year of collection (e.g. JdF 2008).

Ultrastructural observations of the gill of *JdF* 2008 revealed striking similarities to previous analyses of *JdF* 1990 and *JdF* 1999 (McKiness et al. 2005, Southward 2008) gills, underscoring the shared characteristics of *Adipica* sp. *JdF* mussels. Electron micrographs of *JdF* 2008 gill filaments revealed gram-negative coccoid bacteria located at the apical end of bacteriocytes, as is typical in bathymodielines. The symbionts lacked the stacked intracytoplasmic membranes of methanotrophic bacteria which are found in single or dual symbioses in some bathymodielines (Fig. 2A, B). Cytoplasmic vacuoles enclosing numerous bacteria that appeared to be undergoing degradation were observed in the bacteriocyte cytoplasm (Fig. 2A). Degraded bacteria may serve as a source of carbon for hosts (Streams et al. 1997), or alternatively, hosts may derive carbon from the leaking of symbiont metabolites (Kadar et al. 2008).

The *JdF* 2008 symbionts appeared to be extracellular, associated with microvilli differentiated from the host cell surface (Fig. 2B). The *JdF* 1990 gill exhibited similar symbiont ultrastructure, including the pres-
ence of extracellular bacteria (Southward 2008). The bacteria in JdF1999 are also located at the apical end of bacteriocytes; however, their exact position relative to the host membrane could not be determined due to the poor condition of the gill tissue (McKiness et al. 2005, Southward 2008). These analyses demonstrate that the location of the bacteria and ultrastructure are similar among the Adipicola sp. JdF symbionts.

Phylogenetic evidence demonstrates that JdF1999 and JdF2008 harbor symbionts that are closely related to those found in other bathymodioline mussels. Importantly, only a single symbiont phylotype was found in JdF2008 and JdF1999 (McKiness et al. 2005), in contrast to mussels in which multiple minor 'symbiont' phylotypes have been found (Duperron et al. 2007). Symbiont genetic data were not available from JdF1990, so its relationship to the other JdF symbionts cannot be established. A Bayesian 16S rRNA gene phylogeny of chemoautotrophic bivalve symbionts and close relatives demonstrated that the JdF1999 and JdF2008 form a monophyletic group that falls unambiguously within the clade of thiotrophic bathymodioline symbionts (Pp = 1; Fig. 3). In general, as in previous studies (Won et al. 2008), a pattern of geographical clustering of symbionts according to western Pacific, eastern Pacific, Atlantic, and Indian ocean basins was observed in the 16S phylogeny (Fig. 3). This clustering may reflect inherent limits to bacterial dispersal in the deep sea, which is consistent with the observation that diversification among symbionts increases with geographical distance (Won et al. 2008). However, several
exceptions to this pattern were identified, suggesting that symbiont diversification cannot be ascribed to dispersal-driven processes alone (Fig. 3).

Stable carbon isotope and enzymatic evidence from previous studies suggest that the symbionts of *Adipicola* sp. JdF mussels are chemoautotrophic, using sulfide as an energy source. The $\delta^{13}C$ values for JdF2008 (gill = −30.9‰, foot = −31.3‰) and JdF1999 ($\delta^{13}C = −26.6‰$) (McKiness et al. 2005) are within the range of those reported for bathymodioline mussels harboring exclusively thiotrophic symbionts ($\delta^{13}C = −25$ to $−36‰$) (Rau & Hedges 1979, Dubilier et al. 1998, Trask & Van Dover 1999) and outside of the range of non-vent filter-feeding bivalves depending on photosynthetically derived carbon ($\delta^{13}C = −17$ to $−22‰$) (Van Dover & Fry 1989). Recent studies demonstrated that $\delta^{13}C$ values of mussel tissue can vary seasonally, among individuals, and among populations and can be enriched by assimilation of photosynthetically derived carbon, which likely underlies the wide range of observed $\delta^{13}C$ values (Riou et al. 2010a,b). Mussels hosting exclusively methanotrophic symbionts result in more depleted $\delta^{13}C$ values (e.g. *Bathymodiolus childressi* = −61.8‰ and *B. brooksi* = −61.1‰) (Becker et al. 2010), given the isotopic composition of local methane ($\delta^{13}C = −55$ to $−48.4‰$) (Cowen et al. 2002), than are observed in JdF2008. While no stable carbon isotope data are available for JdF1990, sulfide oxidase activity was detected in gill tissues, supporting symbiont chemoautotrophy in this mussel (Southward 2008). The $\delta^{15}N$ values for JdF2008 = +3.8‰ and +4.2‰ for the gill and foot, respectively, falling within the range reported for bathymodioline mussels (−17.2 to +9.6‰) (McKiness et al. 2005). The relatively wide range of $\delta^{15}N$ values found in bathymodioline mussels may be due to the effect of their reproductive status, environmental conditions, or the use of distinct nitrogen sources (Riou et al. 2010b).

The *Adipicola* sp. JdF mussels are an important lineage that contradicts the evolutionary patterns proposed for bathymodiolines in general. Extracellular chemoautotrophic symbionts have typically been found in species of *Idas* and *Adipicola* inhabiting shallow sunken wood and bone habitats. Extracellular symbionts in *Adipicola* sp. JdF, as well as *Idas washingtonia*, at hydrothermal vents are the only documented exceptions to this pattern (Southward 2008). Thus, the ‘progressive evolution’ hypothesis of a linear transition from wood- and bone-dwelling species with extracellular symbionts to hydrothermal vent and cold seep species with intracellular symbionts (Fujiwara et al. 2010, Miyazaki et al. 2010) is not supported by these data, as has been demonstrated in previous studies (McKiness et al. 2005, Duperron et al. 2008, 2009). The ‘shallow to deep’ hypothesis proposes that bathymodiolines evolved progressively into the deep sea (Craddock et al. 1995, Jones et al. 2006, Lorion et al. 2010). However, the basal phylogenetic position of *Adipicola* sp. JdF represents an exception to this pattern. More diverse taxonomic sampling is needed to determine whether this species represents a reversal of the ‘shallow to deep’ evolution paradigm or whether this scheme of progressive evolution is inappropriate for Bathymodiolinae as a whole.

Fig. 2. *Adipicola* sp. JdF2008. Electron micrographs of the gill tissue. (A) Bacteriocytes showing bacteria (b) associated with microvilli (mv). Arrow: multiple bacteria, enclosed by a membrane which may be undergoing degradation. (B) Bacteria that appear to be extracellular are associated with the bacteriocyte microvilli
This study reinforces the long-standing mystery of why the northeastern Pacific vents are the only major biogeographic province not known to contain large aggregates of bathymodioline mussels, which are emblematic of hydrothermal vent systems throughout the deep sea. Indeed, the scarcity of mussels at the JdF vents suggests 3 possibilities: unfavorable environmental conditions; barriers to dispersal, impeding mussel colonization; or vents may not be the primary habitat. As the chemical regime of the JdF is similar to chemical regimes found on other hydrothermal vent systems (Seyfried et al. 2004, Cruse et al. 2008), this hypothesis is unlikely. Fracture zones on the JdF that act as barriers to dispersal for limpets and tubeworms, notably the Blanco Transform Fault, may prevent dispersal of mussel larvae (Johnson et al. 2006, Young et al. 2008). Further, the fracture zones that separate the northern East Pacific Rise from the JdF provide additional barriers, suggesting that barriers to dispersal may play a role in limiting JdF mussel colonization. Finally, the possibility that vents may not be the primary habitat of Adipicola sp. JdF is supported by the phylogenetic similarity of Adipicola sp. JdF with Benthomodiolus

Fig. 3. Bayesian phylogeny of bathymodioline and vesicomyid symbionts based on 16S rRNA gene (1234 bp). Symbionts are named according to host taxon. Symbiont gene sequence data were not available for JdF1990. The 16S rRNA phylotype isolated from JdF2008 is most closely related to that of JdF1999 with posterior probability = 1. Phylogenetic placement of these 2 sequences within the group of bathymodioline mussel symbionts is strongly supported. Symbionts cluster geographically by ocean basin. Adipicola sp. JdF2008. Exceptions to this trend: unknown location. Sequence in bold contributed by this study. The outgroup (Thiomicrospira crunogena) was removed for illustrative purposes.
genera inhabiting western Pacific wood and bone habitats (Fig. 3). Possibly, as yet undiscovered vents and seeps may have facilitated dispersal of this species across the Pacific. Alternatively, wood and bone may be the primary habitat of *Adipicola* sp. JdF and may have acted as 'stepping stones' facilitating dispersal of western Pacific mussel species to the JdF, which could explain both the scarcity of JdF mussels at hydrothermal vents and their affinity to western Pacific mussel populations.

Acknowledgements. We are grateful to R. Lee, A. Bates, and collaborating scientific parties for their fortuitous collection of the mussel specimen analyzed in this study. Further, our thanks go to J. Lorion for supplying genetic data for the JdF1990 mussel referenced in this study. We also thank B. Marshall for specimens of *Benthomodiolus lignicola*. This study was supported by grants from the NASA Graduate Student Researchers Program (K.M.F.), the US National Science Foundation OCE-0453901 (C.M.C.), and the Clark and Milton funds of Harvard University (C.M.C.).

LITERATURE CITED


Dell RK (1987) Mollusca of the family Mytilidae (Bivalvia) associated with organic remains from deep water off New Zealand, with revisions of the genera *Adipicola*.


---

*Editorial responsibility: Hans Heinrich Janssen, Oldendorf/Luhe, Germany*

*Submitted: May 23, 2012; Accepted: October 1, 2012*

*Proofs received from author(s): January 15, 2013*