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INTRODUCTION

Protecting a species from threats involves antici-
pating such threats and avoiding them. As long-
lived, late-maturing animals, loggerhead sea turtles
Caretta caretta are particularly vulnerable to threats
such as bycatch in commercial fisheries, which sig-
nificantly impairs their recovery potential in the
Northwest Atlantic (NMFS 2008). Annually, several
hundred loggerheads are estimated to be captured
incidentally in commercial otter trawl, sink gillnet,

and sea scallop dredge fisheries in US mid-Atlantic
waters (from Cape Cod, Massachusetts, to North
Carolina, USA) (Murray 2009, 2011, Warden 2011).
The majority of loggerheads captured in this region
tend to be large juveniles or subadults, though some
adults have been observed (Haas 2010, Murray
2011). This region is an important foraging habitat for
loggerheads in the Northwest Atlantic Ocean (Musick
& Limpus 1997), which comprise a distinct population
segment (DPS) listed as threatened under the US
Endangered Species Act (ESA).
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Juvenile and subadult loggerheads in the mid-
Atlantic have several different migration (McClellan
& Read 2007, Mansfield et al. 2009) and foraging
(McClellan et al. 2010) strategies, whereby individu-
als move and feed within neritic and oceanic habitats
throughout the year. Typically present in mid-Atlantic
waters on a seasonal basis, juvenile and subadult
loggerheads migrate to latitudes north of 35° N in the
late spring and summer and return south when water
temperatures begin to decline (Morreale & Standora
2005, Mansfield et al. 2009). In colder months turtles
have migrated as far south as Florida (Mansfield et
al. 2009) and have also remained off North Carolina
at the edge of the Gulf Stream (Epperly et al. 1995).
Characterized as opportunistic feeders (Wallace et al.
2009), loggerheads feed on benthic and pelagic
macro-invertebrates (Hopkins-Murphy et al. 2003),
and occasionally consume fish (Seney & Musick
2007). Dynamic oceanographic processes presum-
ably influence the distribution of both pelagic and
benthic prey, and thus affect where loggerheads
 forage (Polovina et al. 2006).

A species’ migratory and foraging habits are impor-
tant to understanding and assessing fisheries bycatch,
which also threatens other marine mega fauna, such
as marine mammals, sea birds, and sharks (Lewison
et al. 2004). By revealing important environmental
features associated with bycatch rates, bycatch mod-
els capture mechanisms under lying the co-distribu-
tion of the bycatch species and fishing effort. For in-
stance, environmental features have previously been
associated with loggerhead bycatch rates in US east
coast trawl, dredge, and gillnet fisheries (Murray
2009, 2011, Warden 2011), with sea bird bycatch rates
in Alaskan longline fisheries (Dietrich et al. 2009),
with pilot whale and Risso’s dolphin bycatch rates in
US east coast longline fisheries (Garrison 2007), and
with Australian fur seal bycatch rates in Australian
trawl fisheries (Hamer & Golds worthy 2006). In gen-
eral, studies of bycatch only indirectly reveal habitat
preferences of bycatch species because sampling
typically occurs where commercial vessels fish.
Moreover, bycatch analyses are usually focused on a
single fishing gear, making it difficult to assess
broader associations between environmental features
and the potential for bycatch (Wallace et al. 2010).

Risk assessments of fisheries interactions with pro-
tected species are often evaluated by overlaying fish-
ing effort with static maps of animal distributions
derived from fishery-independent data (McDaniel et
al. 2000, Grech et al. 2008, Sonntag et al. 2012). The
integration of dynamic habitat models with fishing
effort data has helped advance these types of assess-

ments because the models capture the underlying
oceanographic mechanisms influencing interactions
with mobile species (Zydelis et al. 2011). They can
also be used to reduce the spatio-temporal overlap
between fishing effort and the bycatch species. For
example, temperature-based habitat models for
southern bluefin tuna in Australia have been used to
design management zones which control access to
fishers (Hobday & Hartmann 2006); a similar system
has been designed for loggerhead turtles in Hawai-
ian longline fisheries (Howell et al. 2008). However,
data to inform habitat models, such as those obtained
from surveys or tagged animals, may be difficult to
obtain long-term over large areas; moreover, tele -
metry data provide just presence-only information,
requiring the need to simulate pseudo-absence loca-
tions (Zydelis et al. 2011).

Fishery-independent and -dependent data can be
used together to estimate the risk of protected spe-
cies bycatch. There are other areas of the world
where protected species habitat models have been
developed from fishery-independent data (Gilles et
al. 2011, Forney et al. 2012), and focus on regions
where a diverse fishing industry is sampled via a
fisheries observer program. These habitat models
can inform a priori models of protected species
bycatch, to help capture the mechanisms underlying
the co-distribution of protected species and fishing
effort. Projecting a landscape of risk from these mod-
els can help inform discussions regarding times and
areas to focus bycatch migitation, or consequences to
protected species of fishery management actions.

In the present study, we used both fishery-inde-
pendent and -dependent data to estimate the risk of
protected species bycatch. We examined environ-
mental conditions associated with encounter rates of
loggerhead turtles observed using fishery-indepen-
dent platforms, and then evaluated whether logger-
head bycatch events could be predicted under simi-
lar environmental conditions. Our objectives were to:
(1) use fishery-independent data to construct models
that described loggerhead encounter rates as a func-
tion of environmental variables; (2) fit a preferred
model from the fishery-independent data to fishery-
dependent data collected from 4 different commer-
cial gear types; and (3) test the model on new fishery-
dependent data to assess retrospectively how well
the model predicted bycatch events, both temporally
and spatially. We expected that our modeling results
would identify times, areas, and environmental con-
ditions in the mid-Atlantic which result in elevated
risks of loggerhead interactions with commercial
fishing gear.
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MATERIALS AND METHODS

Our analysis of loggerhead Caretta caretta en -
counter rates was based on data collected from the
continental shelf of waters of southern New England
and the mid-Atlantic, conforming roughly to an area
from 42 to 34° N, from the shore to roughly the
200 m depth contour (Fig. 1). As further described
below, we modeled 3 different types of encounter
rates from 3 sampling platforms. We were interested
in identifying relative patterns in encounter rates in
the mid-Atlantic, versus quantifying absolute rates,
because we recognize that factors influencing en -
counter rates from these platforms may differ. After
identifying and accounting for the environmental
factors that affect encounter rates, we assume that
other factors influencing encounter rates are in -
dependent and do not influence the modeled en -
counter rates.

Data sources

Fishery-independent data

We used data collected by observers on aerial line
transect abundance surveys conducted from June
through August in 1995, 1998, 2004, and 2006 (Palka
2006). The surveys covered waters from roughly 42
to 36° N, from the coastline to roughly the 200 m
depth contour. We divided each survey track line into
segments ranging from 9 to 17 km, where the aver-
age length was 12 km and sighting conditions (Beau-
fort sea state and observers) within a segment were
consistent. The aerial dataset comprised 1099 seg-
ments and 421 loggerheads. Transect segments were
consistent with average distances traveled for a
mobile fishing gear haul in the fishery-dependent
data set described below. Encounter rates were
defined as the number of loggerhead sightings per
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Fig. 1. Caretta caretta. Distribution of fishery-independent and -dependent observations used in the present study. The 20, 50,
and 200 m bathymetry lines are also shown. (a) Aerial survey observations, (b) resource survey trawl observations, (c) fishery- 

dependent observations from 1997 to 2007, and (d) fishery-dependent observations from 2008 to 2009
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time-distance (h-km), where time-distance equaled
the length of the transect segment multiplied by the
flight duration of that segment (0.04 to 0.08 h).

We also used data collected from Northeast Fish-
eries Science Center (NEFSC) bottom trawl resource
surveys (n = 5487 observations, 23 loggerheads), col-
lected annually from February to May and Septem-
ber to November from 1997 to 2008. These surveys
are designed to provide information on the abun-
dance, biology, and distribution of the living marine
resources of the Northwest Atlantic. At each sam-
pling station in these surveys, the trawl net is towed
for 0.5 h at an average speed of 3.5 knots. Time-dis-
tance on each haul was computed as the time spent
towing (h) multiplied by the distance traveled (km).

Fishery-dependent data

To derive loggerhead encounter rates (expressed
as the number of observed loggerheads per time-dis-
tance), we used data collected from 1997 to 2007 by
NEFSC observers deployed aboard commercial ves-
sels fishing with bottom otter trawls (40% of observa-
tions), sink gillnets (25%), sea scallop dredges (34%),
and sea scallop trawls (1%). The sampling unit was a
haul. For mobile gears (trawls and dredges), time-
distance on each haul was computed as time spent
fishing multiplied by the distance traveled. For pas-
sive gear (sink gillnets), where a series of net panels
are assembled together in a string that rests on the
ocean bottom, time-distance was computed as soak
time of the nets (h) multiplied by the total length of
the string (km). The observer data were collected
year-round, and included 142 000 hauls and 125
observed loggerhead captures (Fig. 1b). Of the 125
incidentally captured turtles, 66 were taken in otter
trawls, 26 in dredges, and 33 in sink gillnets. The
model fit to these data was tested on new fishery-
dependent data, inclusive of the same gear types,
collected year-round in 2008 and 2009. The 2008 to
2009 dataset comprised 69 000 hauls and 52 observed
loggerhead captures (Fig. 1c).

Environmental variables

We obtained environmental variables from the
beginning of each aerial survey transect piece, or at
the start of each fishing haul. If point values were
unavailable, we obtained values from within a
13.75 km2 area around the point position to be within
the length of a survey transect piece or average dis-

tance traveled over a haul. We obtained surface
salinity (parts per thousands) from either the real
time ocean forecast system (RTOFS) model (May
2006 to present) (Mehra & Rivin 2010) or the regional
ocean forecast system (ROFS) model (pre-May 2006)
(Breaker et al. 2004), using a tool developed at the
NEFSC (Brick Builder, Version 1.0). We obtained sur-
face salinity for each haul or transect start location
from the nearest ocean model grid point, up to
14 km2 from the point location.

We obtained chlorophyll data (mg m−3) from 5 d
composites of SeaWiFS high resolution satellite
images (http://oceancolor.gsfc.nasa.gov) from 1997
to 2007. We retrieved chlorophyll values at point
locations, or from median values for the surrounding
area (13.75 km2), and then log-transformed these
 values (Yoder et al. 2001) to model the data.

We used sea-surface temperature (SST) (°C) from 2
sources: (1) blended NEFSC SST data from AVHRR
Pathfinder, Modis Aqua, Modis Terra, and GOES
satellites to create overlapping 5 d SST composites
for each day from 1997 through 2007, or, alterna-
tively, (2) non-overlapping 5 d climatology images,
one for each consecutive 5 d period during the year
(Armstrong & Vazquez-Cuervo 2001). We used data
from point locations when available for the final SST
value; otherwise, we used median values for the
 surrounding area (13.75 km2).

We used observer-recorded depth (m) values when
available. When these data were missing, we ob tained
depth values at a given geographic location from the
following sources in decreasing frequency: (1)
Coastal Relief data1, (2) Shuttle Radar Topography
Mission 30 Version 3 data2 (Smith & Sandwell 1997,
Becker et al. 2009), or (3) National Geophysical Data
Center ETOPO5 data3. Several sources of depth data
were needed to obtain values for the entire study
area.

Model building with fishery-independent data

Using just the fishery-independent data, we con-
sidered 2 approaches to model the expected logger-
head encounter rate, where the encounter rate was
ex pressed as the number of observed loggerheads
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1NOAA National Geophysical Data Center, U.S. Coastal
 Relief Model, August 27, 2007, www.ngdc.noaa.gov/ mgg/
coastal/ crm.html

2http://topex.ucsd.edu/WWW_html/srtm30_plus.html
3NOAA National Geophysical Data Center, ETOPO5, June
1, 2004, www.ngdc.noaa.gov/mgg/global/etop5.html
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per time-distance. First, we explored the zero-inflated
Poisson (ZIP) mixture model (zeroinfl function, R 2.1),
a modification to the usual Poisson distribution to
account for extra zeros in the data (Lambert 1992).
The ZIP model is a mixture of logistic and Poisson
regression models, where the probability of a logger-
head occurrence at a given site is modeled with a
logistic function, and the loggerhead density at a
given site, given the probability of occurrence, is
modeled with a Poisson function. Mixture models are
appropriate when the zero-inflation is due to both
true zeros, i.e. a species does not occur at a site
because of unsuitable habitat, and to false zeros, i.e.
a species could occur but was not present during the
survey period, or was present but the observer failed
to detect it (Martin et al. 2005). We found the ZIP
model to be difficult to interpret ecologically, with
regard to important covariates and predicted values.
For instance, the significance and directionality of
the parameter estimates (+/−) for one variable might
change depending on which component of the mix-
ture model was being explained. As this issue has
also been raised in other studies (Welsh et al. 1996),
we decided to model encounter rates with a general-
ized additive model (GAM), appropriate for non-
 linear data structures when describing ecological
systems (Guisan et al. 2002).

We used a GAM with a Poisson distribution (GAM
function, SPLUS 7.0) to model the expected logger-
head encounter rate, where the encounter rate was
expressed as the number of observed loggerheads
per time-distance. The form of the GAM can be
 written as:

(1)

where yj is the number of loggerheads observed on
the jth transect or haul, log(time-distj) is an offset
term for the unit of effort (time-distance) on the jth
transect or haul (in h-km), α is a constant intercept
term, fi are a series of smoothing splines for each pre-
dictor variable, xij are environmental characteristics
at the beginning of each transect or haul, and ξ is
unexplained error (Hastie & Tibshirani 1990).

Candidate variables for model building included:
SST, depth, latitude, chlorophyll, and surface salinity.
We excluded other variables from model testing (dis-
tance to a chlorophyll front, distance to a sea surface
front, sea surface and chlorophyll frontal intensities,
month, longitude) if >10% of the data had to be im-
puted, were beyond the 13.75 km2 spatial window, or
were correlated (>0.6 from a Spearman’s rank
 correlation analysis) with a candidate variable. We

chose the primary candidate variables based on a pri-
ori knowledge of factors affecting loggerhead distri-
bution or loggerhead bycatch rates. SST, depth, and
latitude have previously been associated with logger-
head bycatch rates (Murray 2009, Warden 2011);
these variables also capture the spatial and temporal
variation in loggerhead distributions during their sea-
sonal migrations (Mansfield et al. 2009, Hawkes et al.
2011). We defined seasons based on Warden (2011),
which were based on warming and cooling patterns
in the mid-Atlantic tied to loggerhead distributions
(Braun-McNeill et al. 2008). These were: winter (1
December to 15 April), spring (16 April to 15 May),
summer (16 May to 31 October), and fall (1 to 30 No-
vember). Chlorophyll gradients, caused by wind mix-
ing and Gulf Stream interactions in shelf/slope frontal
regions in the mid-Atlantic (Yoder et al. 2001), are as-
sociated with foraging behavior of loggerheads in
both the Atlantic (Mc Carthy et al. 2010) and the Pa-
cific (Polovina et al. 2004). Seasonal changes in tem-
perature and the salinity in the central mid-Atlantic
control water stratification (Castelao et al. 2010),
which influences both circulation patterns and nutri-
ent levels in the water column.

We developed separate models for the aerial sur-
vey dataset and for the survey trawl dataset because
encounter rates from these 2 sources are not directly
comparable, and the probability of encountering a
loggerhead of any size differs between the 2 survey
platforms. Because the fishery-independent data were
collected in different seasons, we developed 2 differ-
ent seasonal models from the fishery-independent
data: a mid-summer model (from aerial survey obser-
vations) and a late summer, winter/early spring
model (from survey trawl observations).

For each dataset, we tested the primary variables
in a forward stepwise model selection process (step.
gam function, SPLUS 7.0). The null model — consist-
ing of the overall mean — was the initial model in the
stepwise procedure. At each step, the forward step-
wise algorithm selected the variable that generated
the greatest change in the Akaike information crite-
rion (AIC) (Akaike 1973, Burnham & Anderson 2002)
relative to all other model variables. Continuous vari-
ables were considered as smooth terms in the model
using the default degrees of freedom in the fitting
procedure. To ensure the step.gam procedure did not
overfit, we manually added variables to the null
model in the same order in which the automated pro-
cedure selected the variables, and then evaluated the
amount of deviance reduced. We excluded variables
that reduced deviance by <2% (Maunder & Punt
2004).

( [ ]) log(time-dist ) ( )
1

Log E y f xj j i ij
i

n

∑= + α + + ξ
=

263



Mar Ecol Prog Ser 477: 259–270, 2013

Model performance on fishery-dependent data

Next we modeled fishery-dependent encounter
rates from 1997 to 2007 as a function of the same
environmental variables from the 2 fishery-indepen-
dent models, and evaluated them with respect to
AIC. Thus, we did not force the same functional rela-
tionships from each of the fishery-independent  models
to the fishery-dependent data. The fishery-depen-
dent model we selected as the preferred model had a
lower AIC and included all the variables contained in
the alternative seasonal model. After choosing the
preferred model, we tested year and season as sec-
ondary variables to determine if these variables ex -
plained significantly more variation in encounter
rates than that already explained. We also examined
the preferred model for overdispersion, measured by
calculating the dispersion parameter (Φ), defined as:

(2)

Finally, we tested the preferred model on new
 fishery-dependent data from 2008 and 2009 and
evaluated errors (defined as predicted loggerhead −
observed loggerhead) with respect to latitude (binned
into 1° blocks) and season strata. In predicting ob -
served bycatch in new years, we assumed that the
magnitude and distribution of observer coverage was
constant over time.

RESULTS

Model building with fishery-independent data

The preferred variables for explaining variation in
loggerhead Caretta caretta encounter rates in the
aerial survey data (the summer model) were latitude
and SST, whereas in the bottom otter trawl survey
data (the winter/early spring model) the preferred
variables were latitude, SST, depth, and salinity
(Table 1a,b). The bottom trawl survey model was
selected as the preferred model for describing log-
gerhead encounter rates because it had a lower AIC
than the aerial survey model and was inclusive of the
aerial survey model variables (Table 1c, Fig. 2a).

Model performance on fishery-dependent data

The preferred model fitted to the fishery-depen-
dent data from 1997 to 2007 described 38% of the
model deviance (Table 1c). Year and season ex -
plained <1% additional variance over these variables.
The estimated dispersion value of the preferred
model was 0.86, indicating no overdispersion. Plots of
the smoothed model terms indicated a decreasing
trend in encounter rates as latitude increases, an
increasing trend as SST increases, a bimodal rela-
tionship between encounter rates and salinity, and

Φ =
−∑( ˆ ) / ˆyi i iμ μ2

residual df
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Model  Model structure                                                  Approx. Cumulative percent    Increase in percent    AIC
No.                                                                                                         df       deviance explained    deviance explained

(a) Aerial survey
1       Null                                                                                               1                                                                                1784.3
2       s(latitude)                                                                                    4.0                   38.9                                                     1097.5
3       s(latitude) + s(depth)                                                                  6.9                   44.2                                5.3                1012.8
4       s(latitude) + s(depth) + s(salinity)                                              9.9                   46.0                                1.8                 988.6
5       s(latitude) + s(depth) + s(chlorophyll)                                       9.9                   45.9                                1.7                 990.0
6       s(latitude) + s(depth) + s(SST)                                                   9.8                   45.3                                1.1                 999.7

(b) Bottom otter trawl
1       Null                                                                                               1                                                                                 260.0
2       s(latitude)                                                                                    4.0                   14.5                                                      230.5
3       s(latitude) + s(SST)                                                                     6.9                   24.8                               10.3                211.7
4       s(latitude) + s(SST) + s(depth)                                                   9.9                   31.8                                7.0                 201.3
5       s(latitude) + s(SST) + s(depth) + s(salinity)                             12.7                  35.7                                3.9                 199.0
6       s(latitude) + s(SST) + s(depth) + s(salinity) + season              15.7                  35.8                                0.1                 204.7
5       s(latitude) + s(SST) + s(depth) + s(salinity) + s(chlorophyll)   15.7                  36.4                                0.7                 205.0

(c) Independent data fit to dependent data
Model structure                                                                            Approx. df       Percent deviance explained              AIC

s(latitude) + s(depth)                                                                           6.9 29.2                                   1378.3
s(latitude) + s(SST) + s(depth) + s(salinity)                                       12.6 38.1                                   1223.2

Table 1. Caretta caretta. Results from the (a) aerial and (b) bottom otter trawl survey data step-wise models. Rows in bold indi-
cate the preferred model. Variables that explained <2% additional deviance were not retained in the model. (c) Seasonal 

models from fishery-independent data fit to fishery-dependent data. AIC: Akaike information criterion; s: smoothed
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Fig. 2. Caretta caretta. Generalized additive model smoothers depicting the effect of covariates on estimated encounter rates 
in (a) fishery-independent, bottom otter trawl survey data and (b) fishery-dependent data. SST: sea surface temperature
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higher encounter rates in water depths between 25
and 50 m (Fig. 2b).

When this model was applied to new fishery-
dependent data in 2008 and 2009, the model pre-
dicted a bycatch of 44 loggerheads compared to 52
observed. Predictions were best in summer, and
underestimated around 35° N in winter (Table 2).
Higher encounter rates were estimated year-round in
southern latitudes, and in mid-shelf areas between
37 and 40° N from mid-May through October (Fig. 3).

DISCUSSION

This is the first comprehensive examination of
 loggerhead Caretta caretta encounter rates in the
mid-Atlantic and southern New England using both
fishery-independent and -dependent data, spanning
multiple gear types and data collection platforms.
Results suggest that encounter rates modeled with
fishery-independent data are associated with lati-
tude, SST, salinity, and depth, and these covariates
also explain variation in encounter rates documented
via fishery-dependent data. The associations with
most of these environmental factors are consistent
with previous loggerhead bycatch analyses (Murray
2009, 2011, Warden 2011, Warden & Murray 2011).
After the preferred model was fit to the fishery-
dependent data, year and season explained very
 little additional variation in encounter rates in the
model, suggesting that the variables chosen for the
model capture both inter- and intra-annual variabil-
ity in loggerhead encounter rates.

As depicted by the GAM smoothers, the effect of
latitude, SST, depth, and salinity on estimated en -
counter rates followed similar trends in the survey

trawl data (which led to the preferred model) and in
the fishery-dependent data. The exception was salin-
ity, which exhibited opposite trends beyond 32 ppt.
The association between encounter rates and salinity
may reflect a seasonal response by loggerheads and
fishing effort to water stratification and shelf circula-
tion dynamics in the central and southern mid-
Atlantic. Differences in salinity smoothers may reflect
the time period during which the fishery-indepen-
dent and -dependent data were collected, as well as
the pattern of observed encounters in the 2008 and
2009 test dataset. The fishery-independent survey
model reflected salinity levels from winter and early
spring, versus the fishery-dependent data, which
reflected salinity levels year-round. Furthermore, in
the summer of 2009, there were several loggerheads
ob served inside the North Carolina barrier islands, a
time and area of high salinity.

The fishery-dependent model estimated high en -
counter rates year-round south of 37° N and in mid-
shelf waters to the north from mid-May to October.
This pattern generally aligns with the seasonal migra-
tion of loggerheads into and out of the mid- Atlantic
(Mansfield et al. 2009, Hawkes et al. 2011). The
region south of 37° N is an area of high loggerhead
use (TEWG 2009) and high estimated bycatch rates
(Epperly et al. 1995, Murray 2009, Warden 2011).
Here waters of the mid-Atlantic and South Atlantic
converge, impacting the physical oceano graphy of
this area (Flagg et al. 2002, Lohrenz et al. 2002). The
shelf-slope front, a characteristic of the mid-Atlantic
that strongly influences circulation dynamics, is ab-
sent close to the North Carolina barrier islands be-
cause the Gulf Stream runs very close to the 200 m
shelf break (Yoder et al. 2001, Townsend et al. 2006).
The narrowness of the shelf and the influence of the

266

Latitude    Winter (1 Dec−15 Apr)        Spring (16 Apr−15 May)    Summer (16 May−31 Oct)             Fall (1−30 Nov)
(° N)               O          P             A                  O          P             A                  O          P             A                    O          P              A

33                   0        0.02      <0.001              0        0.03      <0.001              0        0.05      <0.001                0        0.09       <0.001
34                   0        0.16      <0.001              0        0.00      <0.001              3        0.84      0.019                0        0.04       <0.001
35                  19       2.68      0.165               0        0.15      <0.001              0        0.76      <0.001                5        2.23       0.064
36                   0        1.53      <0.001              0        0.10      <0.001              3        1.25      0.027                0        0.39       <0.001
37                   0        0.68      <0.001              0        0.40      <0.001              6        2.58      0.006                0        0.34       <0.001
38                   0        1.64      <0.001              0        1.16      <0.001             12      12.10     0.003                0        3.48       <0.001
39                   0        0.17      <0.001              0        0.46      <0.001              2        5.87      <0.001                0        0.10       <0.001
40                   0        0.07      <0.001              0        0.09      <0.001              1        2.84      <0.001                0        0.04       <0.001
41                   0        0.01      <0.001              0        0.01      <0.001              1        1.12      <0.001                0        0.06       <0.001

Total             19       6.96      0.002               0        2.40      <0.001             28      27.41     <0.001                5        6.77       0.001

Table 2. Caretta caretta. Observed (O) versus predicted (P) number of loggerheads incidentally captured in commercial
 gillnet, dredge, and trawl gears when model applied to new fishery-dependent data. A = average squared prediction error, 

computed as (O − P)2/n, where n is the total number of observations in that latitude/season block
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Gulf Stream around Cape Hatteras increase salinity
in this region relative to areas farther north and con-
centrate turtles emigrating from the mid-Atlantic,
putting the turtles at greater risk of possible interac-
tions with fishing activity (Epperly et al. 1995).

By identifying times and areas with elevated risk of
bycatch, this study can help focus bycatch reduction
efforts and observer coverage. Waters south of 37° N,
to the southern extent of this analysis, have an ele-
vated potential for loggerhead bycatch events year-
round, as do waters between 37 and ~40° N during
the period from May to October. This pattern is gen-
erally consistent across different gear types (trawl,
gillnet, and dredge) operating in the area. We infor-
mally tested gear type as a variable to explain differ-
ences in estimated encounter rates in the fishery-
dependent model and found that it explained about
5% of model deviance. Due to major differences in
gillnet fishing practices after 2007, as well as gear
modifications in the dredge fishery, we could not
include gear type in the model tested on new data in

2008 to 2009. Although gear type explained only a
small amount of variance in the model, it does sug-
gest that within a time and area with elevated risk of
bycatch, attention could be given to specific gear
types (and how they are fished).

Model predictions in this region were most accu-
rate in spring and fall and poorest in the winter. Poor
predictions in the winter could be due to a modeling
effect, or to a lack of fishery-independent data in this
region. The GAM may not adequately capture poten-
tial interaction effects between SST and latitude (e.g.
encounters with turtles in cool water temperatures
could happen off North Carolina, but not at the same
SST farther north, due to the seasonal distribution of
the animals) or clustered events (e.g. the GAM
 estimated <1 turtle on 2 hauls in each of which 4
 turtles were captured). Additionally, specific fishery-
independent data in this region would be helpful to
capture the influence of oceanographic processes on
loggerhead encounter rates off North Carolina; this
includes the need for data from December and Janu-
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Fig. 3. Caretta caretta. (a–d) Estimated loggerhead encounter rates by season in 2008 to 2009 fishery-dependent data. Black 
triangles represent observed loggerheads. The 20, 50, and 200 m bathymetry contours are also shown
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ary and the expansion of aerial survey data outside
the central part of the mid-Atlantic during summer.

The techniques used here to examine the risk of
fisheries interactions with protected species could be
applied to other regions where overlap exists be -
tween fisheries-dependent and -independent data.
For instance, cetaceans, sea birds, and turtles are
captured incidentally in trawl and gillnet fisheries off
the US west coast (Julian & Beeson 1998, Jannot et al.
2011), as documented by fisheries observers. Data
from ship-board surveys in the California Current
ecosystem have been used to model encounter rates
and density of cetacean species in the same general
area occupied by some of these fisheries (Forney et
al. 2012); average encounter rates over several years
were modeled as a function of environmental condi-
tions such as depth, SST, mixed-layer depth, and
chlorophyll. By explaining persistent conditions
influencing the distribution of mobile animals, these
models can help guide the development of models to
predict interactions using fisheries observer data.
Identifying these bycatch ‘hotspots’ can help man-
agers evaluate mitigation tools, such as shifts or
reductions in fishing effort (Howell et al. 2008).

One issue to consider when replicating the ap -
proach used in the present study is the appropriate
scale at which to model the data. The outcome of a
habitat model will likely depend on the scale of the
variables examined (Wiens 1989). We obtained envi-
ronmental data from a 13.75 km2 area around the
point location, within a 5 d window of the point loca-
tion. The spatial choice was based mainly around the
average distance traveled for mobile fishing gear, so
that all  samples reflected conditions from a similar-
sized environmental window; the temporal choice
helped minimize missing data due to cloud cover.
However, the effect of oceano graphic processes on
turtle distribution may vary over different temporal
and spatial scales depending on their behavior; for
instance, foraging turtles may exploit local food
patches within small spatial scales (Arendt et al.
2012), while migrating turtles may be responding to
environmental cues over larger areas and time
frames (Mansfield et al. 2009).

The spatial scale of the analysis may also influence
the availability and quality of the data used for model
development. In the present study, values of some
environmental variables obtained from remote
sources (i.e. distance to an SST or chlorophyll front,
frontal intensities) were either missing or too far
away from the point location. If these were >10% of
the data, we dropped the variable from the model
selection process rather than eliminate the observa-

tions so as not to lose any loggerhead events. Drop-
ping these candidate variables limited our analysis of
oceanographic predictors. If we had been modeling
at a larger spatial scale we may have been able to
average values within a larger spatial window, elim-
inating the need to drop missing data. Future analy-
ses might investigate the predictive ability of alterna-
tive temporal and spatial scales on interaction rates,
as has been done in other studies (Becker et al. 2010).

In summary, the present study helps identify times
and areas with heightened estimated risk of logger-
head encounters in commercial fishing gears. This
information may help design bycatch reduction
efforts, such as evaluations of potential effects of sea-
sonal closures, and focus fisheries observer sampling
when resources are limited. However, further work is
needed to develop models of loggerhead habitat and
to predict the distribution of fishing effort. Further-
more, better tools are needed to accurately forecast
oceanographic conditions in the mid-Atlantic (Hob-
day et al. 2011). When these 3 advancements con-
verge, we will have made great headway in reducing
loggerhead bycatch.
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