INTRODUCTION

The high productivity of seagrass-dominated ecosystems in a generally low dissolved inorganic nitrogen (DIN) environment implies a high potential for nitrogen (N) limitation (Hemminga 1998) and a strong necessity for efficient dissolved organic nitrogen (DON) recycling. DON is often the largest constituent of total dissolved nitrogen (TDN) in oligotrophic marine systems (Bronk 2002), and therefore a potentially large source of bioavailable N, either through direct uptake or after remineralization (Seitzinger et al. 2002, Bronk et al. 2007). Moreover, because the bioavailability of DON is taxon-specific (Berman & Chava 1999, Harrison et al. 2007), DON may also play an important role in competitive out-
comes and succession patterns in primary producer
communities (Berg et al. 2003, Glibert et al. 2004).
Nevertheless, DON is often still considered a black
box from which DIN is produced, because it is hard to
link the operationally defined fractions within the
DON pool with bioavailability (Bronk 2002).

DON utilization turns out to be far more wide-
spread than initially presumed. Besides heterotro-
phic bacteria and phytoplankton, which are most fre-
quently studied, some macroalgae take up urea and
amino acids as well (Tarutani et al. 2004, Tyler et al.
2005). Recently, DON utilization by seagrasses was
observed in the laboratory and in the field (Vonk et
al. 2008, Van Engeland et al. 2011). It is, however, not clear how important DON is
in the overall nutrition of seagrasses.

The relative importance of DON as an N source to
seagrasses is likely to depend on a variety of factors.
For example, the concentrations of certain organic
compounds, such as amino acids, are orders of mag-
nitude smaller than those of DIN. In addition, sea-
grasses and macroalgae have to compete directly
with microalgae and bacteria for N in the water col-
umn. Competitive outcome may depend on factors
such as current velocity, N species (Cornelissen &
Thomas 2004, Morris et al. 2008), and the presence of
alternative N sources. Furthermore, DON bioavail-
ability may change seasonally, and with eutrophica-
tion intensity and DON pool composition (Stepanaus-
kas et al. 1999, Benner 2002, Wiegner & Seitzinger
2004).

Organic matter processing in macrophyte-domi-
nated ecosystems is often characterized by preferen-
tial recycling of N over carbon (C) (Ziegler et al.
2004). However, at the level of individual organic
substances, N uptake may or may not be coupled to
C uptake by primary producers (Veuger & Middel-
burg 2007), and variability between organisms in dif-
f erent conditions is very high. Mulholland et al.
(2004) observed coupled uptake of amino acid N and
C by the pelagophyte Aureococcus anophagefferens
in one bay, but preferential N uptake from urea in
another bay. Andersson et al. (2006) reported sea-
sonal variation in the coupling between N and C
uptake from urea in a temperate estuary. Tyler et al.
(2005) observed coupled uptake of N and the
α-carbon from glycine by Ulva lactuca, but not from
alanine. Price & Harrison (1988) reported coupled C
and N uptake from urea in N-starved diatoms, but
not in diatoms with sufficient internal N. These few
results illustrate the large variability in the (un-)cou-
ing of dissolved organic carbon (DOC) and DON,
with the reasons underlying this variability being poorly understood.

A laboratory experiment has indicated that the dominant macrophytes in the inner Bay of Cadiz
(Zostera noltii, Cymodocea nodosa, Caulerpa prolif-
era) can take up DON substances (Van Engeland et
al. 2011), but it is currently not clear to what extent
they can profit from this ability when other potential
competitors, such as microalgae and heterotrophic
bacteria, are abundant. We studied the capacity of
coccurring primary producers (the 3 aforemen-
tioned macrophytes, epiphytes, and phytoplankton)
and bacteria in this system to acquire DON and DIN
compounds from the water column. Using a spectrum
of 13C and 15N double-labeled substrates of different
complexity and composition, we investigated (1) how
much of each substrate flows into each of these eco-
system compartments, (2) whether C and N acquisi-
tion was coupled, and (3) how much each sink con-
tributed to total substrate incorporation.

MATERIALS AND METHODS

Study site

The Bay of Cadiz encompasses an area of approxi-
mately 12 000 ha. It is subdivided into a deeper outer
bay with direct input of continental shelf water and
river runoff, and a shallow inner bay which receives
water from the outer bay. The system is impacted by
aquaculture and wastewater runoff, and dominated
by 3 seagrass species: Zostera marina L. (not treated
in this study), Cymodocea nodosa Ucria (Ascherson),
Zostera noltii Hornem., and a small rhizophyte
Caulerpa prolifera (Forsskål) J. V. Lamouroux. This
experiment was conducted in the inner bay near
Santibañez (36° 28’ 12.79” N, 6° 15’ 7.07” W), where
Z. noltii, Cymodocea nodosa, and Caulerpa prolifera
co-occur in distinct patches.

Experimental design

The relative contributions of the main players (Zos-
tera noltii, Cymodocea nodosa, Caulerpa prolifera,
epiphytes, and suspended matter [phytoplankton +
bacterioplankton]; called compartments from here on) with regard to N acquisition from different
(in)organic sources in the water column (Table 1) was
Van Engeland et al.: DOM in a seagrass ecosystem investigated under circumstances of potential competition in the summer of 2007. Incubations were performed in plastic bags (Fig. 1). The macrophytes were made into a bundle and inserted through a hole in the screw cap with a hydrophobic cotton wool bud wrapped around the base of their aboveground parts, such that the aboveground parts were in the bag and the belowground parts outside the bag. The hydrophobicity effectively prevented water leakage and diffusion. The bags were filled with 5 l of unfiltered bay water containing the natural plankton community. Each incubation therefore involved not only 3 macrophyte species and the epiphytes, but also planktonic algae and bacteria (called suspended particulate matter [SPM] from here on). Because the different macrophyte species did not occur in mixed patches, but rather separate patches per species, they had to be removed from the sediment to incubate them together. Eight N- and C-containing substrates were added in quantities amounting to the final realistically low (but widely varying) concentrations as indicated in Table 1. Ammonium and nitrate were used for reference because of the vast body of existing literature on their uptake. In addition, small well-defined organic compounds of contrasting chemical/structural complexity and presumably also reactivity were used. Urea is a simple metabolic product with a relative abundance of 0.5. Glycine (U-13C2, 98%; 15N, 98%) and leucine (U-13C6, 98%; 15N, 98%) were used at a concentration of 0.1 µmol N l⁻¹. Phenylalanine (U-13C9, 98%; 15N, 98%) was used at a concentration of 0.1 µmol N l⁻¹. Algae-derived DOM contained 25 µmol C l⁻¹ and 2.93 µmol N l⁻¹. Bacteria-derived DOM contained 138 µmol C l⁻¹ and 39 µmol N l⁻¹.

Table 1. Substrates used for this experiment, their initial concentrations in the incubations, C:N ratio of the organic substances, amino acid abundance according to Cowie & Hedges (1992), and molar mass. DIC: dissolved inorganic carbon, DOC: dissolved organic carbon, DOM: dissolved organic matter, DON: dissolved organic nitrogen, U: universally labeled (all carbon atoms or all nitrogen atoms).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Abbrev.</th>
<th>Labeled substrates</th>
<th>Concentrations</th>
<th>C:N ratio</th>
<th>Abundance</th>
<th>Molar mass (g mol⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₄⁺, DIC</td>
<td>NH₄⁺</td>
<td>NH₄Cl (15N, 99%) + NaHCO₃ (13C, 99%)</td>
<td>1 µmol N l⁻¹, 30 µmol C l⁻¹</td>
<td>30</td>
<td>0.5</td>
<td>63</td>
</tr>
<tr>
<td>NO₃⁻, DIC</td>
<td>NO₃⁻</td>
<td>NaNO₃ (15N, 99%) + NaHCO₃ (13C, 99%)</td>
<td>1 µmol N l⁻¹, 30 µmol C l⁻¹</td>
<td>30</td>
<td>0.5</td>
<td>78</td>
</tr>
<tr>
<td>Urea</td>
<td>UR</td>
<td>Urea (13C, 99%; 15N₂, 98%)</td>
<td>2 µmol N l⁻¹</td>
<td>0.5</td>
<td>2</td>
<td>138</td>
</tr>
<tr>
<td>Glycine</td>
<td>Gly</td>
<td>Glycine (U-13C₂, 98%; 15N, 98%)</td>
<td>0.1 µmol N l⁻¹</td>
<td>2</td>
<td>7.9–14.5</td>
<td>175</td>
</tr>
<tr>
<td>Leucine</td>
<td>Leu</td>
<td>L-leucine (U-13C₆, 98%; 15N, 98%)</td>
<td>0.1 µmol N l⁻¹</td>
<td>6</td>
<td>6–9.3</td>
<td>78</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>Phe</td>
<td>L-phenylalanine (U-13C₉, 98%; 15N, 98%)</td>
<td>0.1 µmol N l⁻¹</td>
<td>9</td>
<td>2.4–4.5</td>
<td>138</td>
</tr>
<tr>
<td>Algae-derived DOM</td>
<td>AD</td>
<td>DOC (8.33 %, 13C) + DON (65.78 % 15N)</td>
<td>25 µmol C l⁻¹, 2.93 µmol N l⁻¹</td>
<td>0.5</td>
<td>2</td>
<td>138</td>
</tr>
<tr>
<td>Bacteria-derived DOM</td>
<td>BD</td>
<td>DOC (46.22 % 13C) + DON (46.36 %, 15N)</td>
<td>138 µmol C l⁻¹, 39 µmol N l⁻¹</td>
<td>0.5</td>
<td>2</td>
<td>175</td>
</tr>
</tbody>
</table>
tively high N content. Glycine is an achiral amino acid. Leucine and phenylalanine are chiral amino acids, and phenylalanine has a chemically very stable aromatic ring. NaH13CO$_3$ was added to the NH$_4^+$ and NO$_3^-$ incubations to assess primary production (Table 1). Finally, 2 dissolved organic matter (DOM) substrates of complex composition from different sources (algae versus bacteria) were used to mimic a naturally complex DOM pool.

The complex algae- and bacteria-derived DOM substrates were prepared following Veuger et al. (2004). The algae (axenic culture of *Skeletonema costatum*) were grown on 15NH$_4^+$ and 13C-bicarbonate, and soil bacteria on 15NH$_4^+$ and 13C-glucose. After 1 wk of incubation, algal and bacterial material was harvested through filtration, and suspended in Milli-Q water inside centrifuge tubes. In order to eliminate all the inorganic N remaining, Devarda’s alloy was added to convert all inorganic N into ammonium, and MgO was added to convert ammonium (NH$_4^+$) into ammonia (NH$_3$). The tubes were vigorously shaken for 48 h to stimulate loss of ammonia gas. The algal and bacterial material was washed and centrifuged 3 times and subsequently extruded with hot water (60°C) and filtered onto 0.2 mm polycarbonate filters (Millipore) to isolate only the dissolved fraction of the organic matter (i.e. DOM). We refer to the paper by Van Engeland et al. (2011) for further details on the DOM processing protocol. Since filtration of substrates added to filtered seawater demonstrated a considerable adherence of the bacteria-derived DOM to the filter (data not shown), the results for bacteria-derived DOM should be interpreted with caution, particularly with respect to uptake by the SPM. Dissolved combined amino acids (DCAA) comprised 84 ± 24(SD)% of the algae-derived DON and 47 ± 11% of the bacteria-derived DON, and 34 ± 11% of the algae-derived DOC and 46 ± 12% of the bacteria-derived DOC.

After the substrates were added to the incubations, the bags were anchored approximately 0.3 m above the sediment surface during each day of incubations using an ONSET data logger and Apogee photosynthetically active radiation (PAR) sensor. Mean (±SD) PPF and temperature were 908 ± 561 µmol photons m$^{-2}$ s$^{-1}$ and 30.1 ± 2.9°C, respectively.

Sampling and sample handling

Dissolved nutrients, amino acids, and DOC were collected after removal of SPM by filtration over precombusted GF/F filters (Whatman). Unfiltered water was collected for dissolved inorganic carbon (DIC) measurements in headspace vials. HgCl was added (20 µl per 10 ml of sample) for preservation. SPM samples were collected on preweighed precombusted GF/F filters (Whatman) for bulk 13C and 15N analysis, polar lipid-derived fatty acid (PLFA) isotope analysis, and amino acid isotope analysis. All SPM samples were stored on ice in the field and at −20°C in the laboratory until further processing. Epiphytes of *Cymodocea nodosa* and *Zostera noltii* were scraped off with razor blades, and stored on precombusted GF/F filters (Whatman) on ice. The macrophytes were dissected, and aboveground and belowground parts stored separately in liquid nitrogen in the field and at −20°C in the laboratory. Reference samples from the environment were taken for all variables mentioned above. In addition, GF/F filters for pigment analysis were collected to assess the phytoplankton community composition (also stored on liquid nitrogen in the field and at −20°C in the laboratory). The macrophytes, SPM, and epiphytes were later freeze-dried, and macrophyte tissues were ground for isotope analysis.

Chemical analyses

DIN components (NH$_4^+$, NO$_2^-$, NO$_3^-$) and urea were determined colorimetrically. DON was calculated by difference from the TDN, determined as NO$_3^-$ after alkaline persulphate destruction (120°C for 30 min; Grasshoff et al. 1999), and DIN. DOC concentrations were measured with an auto-analyzer (Skalar SK12 organic carbon analyzer). Dissolved free amino acids (DFAA) concentrations were measured by HPLC on a Waters HPLC system with a 996 photodiode array detector (Fitznar et al. 1999). Pigment analysis was performed on a Waters HPLC system with a Waters 474 fluorescence detector (Barranguet et al. 1997).
Concentrations and relative abundances of 13C in DIC (D$(^{13}$C) were measured with a headspace technique using a Thermo NA2500 elemental analyzer coupled to a Thermo Delta Plus isotope ratio mass spectrometer via a Conflo II interface (Miyajima et al. 1995). C and N content and relative abundances of 13C and 15N in SPM and plant tissue were measured using a Thermo EA 1112 elemental analyzer coupled to a Thermo Delta V Advantage isotope ratio mass spectrometer with a Conflo II interface (EA-IRMS). Concentrations and relative abundances of 13C and 15N ratios in hydrolyzable amino acids in SPM (HAA) were analyzed by gas chromatography-flame ionization detection (GC-FID) with separation on a polar column (Scientific Glass Engineering BPX-70; Middelburg et al. 2000). 13C isotope ratios of the individual FAME were measured on an HP 6890 GC gas chromatograph with a Thermo type III combustion interface and Thermo Delta Plus GC-c-IRMS.

Calculations and conversions

Due to the wide range of labeling intensities, we based all our calculations on atomic fractions (for 15N or 13C) in the incubated samples (F_{sample}) and natural reference samples (F_{nat}; natural isotope abundance) rather than δ-values. For each compartment, isotope excesses ($E_{\text{sample}} = F_{\text{sample}} - F_{\text{nat}}$; i.e. enrichments) were used to calculate specific uptake rates of heavy isotope (V):

$$ V = E_{\text{sample}} \times [X] \times t^{-1} $$

where $[X]$ is the C or N concentration (in µmol g DW$^{-1}$; DW = dry weight) of the relevant compartment, and t represents time in hours. Specific uptake rates of all N (V_N; 14N + 15N) was calculated by dividing the specific uptake rates for the heavy isotope by the fraction of heavy isotope in the substrate, assuming that the background substrate concentration only contained 14N. 15N (and 13C) incorporation was calculated as the product of the isotope excess (E_{sample}) and the amount of biomass in terms of N (or C). Transport rates (ρ) were calculated as the product:

$$ \rho_{\text{sample}} = V_{\text{sample}} \times DW $$

and expressed in µmol 15N h$^{-1}$. Total incorporation and transport rates were not calculated for the epiphytes because no biomass values were available. Corrections for different initial substrate concentrations were accomplished by dividing V_{sample} by the amount of substrate added (n_{sub}; µmol 15N or 13C). This measure will be referred to as the normalized uptake rate (V_{norm}):

$$ V_{\text{norm}} = \frac{V_{\text{sample}}}{n_{\text{sub}}} $$

This rate of uptake per amount available gives an indication of the preference for a particular nutrient and is expressed in µmol 14N (g DW × h × µmol 15N$_{\text{added}}$)$^{-1}$. No corrections were made for isotope dilution during the 4 h incubations, and uptake rates should thus be considered minimal estimates.

Three biomarker classes were measured to estimate the bacterial and phytoplankton biomasses and/or their relative contributions to N and C incorporation in SPM. They were (1) PLFA, (2) HAA with bacteria-specific d-alanine, and (3) pigments. The chlorophyll a (chl a) concentration was converted to phytoplankton biomass in terms of C ($\text{POC}_{\text{phyto}}$ where POC = particulate organic carbon) by assuming a C content of 45 µg C per µg of chl a (Cloern et al. 1995). No biomarker-based calculations were performed on the algae- and bacteria-derived DOM additions because biomarkers were introduced by the additions themselves.

Bacterial biomass was determined following Evrard et al. (2008) and references therein. The average bacterial PLFA concentration (PLFA$_{\text{bac}}$) was calculated from the bacteria-specific PLFA concentration (PLFA$_{\text{bac-spec}}$; aiC15:0, iC15:0, iC14:0, and iC16:0) as:

$$ \text{PLFA}_{\text{bac}} = \sum \text{PLFA}_{\text{bac-spec/a}} $$

assuming a ratio of bacteria-specific PLFA to total bacterial PLFA (a) of 0.14 mmol PLFA-C:mmol PLFA-C (Evrard et al. 2008). Next, the bacterial C concentration (POC$_{\text{bac}}$) was determined as:

$$ \text{POC}_{\text{bac}} = \frac{\text{PLFA}_{\text{bac}}}{b} $$

where the amount of PLFA C per amount of bacterial C (b) was assumed to be 0.073 mmol PLFA-C:mmol POC$_{\text{bac}}$ (Evrard et al. 2008).

The phytoplankton biomass was determined as follows. The concentration of phytoplankton PLFA was calculated as the difference between the total PLFA concentration and the total bacterial PLFA concentration:
\[\text{PLFA}_{\text{phyto}} = \sum \text{PLFA}_{\text{all}} - \text{PLFA}_{\text{bac}} \] (6)

From this, the phytoplankton biomass (C concentration) was calculated as:

\[\text{POC}_{\text{phyto}} = \frac{\text{PLFA}_{\text{phyto}}}{c} \] (7)

assuming a ratio of phytoplankton PLFA C to phytoplankton C (c) of 0.077 ± 0.034 µg PLFA-C:µg POCphyto based on averaged results from Dijkman & Kromkamp (2006) for Chlorophyceae, Trebouxiophyceae, and Bacillariophyceae combined, and on the present phytoplankton community (see first section of ‘Results’ below).

Bacterial contributions to C and N uptake by the SPM were also estimated by means of the HAA in SPM. Following Veuger et al. (2005), and using a bacterial d:1-alanine ratio of the isotope excesses in C or N of 0.07, bacterial contributions were estimated as (d:L)/0.07, after correction for hydrolysis-induced racemization (Kaiser & Benner 2005, Veuger et al. 2007). The bacterial d:L ratio of 0.07 was chosen because at lower d:L ratios, the phenylalanine addition would result in bacterial contributions to C uptake in HAA of >100%.

Using the area-specific biomasses for *Zostera noltii* (65.6 ± 4.4 g DW m⁻²) and *Cymodocea nodosa* (123 ± 10 g DW m⁻²) reported for the inner Bay of Cadiz by Brun et al. (2006), the area-specific biomass for *Caulerpa prolifera* (97 ± 52 g DM m⁻²) from Morris et al. (2009), epiphyte concentrations kindly provided by Patricia García Marín (pers. comm.; 183.3 ± 78.2 mg DW of epiphytes per g DW of *Cymodocea nodosa* leaf), and the SPM data from the present study (21.5 ± 5.2 mg DW m⁻²), we extrapolated the N uptake and turnover rates per m² of bottom surface. For the SPM and the nutrient stocks, we assumed a water depth of 3.75 m, based on the average water depth and the difference between average low and high tide reported by Morris et al. (2009). Turnover rates were calculated as the quotient of the area-specific uptake rates (µmol m⁻² h⁻¹) and the amount of substrate (µmol) per m². These calculations provide a first insight in the substrate turnover rates at the experimental location.

Statistics

Significance of ¹⁵N and ¹³C enrichments (difference in isotope fractions in samples after incubation, relative to reference samples, i.e. natural abundance) was tested by means of t-tests (3 replicates per substrate). Thus, significant aboveground enrichments indicated significant substrate uptake, whereas significant belowground enrichments indicated significant translocation. Logarithmic transformations of response variables were performed when needed to obtain normality of the residuals. Differences in variance per factor level were corrected by introducing a variance function (Kutner et al. 2005).

Dependence of ¹⁵N-normalized uptake rates on the biotic compartment and substrates was tested using a 2-way ANOVA. Individual differences between substrates and biotic compartment were tested by post hoc Tukey HSD tests. For the amino acids, the relationship between substrate C:N ratio and ¹⁵N-normalized uptake was investigated by means of a linear regression analysis.

Dependence of total ¹⁵N incorporation on substrate type and differences in the contribution of different biotic compartments to total incorporation of ¹⁵N were tested through variance analyses. Differences between biotic compartments and substrate treatments were investigated by means of post hoc Tukey HSD tests.

Bacterial contributions to ¹³C and ¹⁵N incorporation in SPM were not statistically analyzed, because the HAA were not measured in replicate treatments due to logistic constraints. Standard errors are provided for the PLFA-based measurements.

RESULTS

Environmental conditions and microbial community composition

Water column DIN concentrations were low (<1 µmol N l⁻¹), while DON was almost 20 times higher (Table 2). Urea comprised 13.2% of the DON. The leucine concentration was much smaller than the glycine concentration and exhibited considerably more variation between sampling days (standard deviations in Table 2).

Based on chl a and PLFA data, phytoplankton biomass was estimated to be 10 to 12 µmol C l⁻¹, and represented approximately 25 ± 12(SD)% of the C pool of SPM. Based on both PLFA and accessory pigment data, diatoms were a major contributor to the phytoplankton community, whereas cryptophytes were a smaller constituent, and cyanobacterial numbers were negligible (data not shown). Abundant chl b indicated a chlorophyte contribution, which may partially be due to *Caulerpa prolifera* rather than microalgae. Based on PLFA data, bacterial biomass was 4 ± 1 µmol C l⁻¹, which corresponds to 8 ± 3% of the POC.
Isotope enrichments, specific uptake rates and substrate preferences

15N enrichments in the SPM, epiphytes, and above-ground macrophyte parts were significant for all substrates (t-tests, all $p < 0.05$), except phenylalanine in the seagrasses. 15N enrichments in *Caulerpa prolifera* incubations with urea and NO$_3^-$ were not significant because of a strong outlier and resulting high variance.

In the belowground macrophyte parts, some significant 15N excesses were detected, e.g. *Zostera noltii* after NH$_4^+$ addition (t-test: $t = 2.6$, $p = 0.03$), indicating translocation. However, belowground incorporations were in these cases below 3% of the aboveground incorporation. Therefore, it is justified to ignore translocation in the remainder of this study.

14N-normalized uptake rates (V_{norm}) varied significantly with substrate type (ANOVA: $F_{7,78} = 146$, $p < 0.0001$), but the power of the Tukey HSD procedures was only sufficient to distinguish the extremely low values in the phenylalanine-N and bacterial DON treatments from the remainder of the substrates in the macrophytes and epiphytes (Fig. 2). For SPM, normalized uptake rates of algae-derived DON were higher than those of urea-N, phenylalanine-N, and bacteria-derived DON (Tukey HSD, all $p < 0.05$). 15N-normalized uptake rates also varied among compartments (ANOVA: $F_{4,78} = 729$, $p < 0.0001$), with higher

Table 2. Concentrations of nutrients (µmol N l$^{-1}$) and chl a (µg l$^{-1}$) in the environment. For the nitrogen compounds, contribution to total dissolved nitrogen (TDN) are given as well. Amino acid concentrations are given for the free (DFAA; dissolved free amino acids) and combined form (DCAA; dissolved combined amino acids). All values are mean ± SD. DON: dissolved organic nitrogen

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Concentration</th>
<th>% of TDN</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH$_4^+$</td>
<td>0.29 ± 0.11</td>
<td>1.7 ± 0.7</td>
</tr>
<tr>
<td>NO$_3^-$</td>
<td>0.72 ± 0.65</td>
<td>3.5 ± 3.3</td>
</tr>
<tr>
<td>DON</td>
<td>16.41 ± 1.34</td>
<td>94 ± 2.5</td>
</tr>
<tr>
<td>Urea</td>
<td>2.17 ± 0.41</td>
<td>12.5 ± 2.3</td>
</tr>
<tr>
<td>Glycine</td>
<td>17.42 ± 1.82</td>
<td></td>
</tr>
<tr>
<td>DFAA</td>
<td>0.018 ± 0.006</td>
<td></td>
</tr>
<tr>
<td>DCAA</td>
<td>0.444 ± 0.116</td>
<td></td>
</tr>
<tr>
<td>Leucine</td>
<td>0.000021 ± 0.00041</td>
<td></td>
</tr>
<tr>
<td>DCAA</td>
<td>0.042 ± 0.039</td>
<td></td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>0.003 ± 0.001</td>
<td></td>
</tr>
<tr>
<td>DCAA</td>
<td>0.012 ± 0.016</td>
<td></td>
</tr>
<tr>
<td>Chl a</td>
<td>2.7 ± 2.6</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Normalized nitrogen uptake rates (V_{norm}) for (a) suspended particulate matter (SPM; containing detritus, phytoplankton, and bacterioplankton), (b) epiphytes, and 3 macrophyte species: (c) *Zostera noltii*, (d) *Cymodocea nodosa*, and (e) *Caulerpa prolifera*. DW: dry weight. See Table 1 for treatment abbreviations. Boxplots: whiskers are extremes, boxes are inter-quartile range, and thick lines are median
values in SPM than the other compartments (Tukey HSD, p < 0.05).

The macrophytes and epiphytes exhibited significantly decreasing 15N-specific uptake rates (V) with increasing amino acid C:N ratios (Fig. 3). No relationship between the amino acid C:N ratio and 15N uptake rates was found for SPM (data not shown).

DIC, urea, and the complex DOM substrates caused significant 13C enrichments for all biotic compartments (t-tests, all $p < 0.01$). 13C enrichments in the individual amino acid additions were only significant in the SPM and epiphytes (t-tests, all $p < 0.05$), but not in the macrophytes.

Substrate incorporation in the enclosures

SPM dominated total 15N incorporation per enclosure in all substrate treatments (data not shown). For instance, if SPM was included, the percentage of added NH$_4^+$ that was incorporated in biomass increased from 12 to 59%, while for algal DON this increased from 4 to 81% (data not shown). Bacteria-derived DON incorporation increased from 1 to 22% when the SPM was included. However, the latter may be a severe overestimation, given the adherence of this substrate to the filters. Because the possibility exists that specifically the macrophytes and epiphytes were limited in their 15N supply by concentration gradients in the enclosure (insufficient mixing, see ‘Discussion’), and because no biomass data were available for our epiphyte samples, only the macrophytes are compared in Fig. 4.

Total 15N incorporation in the macrophytes, as a percentage of the added amount (Fig. 4a, percentages above the barplots), varied significantly with substrate type (ANOVA: $F_{7,16} = 4.7$, $p = 0.006$; numbers above the bars in Fig. 4a). Percentage substrate

Fig. 3. Linear regression analyses of specific nitrogen uptake rate (V_N) versus C:N ratio of the added amino acids for (a) *Zostera noltii*, (b) *Cymodocea nodosa*, (c) *Caulerpa prolifera*, and (d) epiphytes. Coefficient of determination and F-test results are indicated in each graph. DW: dry weight.
incorporation decreased with increasing amino acid C:N ratios (and chemical complexity; see ‘Materials and methods; Experimental design’; Fig. 3). Contributions of the individual macrophyte species to the total incorporation by all macrophytes (subdivision of bars in Fig. 4) varied significantly among substrates (ANOVA: $F_{7,62} = 5.4$, $p = 0.0001$). A significant interaction effect of substrate with macrophyte species was also found (ANOVA: $F_{14,62} = 2.7$, $p = 0.006$).

In contrast to the 15N incorporation, which was dominated by the SPM, macrophytes dominated DI13C and urea-13C incorporation with a total contribution of ~85% (data not shown). The macrophytes were responsible for only 2% of the algal DOC incorporation (Fig. 4b).

Bacterial contributions to total 15N incorporation into HAA increased with substrate complexity, and seemed decoupled from the fate of the substrate 13C (Fig. 5). Bacterial contributions to 13C incorporation into HAA appeared considerably higher for the leucine and phenylalanine substrates (Fig. 5). Approximately 26% of the DI13C incorporation into the HAA pool was in the bacterial compartment. The increased bacterial contribution for leucine and phenylalanine was also supported by the higher and significant contributions of bacteria in total 13C incorporation into PLFAs (t-test, all $p < 0.05$) (Fig. 5).

The ratios of the incorporation of substrate 13C over substrate 15N into HAA ranged from 0.05 for the NH$_4^+$ (+ DIC) treatment to 0.5 for the glycine addition. This is well below the 13C:15N ratio in the added substrates, indicating that the added N was incorporated into amino acids more readily than the C. The 13C:15N ratio in the urea treatments was of the same order of magnitude as the NH$_4^+$ and NO$_3^-$ treatments (which also received DI13C). The HAA 13C:15N ratios in the amino acid additions were higher (0.5, 0.24, and 0.46 for the glycine, leucine, and phenylalanine additions, respectively), indicating relatively higher C incorporation from amino acids than from urea or DIC.
Table 3. Area-based carbon fixation (µmol C m⁻² h⁻¹ for DIC) and nitrogen transport rates (µmol N m⁻² h⁻¹ for the other treatments) for the various biotic compartments from this study, turnover times for all compartments, and total amount of substrate available to the biota per unit surface area. Means ± SD are shown. All calculations were based on the assumption of a water column depth of 3.75 m, and using biomass values from Brun et al. (2006), Morris et al. (2009), Patricia García Marín (pers. comm.), and the present study. SPM: suspended particulate matter. See Table 1 for other abbreviations

<table>
<thead>
<tr>
<th>Source</th>
<th>SPM</th>
<th>Epiphytes</th>
<th>Zostera noltii</th>
<th>Cymodocea nodosa</th>
<th>Caulerpa prolifera</th>
<th>Turnover time (h)</th>
<th>Nutrient stocks (µmol m⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIC</td>
<td>747 ± 207</td>
<td>323 ± 135</td>
<td>1133 ± 280</td>
<td>1982 ± 553</td>
<td>724 ± 659</td>
<td>1.9</td>
<td>6280 ± 739</td>
</tr>
<tr>
<td>NH₄⁺</td>
<td>600 ± 280</td>
<td>18 ± 5</td>
<td>40 ± 17</td>
<td>64 ± 24</td>
<td>28 ± 22</td>
<td>1.5</td>
<td>1100 ± 401</td>
</tr>
<tr>
<td>NO₃⁻</td>
<td>467 ± 324</td>
<td>32 ± 15</td>
<td>24 ± 13</td>
<td>28 ± 6</td>
<td>45 ± 41</td>
<td>4.1</td>
<td>2438 ± 2444</td>
</tr>
<tr>
<td>Urea</td>
<td>573 ± 327</td>
<td>53 ± 27</td>
<td>72 ± 19</td>
<td>96 ± 19</td>
<td>36 ± 43</td>
<td>9.8</td>
<td>8125 ± 1339</td>
</tr>
<tr>
<td>Glycine</td>
<td>33 ± 18</td>
<td>2.6 ± 1.1</td>
<td>1.7 ± 0.8</td>
<td>3.1 ± 1.9</td>
<td>3.7 ± 2.7</td>
<td>1.5</td>
<td>68 ± 23</td>
</tr>
<tr>
<td>Leucine</td>
<td>32 ± 29</td>
<td>1.8 ± 0.5</td>
<td>0.7 ± 0.1</td>
<td>1.7 ± 1</td>
<td>2.5 ± 1.6</td>
<td>0.06</td>
<td>2.3 ± 2.1</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>21 ± 18</td>
<td>0.6 ± 0.6</td>
<td>0.2 ± 0.2</td>
<td>0.03 ± 0.2</td>
<td>0.4 ± 0.3</td>
<td>0.6</td>
<td>13 ± 5</td>
</tr>
<tr>
<td>AD</td>
<td>12658 ± 6421</td>
<td>18 ± 2</td>
<td>135 ± 52</td>
<td>328 ± 126</td>
<td>211 ± 184</td>
<td>45.6</td>
<td>61525 ± 5016</td>
</tr>
</tbody>
</table>

Area-specific N uptake and C fixation in the inner bay

Total C fixation per m² was mainly accomplished by the seagrasses, in particular *Cymodocea nodosa* (Table 3). *Caulerpa prolifera* and the SPM had an equal share, which was highly variable. In contrast to the DIC consumption, SPM was by far the largest sink for dissolved N regardless of the source (Table 3), but this may have been due to local depletion and strong concentration gradients limiting N uptake by the macrophytes. The area-based DIN turnover time amounted to 0.11 d in our simplified system. The DIN turnover time, if *Zostera noltii* was the only consumer, would be 2.3 d, and for *Cymodocea nodosa* it would be 1.6 d. In the absence of fluxes into the substrate pools, the total uptake of NH₄⁺ and glycine by the investigated consumers would drive these pools close to depletion after 1.5 h (Table 3). This was less pronounced for NO₃⁻ and urea (Table 3). The area-based uptake rates of leucine-N and phenylalanine-N were large compared to the standing stock, indicating a rapid turnover of these N compounds as well. The calculations for the algae-derived DON were based on the assumption that the entire DON pool is derived from algae, which is obviously a crude approximation.

DISCUSSION

It has been established that many marine macrophytes are able to directly take up organic N (Bird et al. 1998, Tarutani et al. 2004, Tyler et al. 2005, Vonk et al. 2008). In a companion study, Van Engeland et al. (2011) showed that the macrophytes in the present study have the capacity to use DON for their nutrition under circumstances of a strongly reduced microbial community. Their results suggest that either biomass-specific bacterial breakdown had to be very fast (exo-enzyme activity cannot be reduced by filtration over a glass-fiber filter), or these macrophytes took up organic N without interference from a bacterial community. The exact uptake mechanisms in seagrasses are not known, but could resemble those in terrestrial vascular plants, which may acquire as much as 20% of their total N demand from organic forms (cf. Touchette & Burkholder 2000, and references therein). The present study shows that the same macrophytes also take up N from DOM in the water column in the presence of a well-equipped and potentially competing microbial community, which can take up N from a complex DON pool in quantities similar to or higher than those from inorganic N pools (Veuger et al. 2004, the present study).

However, our results also support the inferior position of slow-growing and C-rich macrophytes as short-term N sinks in the water column relative to a fast-growing N-rich microbial community (Duarte 1990, 1995, Malta et al. 2005), and suggest an even weaker direct influence on water-column organic N concentrations. Although insufficient mixing in our enclosures may partially compromise comparison of the phytoplankton and macrophyte uptake rates in terms of competition, we believe the inferiority of macrophytes as a short-term sink for water-column N relative to microbes is real, considering that the epiphytes were subject to the same concentration gradients caused by insufficient mixing, and still showed a higher specific uptake rate than the macrophytes. Insufficient mixing essentially strengthens the effect of differences in proximity to nutrients between the
phytoplankton and the benthic community, a potentially major factor in the competitive outcome between macrophytes and microbes in acquiring sufficient nutrients from the water column. Because of their association with the bottom, macrophytes have less access to water column nutrients than phytoplankton, and epiphytes may act as nutrient filters to macrophytes (Cornelisen & Thomas 2004; i.e. a competitive inferiority). Note that an effect of the exclusion of root-mediated uptake as an alternative N source for macrophytes on their leaf-mediated uptake cannot be ruled out. However, if an effect existed on the uptake rates, it would probably be a positive effect, since macrophytes were in our study solely dependent on leaf-mediated N uptake. The difference in competitive abilities for DON and DIN uptake implies that changes in the DON:DIN ratio, for instance due to targeting dissolved inorganic nutrients in nutrient-reduction measures (Pehlivanoglu-Mantas & Sedlak 2006), may not only cause phytoplankton community shifts (Gilbert et al. 2007), but also affect seagrasses that may be overgrown by epiphytes, shaded by phytoplankton (McGlathery 2001), or pushed towards increased dependence on nutrient uptake from the sediment (including organic N; Vonk et al. 2008, Van Engeland et al. 2011). Effects of organic-to-inorganic nutrient ratio could be particularly relevant for the Bay of Cadiz, considering the aquaculture activities in this system (Hernández et al. 2002). Note that a similar competitive interaction arises in the benthic environment, with a competitive advantage for the macrophytes over microalgae, since the former may alter the fluxes to the water column and therefore the availability of N to the latter (Tyler et al. 2001).

The present study illustrates a difference in bioavailability among the individual organic compounds. This was most clear for the macrophytes and epiphytes, for which a negative relationship existed between the specific 15N uptake rates (V) and the amino acid C:N ratio. Preferences for simple N-rich amino acids over complex C-rich amino acids have also been observed for terrestrial plants (Harrison et al. 2007). The relationship with the substrate C:N ratio may in our case be attributable to molecular complexity/stability (cf. Table 1). Enantiomery (glycine is achiral) and the presence of chemically stable aromatic rings (phenylalanine) can be important determinants of chemical and biological reactivity. The higher bacterial contributions to 15N incorporation for more complex molecules support this view (Fig. 5), since heterotrophic bacteria are better equipped to process the complex amino acid. However, considering that urea did not fit in this regression analysis, substrate complexity does not provide the entire explanation. The increasing gradient in the amino acid C:N ratio also corresponded with decreasing amino acid abundance in the organisms (Cowie & Hedges 1992), our studied system (Table 2, DFAA + DCAA), and some seagrass sediments (Hansen et al. 2000). From an evolutionary perspective, high relative amino acid abundance in organisms and their environment and high amino acid bioavailability may well be opposite sides of the same coin. For abundant amino acids (e.g. glycine) that are needed and available in larger amounts, it is probably easier to invest in uptake (more transporter and assimilation proteins) than in new production. These considerations illustrate that more research is needed to understand the relationship between DOM composition and bioavailability.

The differences in preference for individual organic compounds were also reflected in strong differences in the utilization of complex DON pools from either algal (more amino acids) or bacterial (less amino acids) origins. Besides the lower amino acid content, the refractory nature of peptidoglycans may be a part of the explanation for lower bacterial DON bioavailability (Veuger et al. 2006). Our findings are in line with the reported dependence of DON bioavailability on pool composition, which in turn is related to variability in flow conditions of rivers (Stepanauskas et al. 2000), land use in river tributaries (Wiegner & Seitzinger 2004), coastal versus inland waters (Stepanauskas et al. 1999), and algal versus bacterial origin (McCallister et al. 2006, the present study), and other factors. In the investigated system, aquaculture and sewage treatment are 2 DOM sources that could have compositions and bioavailability different from in situ DOM production by primary producers. For such shallow seagrass ecosystems with potentially strong benthic-pelagic couplings, this dependence of DOM bioavailability on the source and composition implies a potentially strong variability in the intensity of nutrient cycling, since the importance of fluxes from different sources (e.g. sediment versus water column) may vary throughout the growth season (Ziegler & Benner 1999a). The C and N component of the DOM pool are generally considered decoupled. Strong preferential recycling of DON relative to DOC is observed when DIN concentrations are very low (Thomas et al. 1999, Osterroht & Thomas 2000, Ziegler et al. 2004), but not necessarily under N-replete conditions (Aminot & Kérouel 2004, Bradley et al. 2010). Preferential uptake of N was also found in the present study. In fact, no
significant 13C enrichment was observed, suggesting that the amino acid and urea N entered the macrophytes after extracellular processing (deamination). The fates of amino acid and urea C and N were partially decoupled when taken up by the pelagic community. The 13C:15N ratios of uptake by the pelagic community were in favor of N uptake, but 13C uptake did occur. Since DI13C resulting from extracellular remineralization would have been lost in a large background pool, the most likely explanation for the 13C enrichment in the primary producers would be uptake of entire molecules, rather than DI13C uptake. Similar patterns were found for intertidal macrophytobenthic communities (Veuger & Middelburg 2007). Both uptake of intact compounds and of parts after breakdown have been documented for microalgae (Palenik & Morel 1991, Legrand & Carlsson 1998).

The degree of coupling depended on the substrate and biotic compartment. Urea, for instance, was largely remineralized prior to uptake, since the 13C:15N ratio of the influx in SPM was much lower than the 0.5 expected from uptake of intact molecules. Increasing C content coincided with increasing bacterial contributions to N incorporation, suggesting increasing support of bacterial growth and/or energy storage. Smaller N-rich compounds, however, were more channeled into the primary producer compartments, and were probably remineralized rather than incorporated by the bacteria. It is possible that bacterial activity and growth are supported or stimulated by a certain fraction of DOM, which contributes to the bioavailability of another (perhaps partially overlapping) DOM fraction to primary producers. Ziegler & Benner (1999b), for instance, reported a stimulation of ammonium regeneration and bacterial growth efficiencies (BGE) by spring and summer DOC fluxes, most likely originating from seagrass carbohydrate exudation. This increased BGE resulted in a bioavailable fraction of DOM with lower C:N ratio (Ziegler et al. 2004). Overall, a heterotrophic community, stimulated by a DOC flux from autotrophs, produced a bioavailable DOM fraction enriched in N that was available for both autotrophs and heterotrophs. It is therefore not surprising that changes in DOC–DON coupling throughout the growth season have been observed (Andersson et al. 2006), which may be related to varying interactions between autotrophs and heterotrophs. The decoupling of DON and DOC processing implies that these pools should be treated as covarying but separate pools, and that an observed coupling of DOC and DON dynamics is largely determined by the spatio-temporal scale, ecosystem compartments, and the level of detail at which the composition of the DOM is examined.

The water column of the inner Bay of Cadiz is characterized by a very fast turnover of dissolved N. Our back-of-the-envelope calculations suggest that some of the substrates could be depleted within half a tidal cycle in the absence of fluxes replenishing the substrate pools (Table 3). These fluxes may come from the sediment, as well as through DOM exudation by the macrophytes directly into the water column. The occurrence of very fast remineralization is also supported by the measured bacterial DI13C incorporation in the absence of cyanobacteria (Fig. 5), which can only occur through DOC uptake after DOM loss from primary producers (Findlay et al. 1986, Van den Meersche et al. 2004). Nutrient recycling intensity is in general positively related to the potential for nutrient limitation (Thomas et al. 1999, Osterroht & Thomas 2000, Ziegler et al. 2004). When external inputs are low, concentrations of bioavailable nutrients are low and remineralization fluxes have to support biological activity/growth. Dead organic matter leaks DOM into the water column, of which the useful bioavailable part is quickly stripped, and fixed again in living organic matter (partially after conversion to inorganic nutrients). Therefore, fast turnover may improve nutrient retention in the system, depending on its nutrient state (Vonk & Stapel 2008).

The present work contributes to a growing body of evidence that DON is an underestimated ecosystem component in general, and in seagrass-dominated systems in particular. Very often, DON concentrations exceed DIN concentrations, implying a strong potential for DON as source of fixed N (Bronk et al. 2007) that is bioavailable through direct uptake or after fast remineralization. In the Bay of Cadiz, DON is at least partially available to macrophytes within 1 tidal cycle, either through direct uptake or after microbial breakdown. In addition, the high bioavailability of DON to phytoplankton combined with particle trapping by seagrasses (Marbà et al. 2006) suggests an indirect and prolonged DON availability to seagrasses through phyto-detritus dissolution and burial as well (Evrad et al. 2005, Barròn et al. 2006, Vonk & Stapel 2008). Our discussion also illustrates that a close but complex relationship exists among the cycles of the major elements in DOM (C, N, phosphorus). The interactions between these elemental cycles are governed by DOM bioavailability, composition, and sources, and autotroph–heterotroph interactions, but are currently not fully understood. Therefore, DOM cycling in all its complexity deserves further investigation.

Acknowledgements. This research was supported by the regional government of Andalusia project FUNDIV (P07-RNM-2516), a European Reintegration Grant (MERG-CT-2007-205675), the Spanish Project CTM2008-00012/MAR, a travel grant from the Schure-Beijerinck-Popping Fund (SBP/JK/2007-32), the Darwin Centre for Biogeosciences, and the Netherlands Organization for Scientific Research. We thank Patricia Garcia Martin for providing data on epiphyte biomass in the bay.

LITERATURE CITED

- Malta EJ, Ferreira DG, Vergara JJ, Pérez-Llorens JL (2005) Nitrogen load and irradiance affect morphology, photosynthesis and growth of *Caulerpa prolifera* (Bryops-

