INTRODUCTION

The ability to accurately describe and understand processes that determine the distribution of species is central to the development and implementation of effective measures for conservation and management. Increasing the availability of biogeographic data and knowledge of species’ ecological requirements can facilitate the identification of biodiversity hotspots (Nur et al. 2011), assessment of the impacts of climate change (Olivier & Wotherspoon 2006), establishment of conservation priorities (Maxwell et al. 2009) and design of reserve networks at large spatial scales (Airamé et al. 2003).

The utility of relative environmental suitability (RES) modelling for predicting distributions of seabirds in the North Atlantic

Hannah Watson1,5*, Jan G. Hiddink1, Matthew J. Hobbs2, Tom M. Brereton3, Michael J. Tetley4

1School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
2BSG Ecology, Wyastone Business Park, Wyastone Leys, Monmouth NP25 3SR, UK
3MARINElife, 12 St Andrews Road, Bridport, Dorset DT6 3BG, UK
4Ecology and Marine Sciences Consultant, Montague House, Durham DH1 2LF, UK

*Present address: Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK

ABSTRACT: Understanding spatial and temporal variability in the distribution of seabirds is fundamental for the conservation and management of marine ecosystems. In the absence of large-scale systematic survey data, the application of standard habitat modelling techniques to predict the at-sea distributions of seabirds at large spatial scales has been limited. In this study, we examine the utility of relative environmental suitability (RES) modelling to predict large-scale distributions and habitat suitability for 6 seabirds in the North Atlantic. An index of habitat suitability was derived by relating niche characteristics to environmental attributes. Predictive performance of models was evaluated with Receiver Operating Characteristic plots, using independent survey data from the Bay of Biscay. RES models performed significantly better than null models at predicting relative likelihood of occurrence for 5 out of 6 species. Qualitative assessment showed that model outputs corresponded well with published range maps, though a common discrepancy was the inclusion of enclosed seas in which species are not known to regularly occur. This study demonstrates that RES modelling can be used to predict large-scale habitat suitability for wide-ranging marine animals for which occurrence data are limited and biased in geographical extent. RES predictions represent simple, testable hypotheses concerning a species’ potential niche in respect of a few environmental predictors. RES modelling can help to identify biodiversity hotspots, predict effects of climate change and develop criteria for designating marine protected areas.

KEY WORDS: Ecological niche modelling · Habitat suitability · Seabird · Relative environmental suitability · Geographic range · Distribution · AquaMaps · Species distribution model · SDM
Predictive habitat modelling offers a range of tools to quantitatively delineate range extents based on species–environment relationships (for reviews, see Guisan & Zimmermann 2000, Guisan et al. 2002, Redfern et al. 2006, Zimmermann et al. 2010). Standard techniques typically employ records of species occurrence and associated environmental factors, which may determine — directly or indirectly — a species’ distribution within an area. Species distribution models (SDMs) have been widely applied in terrestrial systems, yet their application for predicting occurrences of marine organisms remained limited until the last 10 yr (Elith & Leathwick 2009, Robinson et al. 2011). Many SDMs in marine systems have been applied in conservation planning (e.g. Guinotte et al. 2006, Oppel et al. 2012) and are typically biased towards commercially harvested animals (e.g. Maxwell et al. 2009, Hardy et al. 2011) and mammals (e.g. Redfern et al. 2006, Gregr & Trites 2008, Ready et al. 2010). The most widely used models require large presence–absence data sets (Guisan et al. 2002) and are therefore unsuitable for generating accurate predictions about species for which occurrence data are limited in spatial and temporal extent, which characterises the situation for many marine animals (Ready et al. 2010, Robinson et al. 2011). While occurrence data of marine animals are becoming increasingly available through online databases, such as the Ocean Biogeographic Information System (OBIS; www.iobis.org) and the Global Biodiversity Information Facility (GBIF; www.gbif.org), there is little published quantitative information concerning large-scale patterns of diversity and distribution in the marine environment.

In the absence of point data spanning large spatial and temporal scales, Kaschner et al. (2006) proposed that the synthesis of available knowledge concerning species–habitat relationships could approximate a large-scale representative sampling scheme. They developed a novel rule-based envelope model to map global distributions of marine mammals and generate large-scale predictions of relative environmental suitability (RES) without the need for a huge input of presence–absence data — the limiting factor of standard modelling techniques. RES underlies the AquaMaps modelling system, which, compared with traditional methods of presence-only distribution modelling, was found to perform very well for a suite of marine taxa (Ready et al. 2010). AquaMaps is now used extensively for generating distribution maps in FishBase (www.fishbase.org). Gregr & Trites (2008) also demonstrated that species–habitat relationships can be accurately defined for wide-ranging marine top predators when limited observation data prevent the use of more common correlative approaches.

The behaviour and ecology of marine birds at sea is poorly understood, largely due to the practical and logistical difficulties associated with studying seabirds (Tasker & Reid 1997). Most data come from opportunistic sampling and sparse non-systematic records of occurrence (e.g. Huettmann & Diamond 2001). Sampling typically covers only a fraction of a species’ range (e.g. Hobbs et al. 2003), and transects at sea can underestimate seabird distribution and abundance due to low detection rates and vast geographic ranges (Ostrand et al. 1998). Traditional range maps are generated subjectively, on the basis of limited occurrence records and expert opinion (Cramp & Simmons 1980, del Hoyo et al. 1992), and they do not provide quantitative information on the relative suitability of different areas. Predictive modelling of seabird distributions has been largely restricted to studies of waters within 200 km of the coast (e.g. Yen et al. 2004, Louzao et al. 2006, Oppel et al. 2012) and nesting habitat (e.g. Olivier & Wotherspoon 2006). A few larger-scale studies, however, have encompassed extensive areas of pelagic waters, such as the Southern Indian Ocean (Raymond & Woehler 2003) and the Arctic Circle (Huettmann et al. 2011).

The aims of the present study are to (1) predict RES and geographic range extent for 6 seabird species in the North Atlantic, and (2) evaluate these models using independent point data. Using published information on species’ distributions, foraging behaviour and life histories, species were assigned to broad-scale niche categories, defined by environmental parameters known to be key predictors of distribution. We build upon the approach developed by Kaschner et al. (2006, 2010), incorporating temporal variability in environmental variables and species–habitat relationships — pertinent to wide-ranging migratory marine animals — into models. Model performance was evaluated using observation data collected by MARINElife in the English Channel and Bay of Biscay. The approach is designed to inform our understanding of seabird distributions and the development and evaluation of predictive habitat models relevant to the at-sea distribution of seabirds.

MATERIALS AND METHODS

Study species

RES modelling was applied to 6 species of seabirds, belonging to the order Procellariiformes, that are all
abundant and widely distributed in the North Atlantic during part, or all, of their annual life cycle: northern fulmar *Fulmarus glacialis* (hereafter fulmar), Cory’s shearwater *Calonectris diomedea*, great shearwater *Puffinus gravis*, sooty shearwater *P. griseus*, Manx shearwater *P. puffinus* and European storm petrel *Hydrobates pelagicus* (hereafter storm petrel). The selection of species was determined by the availability of data concerning species–habitat relationships and the availability of test data for model evaluation. The fulmar is restricted to the Northern Hemisphere during its breeding and non-breeding seasons and has a circumpolar distribution (del Hoyo et al. 1992). Cory’s shearwater, Manx shearwater and storm petrel breed in the North Atlantic during the boreal summer, dispersing into the southern Atlantic during migration and the non-breeding season (del Hoyo et al. 1992). Great shearwater and sooty shearwater breed in the Southern Hemisphere during the austral summer and disperse into the Northern Hemisphere during their non-breeding season – the boreal summer (del Hoyo et al. 1992).

Quantifying species’ ecological niches

Qualitative and quantitative data concerning species’ habitat preferences were gathered from an extensive range of primary and secondary literature sources. A total of 35 sources of literature informed the quantification of species’ ecological niches (see Table S1 in Supplement 1 at www.int-res.com/articles/suppl/m485p259_supp.pdf). Of these, 26 represented primary sources and 9 were secondary sources of literature. Not all species were represented equally in the literature, with the number of relevant data sources ranging from 4 (Cory’s shearwater) to 17 (fulmar). There was high reliance on 8 sources of literature (5 primary, 3 secondary) for informing parameterisation of models. These sources, however, represent comprehensive pieces of literature based on substantial quantities of data collected over large temporal and spatial scales.

This information was used to assign each species to an ecological niche defined by 4 ecogeographical variables (EGVs): depth, sea-surface temperature (SST), chlorophyll *a* (chl *a*) concentration (indicating phytoplankton biomass, a proxy for ocean productivity) and distance to land. Most available data were qualitative and habitat categories were consequently developed to facilitate quantification of a species’ niche (Table 1). EGVs were selected on the basis of wide evidence in the literature of their significance in determining the distribution and abundance of seabirds at sea (Schneider 1997, Huettmann & Diamond 2001, Oedekoven et al. 2001, Louzao et al. 2006, Wakefield et al. 2009) and the availability of environmental data at appropriate scales.

Ecological niches were described by resource selection functions (RSFs) describing the relative suitability of an environment (Fig. 1). While true RSFs express the probability of use of a resource or area by an organism (Boyce et al. 2002), the RSFs applied here express the relative likelihood of use of an area; predicting probability of presence requires the incorporation of reliable information on prevalence (Elith et al. 2006). After Kaschner et al. (2006), it was assumed that the relative suitability of the environment is uniformly highest throughout a preferred parameter range, bounded by a minimum (MinP) and maximum (MaxP) value. Outside of this preferred range, suitability was assumed to decrease

<table>
<thead>
<tr>
<th>Variable</th>
<th>Habitat category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (m) (after Ross 1988)</td>
<td></td>
</tr>
<tr>
<td><10</td>
<td>Coastal waters</td>
</tr>
<tr>
<td>11−200</td>
<td>Coastal waters to edge of continental shelf</td>
</tr>
<tr>
<td>201−1000</td>
<td>Edge of continental shelf to upper continental slope</td>
</tr>
<tr>
<td>1001−2000</td>
<td>Continental slope</td>
</tr>
<tr>
<td>2001−6000</td>
<td>Abyssal plains</td>
</tr>
<tr>
<td>6001−8000</td>
<td>Very deep waters</td>
</tr>
<tr>
<td>Sea-surface temperature (°C) (adapted from Sverdrup et al. 1942, Ashmole 1971)</td>
<td></td>
</tr>
<tr>
<td>−2−5</td>
<td>Polar</td>
</tr>
<tr>
<td>0−10</td>
<td>Sub-polar</td>
</tr>
<tr>
<td>5−15</td>
<td>Cold temperate</td>
</tr>
<tr>
<td>10−20</td>
<td>Warm temperate</td>
</tr>
<tr>
<td>15−25</td>
<td>Subtropical</td>
</tr>
<tr>
<td>25−35</td>
<td>Tropical</td>
</tr>
<tr>
<td>Distance to land (km) (after Ashmole 1971)</td>
<td></td>
</tr>
<tr>
<td><6</td>
<td>Inshore waters</td>
</tr>
<tr>
<td>6−50</td>
<td>Offshore</td>
</tr>
<tr>
<td>>50</td>
<td>Pelagic</td>
</tr>
<tr>
<td>Chlorophyll a (mg m⁻³) (after Louzao et al. 2006)</td>
<td></td>
</tr>
<tr>
<td><0.1</td>
<td>Oligotrophic</td>
</tr>
<tr>
<td>0.1−0.29</td>
<td>Mesotrophic</td>
</tr>
<tr>
<td>0.3−1</td>
<td>Eutrophic</td>
</tr>
<tr>
<td>>1</td>
<td>Enriched waters</td>
</tr>
</tbody>
</table>
linearly towards an absolute minimum (MinA) and maximum (MaxA), being equal to 0 outside of those thresholds.

The availability of information concerning species’ associations with chl a concentration was limited (see Table S1) and largely restricted to qualitative statements such as ‘aggregates in productive waters’ or ‘attracted to fronts’. Procellariiformes occur in waters of all productivity but prefer eutrophic and enriched waters (Warham 1990, Louzao et al. 2006, Hedd et al. 2012). Insufficient information was available at the species level to distinguish different relationships; consequently, all species were assigned to identical niches with respect to chl a concentration.

Distinct niches were defined for a species’ breeding and/or non-breeding season, as opposed to characterising an annual niche. This accounted for the variability in species–habitat associations that is a typical feature within the annual life cycle of migratory marine birds. Breeding niches were quantified for fulmar, Cory’s shearwater, Manx shearwater and storm petrel, and non-breeding niches were quantified for fulmar, great shearwater and sooty shearwater in the North Atlantic. The breeding niche (and subsequent modelled range) describes the habitat associations of breeding adults while occupying nest sites; the non-breeding niche is that occupied by non-breeding adults, and the subsequent modelled range comprises both ‘wintering’ areas and migratory range. Note that non-breeding birds may be present within the non-breeding range throughout the year.

Environmental data

The study area covered the North Atlantic, bounded by the coordinates 68.0°N, 85.0°W, 0.0°S, 12.0°E. A regular grid with the cell dimensions 0.25 × 0.25° was constructed in ArcGIS 9.2 (Environmental Systems Research Institute) and displayed using the WGS-1984 coordinate system. A landmask was applied using ArcWorld Supplement’s ‘continents’ layer. Bathymetric data were obtained from GEBCO (IOC et al. 2003), providing elevation in 1 min (0.016°) intervals, and interpolated using inverse distance weighting at a scale of 0.25°. SST and chl a data were provided by the NERC Earth Observation Data Acquisition and Analysis Service. SST data were collected by the Advanced Very High Resolution Radiometer (AVHRR) and have a resolution of 4 km (0.036°). Chl a data were collected by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and have a resolution of 9 km (0.081°).

Seasonal averages were derived for dynamic parameters (i.e. SST and chl a) from data collected between 1995 and 2005, corresponding with the period over which the test data were collected. ‘Summer’ (April–September) and ‘winter’ (October–March) seasons were defined to correspond with species’ phenology. ‘Summer’ corresponds closely with the breeding season of fulmar, Cory’s shearwater, Manx shearwater and storm petrel and the non-breeding season of great shearwater and sooty shearwater, which breed in the Southern Hemisphere. ‘Winter’ corresponds with the non-breeding season of fulmar. Seasonal averages of SST and chl a were subsequently imported and averaged across grid cells within the raster using bilinear interpolation. The shortest distance to land was calculated for each grid cell using the Euclidean Distance function in ArcGIS.

Model structure

An index of RES was derived for each grid cell depending on how the environmental attributes of a cell corresponded with the parameters quantitatively defining a species’ ecological niche. After Kaschner et al. (2006), RES was measured on a scale from 0 to 1 and was based on a product of the suitability of the environment in relation to each individual EGV. Each EGV was afforded equal weighting in models. The overall RES for each cell was calculated using the formula:

$$RES_{overall} = RES_{depth} \times RES_{SST} \times RES_{distance} \times RES_{chl}$$ (1)
The multiplicative approach means that if any one variable within a cell fell outside of a species’ absolute range, the overall suitability was equal to 0. This is based on the assumption that an animal would not be expected to occur within an environment that is unsuitable in respect of one or more variables that are key determinants of distribution. RES values were imported into the GIS grid and displayed using a continuous colour scale. Model outputs delineate a species’ predicted geographic range and illustrate the relative suitability of the environment (equating to likelihood of occurrence) throughout that range.

Observation data

MARINElife provided point data collected from monthly seabird surveys carried out in the English Channel and Bay of Biscay (Fig. 2) between 1995 and 2005 (though data from 2003 and 2004 were not available). Surveys were carried out aboard a commercial ferry liner within a restricted transect route involving repeated sampling of grid cells. A total of 2696 h of observations, collected across 156 grid cells, provided data for the model evaluation. The data set comprises a large number of observations, representing a high diversity of species, collected over a decade and employing consistent methodology across space and time. The sampling area covers a wide spectrum of environmental strata. Observations were binned within grid cells (0.25° × 0.25°) to match the spatial resolution of environmental data.

Fig. 2. Area where MARINElife conducted monthly seabird surveys between 1995 and 2005 in the English Channel and Bay of Biscay. Data collected served as independent observation data for evaluation of relative environmental suitability (RES) models. Grey squares delineate grid cells (0.25° × 0.25°) covered by sampling effort.

Cells were assigned a binary value of 1 or 0, indicating ‘presence’ and ‘background’, respectively. Species occurrence data typically exhibit spatial autocorrelation, which arises when the probability of occurrence in one sampling unit is not independent of the probability of occurrence in neighbouring units (Legendre 1993, Dormann et al. 2007). If unaccounted for, spatial autocorrelation can increase the frequency of Type I errors (i.e. identifying a non-significant relationship as significant; Dormann et al. 2007). We checked for spatial autocorrelation in species observation data and residuals of generalised linear models (with Poisson error structures) fitted to data on the number of observations as a function of RES. Clustering of observations may be driven by spatially autocorrelated environmental variables; if predictors (here, RES) explain most of the variation in species occurrences (i.e. a model is correctly specified), there should be minimal spatial autocorrelation in the residuals (Dormann et al. 2007, Elith & Leathwick 2009). We calculated Moran’s I values for the 50 nearest neighbouring grid cells using the function moran.test in the spdep package in R 2.1.4.0. Moran’s I values range from −1 (negative autocorrelation) to +1 (positive autocorrelation), with values around 0 indicative of a completely random spatial pattern. Small positive values of Moran’s I were yielded from species observation data (range: 0.004−0.254) and model residuals (range: 0.012−0.024), indicating weak spatial clustering at the spatial scale of models (0.25 × 0.25°). Analysis of correlograms showed no significant spatial autocorrelation in either observations data or residuals and revealed irregular patchiness. Subsequently, we did not incorporate measures to account for spatial autocorrelation into models.

Model evaluation

Using independent point data collected by MARINElife in a subset of the model area (Fig. 2), we tested the predictive performance of models using Receiver Operating Characteristic (ROC) plots and comparing the resulting area under the curve (AUC) against that of a null model (see Olden et al. 2002, Raes & ter Steege 2007). ROC analyses offer a method of assessing model accuracy that is threshold-independent, by evaluating the proportion of correctly and incorrectly classified predictions across a continuous range of threshold values (Fielding & Bell 1997). The ROC plot is obtained by plotting sensitivity (the true positive rate) as a function of 1-specificity (the false positive rate) at every possible threshold.
value. The resulting AUC provides a measure of predictive ability; the higher the AUC, the greater the predictive accuracy of a model. An AUC value of 1.0 indicates a perfect model, while a value of 0.5 is usually considered to be equivalent to performing no better than random (Fielding & Bell 1997).

The use of null models has been demonstrated for improving testing for statistical significance in AUC values (Raes & ter Steege 2007) and addressing the issue of spatial sorting bias (Hijmans 2012). Spatial sorting bias can inflate AUC values of both empirical and null models, meaning an AUC of 0.5 might not necessarily be indicative of random performance (Hijmans 2012). Predictions of RES models were tested by comparing the AUC value of actual models against a null distribution (a ‘null model’) of AUC values derived from randomised data. This tested whether model predictive performance was significantly different from what would be expected by chance alone. We generated a null distribution of AUC values, corresponding with each RES model, by randomly distributing the species observations (presence/background) among the grid cells covered by survey effort. By generating random data only from the survey area, we aim to minimise spatial sorting bias by ensuring that the null model only reflects the environmental conditions where sampling was carried out (Hijmans 2012). The resulting ROC plot was generated and the AUC was calculated using the ROCr package in R 2.14.0. This procedure was repeated 10,000 times to generate a random frequency distribution of AUC values that would be expected if the RES model did not perform better than expected due to chance. If the AUC of the empirical model exceeded the 95% quantile of the ranked AUC values of the corresponding null model, the model was considered to perform significantly better than chance would dictate (Olden et al. 2002) and the relationship between RES and species’ presence can be considered to be stronger than would be expected by chance. We used 1-sided testing, since it was only of interest whether models performed significantly better than expected by chance, not whether they performed significantly worse. The significance level was calculated as the proportion of random AUCs that were equal to or greater than the observed AUC.

The model evaluation has 2 main assumptions: (1) there are sufficient records within the test data set to accurately describe a species’ distribution within the survey area; and (2) the range of possible RES values is represented within the survey area (i.e. there is heterogeneity of habitat suitability). To assess these assumptions, we calculated and considered the total number of species’ observations, number of ‘presence’ cells, and percentiles of the ranked RES values within the survey area for each model.

Model outputs were also visually compared with published range maps (del Hoyo et al. 1992, Onley & Schofield 2007), allowing detection of any large-scale geographical discrepancies in the predictions of models. While qualitative in nature, this comparison provides a useful additional evaluation of models at a much larger geographical scale than the more quantitative evaluation described above.

RESULTS

Quantifying and modelling species’ ecological niches

Ecological niches of 6 seabird species—fulmar, Cory’s shearwater, great shearwater, sooty shearwater, Manx shearwater and storm petrel—were quantified in relation to 4 EGVs—depth, SST, chl a concentration and distance to land—and are described in Table 2. The 6 species all occupy different ecological niches, with varying degrees of overlap. Niches were subsequently modelled using the RES approach, which resulted in a spatial visualisation of niches into potential distributions (Fig. 3) and illustrated the relative suitability of the environment throughout ranges. Manx shearwater and storm petrel share similar niches during their concurrent breeding seasons; both species occur in cold temperate to subtropical waters (5−25°C) and primarily range within a few hundred kilometres of land. However, while the Manx shearwater prefers depths of less than 200 m—from coastal waters to the edge of the continental shelf—the storm petrel prefers deeper waters between 100 and 1000 m. Breeding seabirds occur closer to land (all MinP = 0 km) than non-breeding birds (MinP ranges from 6 to 50 km).

The fulmar occupies a similar niche in the breeding and non-breeding seasons; the absolute minimum and maximum values of each EGV do not change between the 2 seasons, but the preferred range of all environmental variables (except chl a) differs. During the non-breeding season, the fulmar’s preferred niche encompasses cooler deeper waters further from land, compared with when breeding. Non-breeding great shearwater and sooty shearwater occupy the widest niches with respect to SST, spanning a range of 37 and 30°C, respectively. The preferred niche of great shearwater extends further offshore (<2000 km) than that of sooty shearwater, which tends to range closer to land (<200 km).
Qualitative comparison with published range maps

From visual qualitative assessment, it can be seen that model outputs (Fig. 3) illustrate variability in predicted range extents of the 6 seabird species in the North Atlantic. Relative environmental suitability varies throughout ranges, reflecting niche segregation between species. Predicted range extents vary in total surface area and geographical coverage. Comparing between species, non-breeding birds (with the exception of fulmar) occupy a larger range and latitudinal extent than breeding birds.

Predicted range extents closely corresponded with published distribution maps for all species. However, all ranges comprised a wider extent than maps in the literature. A common discrepancy was the prediction of suitable habitat in enclosed seas, when such areas are excluded from published ranges for several species, for example, the inclusion of the Mediterranean Sea in model outputs for great shearwater and Manx shearwater, the Caribbean Sea and Gulf of Mexico for great shearwater and sooty shearwater, and Hudson Bay for great shearwater. Elsewhere, models captured areas of known absence well, for example, the absence of breeding Manx shearwater from the western central Atlantic and Caribbean Sea, the absence of sooty shearwater from Hudson Bay, and the low habitat suitability in the central Atlantic for the sooty shearwater.

The model output for storm petrel predicted a much wider range across the North Atlantic than published range maps; the latter define the species’ range as restricted to the northeast Atlantic, extending no further west than 30°W. Areas of high environmental suitability were separated by a large area of low RES in the central Atlantic. Similarly, a small area of suitable habitat was predicted for fulmar in the north Mediterranean Sea but separated from the core range by a large area of unsuitable habitat.

Statistical model evaluation

RES models for 5 out of 6 species performed significantly better than expected by chance when tested with independent observation data from the Bay of Biscay (p < 0.05; Table 3). The AUC of empirical models was significantly higher than that of corresponding null models, revealing a significant relationship between RES and species occurrences for 6 out of 7 models. In the case of 4 out of a total of 7 models, less than 0.1% of random samples had a higher AUC than the actual model (p < 0.001). The model for sooty shearwater did not perform significantly better than random (p = 0.260), with 26% of random AUCs exceeding the observed AUC. While the model for great shearwater performed significantly better than expected by chance (p = 0.041), the model AUC was only very slightly higher than the 95% quantile of the ranked null AUC values, indicating that the model did not perform much better than random.

The number of species’ encounters ranged from 115 to 590 (mean 353.1 ± 65.3; Table 4). The range and frequency distribution of habitat suitability across the model evaluation area for each species is illustrated by percentiles of ranked RES values (Table 4). The distribution of RES in the survey area varies between species and is strongly skewed — indicating reduced heterogeneity of habitat suitability — for 3 models: fulmar (breeding), sooty shearwater and Manx shearwater. The majority of habitat within the sampling area is of low suitability for breeding fulmars but of homogenously high suitability for sooty and Manx shearwaters.

<table>
<thead>
<tr>
<th>Species</th>
<th>Status</th>
<th>Depth (m)</th>
<th>SST (°C)</th>
<th>Distance (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern fulmar</td>
<td>B</td>
<td>0, 100, 1000, 8000</td>
<td>−2, 0, 15, 15</td>
<td>0, 0, 320, 2364</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>0, 100, 2000, 8000</td>
<td>−2, 0, 10, 15</td>
<td>0, 50, 2364, 2364</td>
</tr>
<tr>
<td>Cory’s shearwater</td>
<td>B</td>
<td>0, 100, 1000, 8000</td>
<td>10, 20, 20, 25</td>
<td>0, 0, 200, 2364</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>0, 100, 200, 8000</td>
<td>−2, 0, 20, 35</td>
<td>0, 6, 2000, 2364</td>
</tr>
<tr>
<td>Great shearwater</td>
<td>N</td>
<td>0, 10, 1000, 8000</td>
<td>5, 10, 20, 35</td>
<td>0, 15, 200, 2364</td>
</tr>
<tr>
<td>Sooty shearwater</td>
<td>N</td>
<td>0, 10, 200, 8000</td>
<td>5, 10, 20, 25</td>
<td>0, 0, 360, 2364</td>
</tr>
<tr>
<td>Manx shearwater</td>
<td>B</td>
<td>0, 100, 2000, 8000</td>
<td>5, 10, 20, 25</td>
<td>0, 0, 200, 2364</td>
</tr>
<tr>
<td>European storm petrel</td>
<td>B</td>
<td>0, 100, 2000, 8000</td>
<td>5, 10, 20, 25</td>
<td>0, 0, 200, 2364</td>
</tr>
</tbody>
</table>

Table 2. Quantitative descriptions of species’ ecological niches in respect of 4 ecogeographical variables: depth, sea-surface temperature (SST), distance to land and chlorophyll a (chl a) concentration. Niches were defined for 6 procellariiform seabirds during the breeding and/or non-breeding season. MinA and MaxA: absolute minimum and maximum values of the resource selection function; MinP and MaxP: preferred minimum and maximum values (see Fig. 1). Chl a (mg m⁻³; identical for each species and status): MinA, MinP = 0, 0.3; MaxP, MaxA = 60, 60. Status: B = breeding, N = non-breeding. See Table S1 in Supplement 1 (www.int-res.com/articles/suppl/m485p259_suppl.pdf) for data sources.
Fig. 3. Model outputs illustrating predicted geographic range and relative environmental suitability (RES) for 6 procellariiform seabirds in the North Atlantic during their breeding (yellow–brown) and/or non-breeding seasons (blue): (A) northern fulmar *Fulmarus glacialis*, breeding; (B) northern fulmar, non-breeding; (C) Cory’s shearwater *Calonectris diomedea*, breeding; (D) great shearwater *Puffinus gravis*, non-breeding; (E) sooty shearwater *P. griseus*, non-breeding; (F) Manx shearwater *P. puffinus*, breeding; and (G) European storm petrel *Hydrobates pelagicus*, breeding. Predicted RES is on a scale from 0 (least suitable, white) to 1 (highly suitable, dark).
DISCUSSION

RES predictions

When compared with simulated random data, RES models performed significantly better for 5 out of 6 seabird species (and 6 out of 7 models) at predicting relative likelihood of occurrence in a subset of the study area. Model outputs provide more information on species’ distributions than published range maps since they provide indices of relative environmental suitability throughout a species’ range. RES predictions represent simple, testable hypotheses concerning a species’ potential niche in respect of a few environmental predictors. Visualisation of hypotheses in a spatial context facilitates our understanding of species–habitat relationships, inference of areas of potentially high seabird abundance and identification of regions to be targeted for future research and conservation planning.

Observed versus predicted distributions

RES modelling of the potential niche resulted in predictions of occurrence outside of known (or observed) ranges for several species, when compared with published range maps, indicating that distributions are influenced by additional biological and/or physical parameters, besides those included in models. Indeed, modelling of the realised niche—the part of the potential niche that a species actually uses—requires the incorporation of biotic interactions (Soberón & Nakamura 2009) and physiological constraints (Kearney & Porter 2009). Qualitative comparison of RES model outputs with observed distributions thus allows the assessment of the importance of other factors that may influence the at-sea distribution of seabirds.

Distributions of pelagic animals are ultimately constrained by the abundance and distribution of prey (Pahl-Wostl 1997), but scales of association between mobile predators and prey are highly variable (Schneider & Piatt 1986) and prey indices are considered inappropriate for predicting global distributions of many highly mobile marine organisms (Torres et al. 2008). Karpouzi et al. (2007) incorporated information on prey distributions in mapping at-sea foraging distributions of seabirds; however, they found little or no information concerning the diet of many seabirds and detected high spatial variability in associations between seabirds and prey. Habitat modelling is, therefore, largely reliant on predictor variables that indirectly affect species distribution.

Evidence from energetic and physiological studies highlights the significance of wind speed (Furness & Bryant 1996) and area of available ocean extent (Davies et al. 2010) in influencing the foraging behaviour and life-history strategies of procellariiform seabirds. The Strait of Gibraltar (Friesen et al. 2007) and the
Almeria-Oran Oceanographic Front (Gómez-Díaz et al. 2006) have both been proposed as barriers limiting dispersal of, and genetic exchange between, seabirds in the Atlantic Ocean and the Mediterranean Sea. Such physical and geographical factors may explain why, despite the prediction of suitable habitat, the observed distributions of some species do not extend into enclosed seas, e.g. the absence of great shearwater from the Mediterranean Sea and Hudson Bay.

Biotic interactions may play a significant role in determining distributions across smaller spatial and temporal scales (Furness & Birkhead 1984), and their incorporation into SDMs is widely recognised as a key challenge in both terrestrial (Araújo & Guisan 2006) and marine environments (Robinson et al. 2011). Shearwaters do not typically form mixed-species colonies (Warham 1990), suggesting that interspecific competition and niche segregation may influence the breeding distributions of some procellariiform seabirds. While the observed range of Manx shearwater does not extend into the Mediterranean Sea, the breeding ranges of the Balearic shearwater *Oceanodroma leucorhoa* and the Yelkoan shearwater *P. yelkoauani*, which occupy similar ecological niches to the Manx shearwater (and were, until recently, considered to be subspecies of Manx shearwater; Sangster et al. 2002), are restricted to the Mediterranean Sea (Onley & Schofield 2007). A combination of evolutionary history and biotic interactions may explain the reduced niche overlap that is observed (compared with predicted overlap) between these 3 ecologically similar species. Depending on the objectives, it may be a more useful approach to apply niche modelling to a species complex when there are several closely related species.

Despite their ability to traverse large sections of ocean, many procellariiform seabirds show limited dispersal (the ‘seabird paradox’ proposed by Milot et al. 2008). Their philopatric habits are expected to limit colonisation by long-distance dispersal and subsequent range expansion (Matthiopoulos et al. 2005, Brown et al. 2010). Despite the prediction of high RES in the northwest Atlantic for the storm petrel, high breeding-site fidelity and the large area of predicted low habitat suitability in the central Atlantic may explain why the species’ observed distribution (from published range maps) is restricted to the northeast Atlantic (del Hoyo et al. 1992). Additionally, the niche is already filled by another pelagic seabird, Leach’s petrel *Oceanodroma leucorhoa*, in the northwest Atlantic (del Hoyo et al. 1992). In the interpretation of RES model outputs, consideration should thus be afforded to a species’ evolutionary history as well as areas of low RES separating areas of high RES, both of which may act to restrict ranges.

The availability of suitable nest sites is a fundamental constraint on the current breeding distribution of seabirds (Brown et al. 2010). Procellariiform seabirds are largely restricted to remote islands, free of mammalian predators, which are within range of suitable foraging areas (Warham 1990). If all occupied breeding colonies could be accurately identified and niche envelopes constrained by maximum foraging range from colonies, models could yield more accurate predictions of range extent during the breeding season. However, given the difficulties of surveying and monitoring remote locations, our knowledge of breeding sites is likely to be incomplete, particularly for less well-studied species. Restricting distribution to within species-specific foraging range of all land, therefore, represents a more conservative approach.

Where suitable habitat is predicted outside of current observed distributions, this may indicate areas that are used by a species, but for which there are no data, or areas that could be suitable for colonisation. Future colonisation or range shifts could be driven by changes in environmental suitability as a result of natural changes (e.g. Gaston & Woo 2008) and/or anthropogenic-induced changes, such as by means of active conservation management (Miskelly et al. 2009). By identifying areas of potentially suitable at-sea habitat, the RES modelling approach may thus offer insight into the effects of future changes in climate and anthropogenic activities on species’ distributions. Further model development could be based on different scenarios for climate or nest-site availability to generate predictions of future changes in distributions.

Model evaluation

Statistical evaluation demonstrates that the generic approach of RES modelling can accurately describe habitat suitability for wide-ranging seabirds. RES predictions were more strongly related to species presence for 6 out of 7 models than expected due to chance. While qualitative assessment of the model output for non-breeding sooty shearwater suggested reasonable consistency with published distribution data, the model did not perform significantly better than a null model. Poor model performance could be explained by the low quality of data used for model parameterisation (see Table S1), resulting in an inac-
curate description of a species' ecological niche. It is well established that species–environment relationships can change with scale (Manly et al. 2002), and there is evidence for intraspecific spatial variation in species–habitat relationships in seabirds (Huettemann & Diamond 2001). Most information on the at-sea habitat associations of the sooty shearwater comes from studies in the Pacific Ocean (Briggs & Chu 1986, Vermeer et al. 1989, but see Hedd et al. 2012). Therefore, we cannot be certain of the spatial stability of the species’ niche across distinct ocean basins. The availability and quality of ecological data may limit the wider application of RES modelling to other species of seabird, if insufficient data are available to accurately quantify species’ ecological niches.

Rigorous evaluation of models requires that the test data set accurately reflects the distribution and occurrence of a species within the evaluation area. The test data comprised far fewer observations of sooty shearwater than the other study species and the sampling area was characterised by low variation in RES, i.e. highly homogeneous habitat suitability (Table 4). However, despite highly skewed distributions of RES, the models for fulmar (breeding) and Manx shearwater showed highly significant predictive accuracy, when compared to null models. This indicates these models must be performing very well, if they can perform significantly better than random, even under less favourable conditions for the evaluation. Rigorous model evaluation relies on representative observation data collected across broad spatial and temporal scales to compliment the macro-scale modelling approach. While ‘regular’ and ‘equal-stratified’ sampling strategies are the most accurate and robust (Hirzel & Guisan 2002), these are not typically features of opportunistically collected data — the source of most at-sea seabird observations. The increasing availability of large-scale point data (e.g. OBIS, GBIF) and range maps, such as those available through the IUCN Red List (www.iucnredlist.org), presents opportunities for further testing of RES models. However, the availability of representative test data may limit the application of RES modelling for scarcer and under-recorded species.

Biases in model parameters

A frequent obstacle encountered in predictive distribution modelling of marine animals is the lack of reliable and comprehensive occurrence data from which to define species-habitat relationships (Robinson et al. 2011). The issue of environmental bias — spatial and/or temporal bias in collection of occurrence data — is widely recognised in species distribution modelling (Araújo & Guisan 2006, Phillips et al. 2009, Ready et al. 2010). It mainly arises from limitations in data accessibility and sampling strategies, preventing representative coverage of the entire environmental range of species (Phillips et al. 2009). The biases inherent to most observation data can easily lead to incorrect interpretation of habitat preferences of wide-ranging species (Hirzel & Guisan 2002).

RES modelling provides a technique for predicting large-scale distributions which does not rely on point data. The niche hypotheses underlying RES models still ultimately depend on the quality and amount of available ecological information. Quantitative data on the relationships between seabirds and ocean productivity are lacking and large areas of the oceans remain under-studied, e.g. the central Atlantic (but see Skov et al. 1994). However, the ability for RES modelling to incorporate a range of qualitative and quantitative data, collected from different parts of species’ ranges at different times of year, broadens the scope of environmental coverage. Consequently, the outputs may represent more balanced and robust predictions, for many marine animals, than the more commonly used predictive modelling techniques. When previously tested against a range of marine taxa, RES modelling was shown to perform very well compared with traditional presence-only modelling methods (Ready et al. 2010).

Accounting for temporal variability

Temporal variability in ecological niches and environmental parameters is frequently overlooked in species distribution modelling (Dambach & Rödder 2011). Previous applications of RES modelling to marine top predators did not account for temporal variability in species–habitat relationships or EGVs (Kaschner et al. 2006, Ready et al. 2010). In this study, we have accounted for the seasonal shifts in habitat associations that occur within the annual life cycle by distinguishing between a species’ breeding and non-breeding niche and subsequently relating niches to seasonally averaged data for dynamic EGVs. Accounting for temporal variation in both species–environment relationships and dynamic environmental variables is expected to increase the reliability of RES predictions, particularly in areas where environmental conditions fluctuate greatly between seasons. Consequently, our seasonal RES predictions
can provide greater insight into species’ behaviour and ecology than those based on an annual average niche envelope.

Applications and recommendations for future research

RES modelling could prove a valuable tool for informing the development and implementation of effective conservation and management practices. In the absence of comprehensive occurrence data for wide-ranging species, RES models can identify critically important areas and biodiversity hotspots in pelagic marine ecosystems. This is of direct relevance to the development of quantifiable criteria for the designation of marine Important Bird Areas (IBAs; BirdLife International 2004). The modelling approach could be used to direct observation effort to areas where under-recorded seabirds are predicted to occur and inform sampling strategies to incorporate a range of environmental suitability. Matching data on seabird distribution, as revealed by RES model outputs, with data on fishing effort could inform the responsibilities of Regional Fisheries Management Organisations (RFMOs) and the development of suitable monitoring and mitigation measures to reduce negative interactions between seabirds and fisheries (e.g. Le Corre et al. 2012).

Application of RES modelling to a greater variety of species, demonstrating variable niche characteristics, will allow further examination of the broad-scale applicability of the approach. Expanding the RES approach to wider geographic areas, incorporating all of a species’ range, would offer greater insight into understanding distribution, dispersal and migratory behaviour. An iterative approach to the development of models (as recommended by Elith et al. 2006) will improve the robustness of predictions, by considering the effects of a wider range of predictor variables on model performance. Additional factors that have been shown to influence the at-sea distribution of seabirds, and could be incorporated into future models, include sea-surface salinity (e.g. Huettemann & Diamond 2001), horizontal (e.g. Louzao et al. 2009) and vertical gradients in SST (e.g. Spear et al. 2001), and fishing effort (e.g. Karpouzi et al. 2007).

Wider application of RES modelling requires simultaneous developments in at-sea sampling and large-scale studies of species–habitat relationships, which inform one another and offer direction for future research. The increasing use of tracking devices for recording movements of seabirds provides opportunities for quantification of habitat use and preference (Wakefield et al. 2009, Le Corre et al. 2012). Increasing the public availability of tracking data will facilitate further development of SDMs (Skov et al. 2008). Further studies are required to improve quantitative understanding of species–habitat relationships across a variety of spatio-temporal scales and integration of data across scales is necessary to enhance the predictive ability of RES models. Having demonstrated RES is a robust modelling approach, predictions could be improved by the use of ensemble model averaging (Araújo & New 2007).

CONCLUSIONS

Based on quantitative definitions of species’ ecological requirements, RES maps offer a robust alternative to subjectively generated traditional range maps. We have shown that RES modelling can adequately describe habitat suitability across large scales for wide-ranging pelagic seabirds. RES modelling presents a generic and objective approach for predicting distributions of wide-ranging marine animals across large spatial scales, when the absence of representative point data precludes the application of traditional modelling techniques. Model outputs represent an alternative to the conventional and subjective approach of delineating range extents based on limited records of occurrence. The approach is based on clear assumptions concerning species’ habitat preferences, which can be easily modified and tested.

RES predictions are limited by the extent of published data and the subsequent ability to accurately quantify species’ ecological niches. While some gaps in the literature are evident, the synthesis of knowledge concerning species–habitat relationships can adequately describe ecological niches for the purposes of building predictive distribution models. This offers a more robust approach for answering broad-scale questions about species’ distributions than deriving niches from limited and biased sampling data. Of greater significance is the limited availability of representative at-sea observations data to rigorously evaluate models, which may prove to be the key limiting factor in the wider application of RES modelling for wide-ranging marine animals.

Acknowledgements. Thanks to the NERC Earth Observation Data Acquisition and Analysis Service (NEODAAS) for supplying data for this study. MARINElife’s contribution to this research was part-funded by the EU as part of the Chann---
nel Integrated Approach for Marine Resource Management (CHARM) Phase 3 project. We thank MARINElife volunteers for collection of observation data and P&O Ferries for sponsoring surveys aboard the ‘Pride of Bilbao’.

LITERATURE CITED

- Karpouzi VS, Watson R, Pauly D (2007) Modelling and mapping resource overlap between seabirds and fisheries on...

Vermeer K, Morgan KH, Smith GEJ, Hay R (1989) Fall distri-

Editorial responsibility: Rory Wilson, Swansea, UK

Submitted: June 7, 2012; Accepted: March 7, 2013
Proofs received from author(s): June 11, 2013