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ABSTRACT: Increased temperatures are deleterious to early life stages in many organisms; how-
ever, the biological effects of decreased temperatures are rarely explored. For example, the toler-
ance of marine invertebrate larvae to temperatures lower than ambient might affect the capacity
of species to disperse from tropical to subtropical locations. In addition, reduced rates of develop-
ment are likely to affect the proportion of larvae retained on natal reefs. Here, we explore the rela-
tionship between temperature, embryonic development and larval survival over an 8°C tempera-
ture range (-4 to +4°C around the ambient temperature at the time of spawning of 24°C) in 2
reef-building corals, Goniastrea favulus and Acropora spathulata from One Tree Island in the
southern Great Barrier Reef. Rates of development were generally slower at lower temperatures:
embryos of both species took longer to complete gastrulation and to become motile at tempera-
tures below ambient. In contrast, temperatures below ambient did not affect larval survivorship in
either species. A. spathulata larvae were more sensitive to increased temperatures than G. favu-
lus, which also had higher survivorship than A. spathulata at all temperatures except 20°C. These
results suggest that fluctuations in temperature at the time of spawning will influence patterns of
coral larval dispersal. Furthermore, cold water is unlikely to prevent the dispersal of tropical corals
to subtropical locations.
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INTRODUCTION

The Earth's environment is changing rapidly as a
consequence of climate change. Increasing tempera-
tures are affecting terrestrial, marine and freshwater
populations by altering processes such as growth and
reproduction (Parmesan & Yohe 2003, Root et al.
2003, Poloczanska et al. 2007). However, climate
change will not necessarily result in all locations
becoming hotter. For example, the effects of climate
change are expected to alter ocean currents, includ-
ing the East Australian Current, which delivers warm
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waters from the tropics to higher latitudes in eastern
Australia (Poloczanska et al. 2007). Such changes in
circulation patterns may result in some subtropical
locations, such as Lord Howe Island, becoming
colder than at present. Consequently, it is important
to investigate the effects of both increased and
decreased temperatures to accurately predict the
consequences of climate change (Addo-Bediako et
al. 2000, Portner 2001).

The effects of increased temperature on coral lar-
val biology are well known. Deleterious effects, such
as an increase in the proportion of abnormal embryos
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and a decrease in larval survivorship, are evident at
as little as 2°C above ambient temperature (Bassim et
al. 2002). Increased temperatures also increase rates
of coral larval development (Chua et al. 2013) and
coral larvae become competent to settle more quickly
at higher temperatures (Nozawa & Harrison 2007,
Heyward & Negri 2010). Given a strong association
between rates of development and levels of self-
recruitment in corals (Figueiredo et al. 2013),
increasing sea surface temperatures are likely to
affect patterns of dispersal by reducing the levels of
connectivity among populations (O'Connor et al.
2007). The effects of colder temperatures on coral lar-
val biology are less well known. Edmondson (1946)
demonstrated that coral larvae were robust to short-
term exposures to temperatures as low as 0.5°C. In
contrast, metamorphosis to crustose coralline algae
by Stylophora pistillata was 5 times lower at 2°C
below ambient temperature (Putnam et al. 2008).
Similarly, settlement was approximately 50 % lower
in Acropora solitaryensis larvae at 3°C below ambi-
ent temperature (Nozawa & Harrison 2007).

Climate-driven changes in ocean circulation are
altering dispersal patterns in many marine organisms
(O'Connor et al. 2007, Przeslawski et al. 2008). For
example, the mussel Mytilus edulis (Jones et al.
2009), many reef fish species (Feary et al. 2013) and
some corals (Yamano et al. 2011, Baird et al. 2012)
have recently shifted their ranges poleward. Simi-
larly, the fossil record indicates that scleractinian
corals have been tracking climate on geological
timescales (Veron 1992, Precht & Aronson 2004,
Greenstein & Pandolfi 2008). This tendency of mar-
ine organisms to track changing climates strongly
suggests that there are environmental barriers to dis-
persal, although geographical ranges could also be
limited indirectly, e.g. by changes in competitive
interactions among species (Cahill et al. 2013). None-
theless, one potential factor limiting the dispersal of
corals south from the Great Barrier Reef into subtrop-
ical areas may be the capacity of coral larvae to with-
stand the colder waters they encounter en route.

In this study, we compared the response of the early
life history stages of 2 species of scleractinian corals,
Goniastrea favulus and Acropora spathulata, to an
8°C temperature range from -4 to +4°C around the
ambient temperature experienced at the natal loca-
tion, One Tree Island, around the time of spawning.
In addition to comparing the temperature response,
we aimed to test whether cool water is a barrier to the
dispersal of larvae of these species to higher latitudes
from this location. Both G. favulus and A. spathulata
are common at One Tree Island; however, while One

Tree Island is the southern latitudinal limit for A.
spathulata (Wallace 1999), G. favulus occurs as far
south as Lord Howe Island (Veron 1993).

MATERIALS AND METHODS
Coral collection and culture of propagules

A total of 6 colonies of Acropora spathulata and 5
colonies of Goniastrea favulus were collected from
the reef flat of the first lagoon at One Tree Island
(23°30'S, 152°05'E) in the southern Great Barrier
Reef, a few days before the predicted spawning
period in 2010. Colonies were maintained in flow-
through filtered seawater (FSW) in shaded outdoor
aquaria. Just before spawning, species were placed
in separate aquaria and water flow was stopped to
prevent gametes being washed away. G. favulus
spawned on the afternoon of 26 November 2010
and A. spathulata spawned on the night of 30
November 2010. A. spathulata egg and sperm bun-
dles were collected and broken apart with gentle
agitation and the density of sperm diluted to ~10°
sperm ml™! to maximize the fertilization success
(Oliver & Babcock 1992). Once cleavage was
observed approximately 2 h post-fertilization (hpf),
embryos were washed 3 times in 0.2 pm FSW to
remove excess sperm, which can cause cultures to
deteriorate. In contrast to the positively buoyant
egg and sperm bundles released by A. spathulata,
G. favulus releases eggs and sperm separately,
with the negatively buoyant eggs released ~30 min
before sperm. Consequently, the eggs of G. favulus
were collected from the base of parent colonies
~30 min after spawning was complete. The time
that eggs were spawned was considered to be the
time of fertilization in G. favulus.

Experimental design

To test for the effects of increased and decreased
temperature on larval development and survivorship,
water baths were set up in a temperature-controlled
room at 5 temperatures: 20, 22, 24, 26 and 28°C
(i.e. —4°C, -2°C, ambient, +2°C, +4°C). Aquarium
heaters, coolers and pumps kept treatment baths
stable and within 0.5°C of the target temperatures
(monitored with HOBO data loggers). Ambient aver-
age sea surface temperature for the month before
spawning (24.2°C) was determined from on-reef sen-
sors (Australian Institute of Marine Sciences 2012a).
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Effect of temperature on embryonic development

To test the effect of temperature on embryonic
development, washed embryos were transferred to
20 ml glass vials filled with 0.2 pm FSW and distri-
buted among temperature treatments at 2 hpf (~30
embryos per vial, 3 vials per treatment). The stage of
development of the first 20 embryos in each vial was
assessed at 8 or 9 time points depending on the spe-
cies: 18, 24, 30, 36, 48, 72, 96, 120 and 144 hpf (6 d).
The following 5 development stages were identified
(following Ball et al. 2002): 4-cell blastula, multiple
cell blastula, early gastrula, gastrula and planulae
(motile stage). To test for differences in development
time between treatments, the average time for
propagules to reach gastrulation and motility X was
estimated following Chua et al. (2013):

X = X(Time (h) x No. of propagules to reach stage) /
Total no. of propagules (1)

Eifect of temperature on larval survival

To test the effect of temperature on coral larval sur-
vival, 50 washed embryos were placed in 50 ml glass
vials filled with 0.2 pm FSW and distributed among
temperature treatments at 2 hpf (50 embryos x 3 vials
per treatment). Survival was measured by counting
the number of embryos remaining at each of the
above time points. Coral larvae lyse within 24 h of
death (Baird et al. 2006), so all larvae counted were
considered to be alive at the time of census.

Data analysis

Differences in mean time to complete gastrulation
and to reach the planula stage (for Goniastrea favu-
lus only) among temperature treatments (fixed, 5
levels: 20, 22, 24, 26 and 28°C) were tested using a
1-way ANOVA for each species separately. Data
were log-transformed and homogeneity of variance
was confirmed by Levene's test. Tukey's honestly
significant difference post-hoc tests were used to
identify which treatment levels differed. Non-para-
metric Kaplan-Meier product limit analyses were
used to test for differences in median survivorship
among temperatures for each species separately.
Median survivorship (in hours) was considered sig-
nificantly different when the 95 % confidence inter-
vals did not overlap. All analyses were performed
using SPSS v19®,

Time to gastrulation (hpf)

RESULTS

Temperature had a significant effect on rates of
propagule development in both species. In general,
the slowest rates of development occurred at the
lowest temperatures (Figs. 1 & 2). Temperature had
a significant effect on the mean (+SE) time to com-
plete gastrulation in both Acropora spathulata (Fy,19 =
71.53, p < 0.001) and Goniastrea favulus (Fyq9 =
11.84, p = 0.001) (Fig. 1). A. spathulata embryos at
28°C took 23.1 = 0.9 h to complete gastrulation com-
pared with 37.7 + 2.1 h at 20°C. Similarly, G. favulus
embryos required 30.4 + 4.0 h to complete gastrula-
tion at 20°C compared with 20 + 1.0 h at 28°C. In
addition, G. favulus developed more rapidly than A.
spathulata at all temperatures (Fig. 1). Over all tem-
peratures pooled, the mean time to complete gastru-
lation was 21.6 £ 1.4 h in G. favulusand 28.4 + 1.3 h
in A. spathulata. Similarly, temperature had a sig-
nificant effect on the mean time to reach the planula
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Fig. 1. Mean (+1 SE) time to gastrulation (h post-fertilization,

hpf) of (a) Acropora spathulata and (b) Goniastrea favulus at

5 temperatures (n = 60, ambient = 24°C). Letters above the

error bars indicate homogenous groups identified by

Tukey's honestly significant difference post-hoc analysis
(p<0.05)
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Fig. 2. Mean (+ 1 SE) time to the planula stage (h post-
fertilization, hpf) in Goniastrea favulus at 5 temperatures
(n = 60, ambient = 24°C). Letters above the error bars in-
dicate homogenous groups identified by Tukey's honestly
significant difference post-hoc analysis (p < 0.05)

stage in G. favulus (F;,, = 15.62, p < 0.001; Fig. 2).
The mean time to reach the planula stage was
greatest at 20°C (129.7 £ 6.3 h) and lowest at 26°C
and 28°C (Fig. 2).

Only increased temperatures had a significant
effect on larval survival (Fig. 3). In Acropora spathu-
lata, survival was reduced at both temperatures
above ambient (Fig. 3a). In contrast, Goniastrea favu-
lus survival was reduced only at the highest temper-
ature (Fig. 3b). In addition, G. favulus larval had
higher survivorship than A. spathulata larvae at all
temperatures, with the exception of 20°C (Fig. 3).

DISCUSSION

Embryonic development was strongly affected by
temperature. In general, the lower the temperature,
the longer it took to complete gastrulation and for lar-
vae to become motile. In contrast, larval survival was
only reduced at temperatures above ambient. While
the response of both species to temperature was
broadly similar, there were, nonetheless, differences
between the species in development rate, larval sur-
vivorship and thermal tolerance.

The effect of temperature on development rates in
these coral embryos is typical of most marine inverte-
brates (Pechenik 1987). For example, embryos of
Goniastrea australensis in the Solitary Islands (30°S)
developed more slowly at 22°C than at 26 and 28°C
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Fig. 3. Kaplan-Meier median (+£95% CI) survivorship esti-

mates for (a) Acropora spathulata and (b) Goniastrea favulus

at 5 temperatures (n = 150, ambient = 24°C). Letters indicate

homogenous groups determined by the overlap of confi-
dence intervals

(Wilson & Harrison 1998). This suggests that rates of
embryonic development are likely to depend on the
temperature conditions prevailing shortly after the
time of spawning. Given that rates of self-recruit-
ment are typically higher in larvae that develop more
rapidly (Figueiredo et al. 2013), patterns of dispersal
are likely to vary among years if ambient tempera-
tures vary. In addition, patterns of dispersal might
vary predictably among locations at different lati-
tudes. In particular, high-latitude locations are likely
to have lower levels of self-recruitment than tropical
locations because larvae take longer to develop. In
addition, rates of predation are likely to increase the
longer larvae remain in the plankton. For example,
reduced levels of self-recruitment might help explain
low numbers of juvenile corals at Lord Howe Island
(31.5°S) compared with many tropical locations
(Hoey et al. 2011). However, the effect of low temper-
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atures on rates of recruitment cannot be discounted
(Putnam et al. 2008).

Rates of embryonic development were also in-
fluenced by the size of the propagules. Across all
temperatures, Goniastrea favulus embryos (mean
diameter of 320 pm) developed more rapidly than
Acropora spathulata embryos (mean diameter of
500 pm; Fig. 1), which can most likely be attributed to
faster rates of cell division in species with smaller
eggs (Berrill 1935, Marshall & Keough 2008). Simi-
larly, in 18 species of broadcast spawning corals, egg
size was strongly and positively correlated with time
to motility (Figueiredo et al. 2013). The more rapid
rate of development in G. favulus embryos did not
come at the cost of reduced larval survival: G. favulus
larvae survived longer than A. spathulata at all tem-
peratures, except at 20°C where there was no differ-
ence between the species (Fig. 3).

In contrast to the relationship between develop-
ment and temperature, larval survival was only re-
duced at temperatures 2 to 4°C above ambient
(Fig. 3). These upper thermal limits appear to be
consistent over a very large geographical scale and
among many different species (Bassim et al. 2002,
Randall & Szmant 2009, Heyward & Negri 2010),
supporting the hypothesis that many corals live
close to their upper thermal limits. In contrast, tem-
peratures up to 4°C below ambient had no effect
on larval survival (Fig. 3). Projections based on the
speed and direction of the East Australia Current
suggest that the time taken to disperse from One
Tree Island in the southern Great Barrier Reef to
Lord Howe Island takes approximately 16 to 33 d.
Given that spawning occurs at One Tree Island in
November, larvae will arrive at Lord Howe Island
between late November and early January. In the
course of this journey, water temperatures can be
as low as 19°C (Australian Institute of Marine Sci-
ence 2012b). Consequently, it is unlikely that tem-
perature is a barrier to dispersal from the southern
Great Barrier Reef to higher latitudes for either of
these species and therefore other factors must
determine why Acropora spathulata is not found on
Lord Howe Island.

Thermal tolerance differed between the species. In
particular, larval survival was reduced at 26°C in
Acropora spathulata and at 28°C in Goniastrea favu-
lus (Fig. 3). A similar difference in thermal tolerance
was also observed between acroporid and merulinid
embryos by Negri et al. (2007). Consistent differ-
ences in stress tolerance are also apparent between
adult colonies of these 2 families: adult acroporids
are much more susceptible to bleaching and disease

when compared with adult merulinids (Hughes &
Connell 1999, Marshall & Baird 2000, Diaz & Madin
2011).

In conclusion, temperature has important effects on
many aspects of coral larval biology. In particular,
development rates varied predictably with tempera-
ture, suggesting that patterns of dispersal are likely
to change in response to climate change. In addition,
coral larvae appear to be tolerant of temperatures 2
to 4°C below ambient, suggesting that cold water is
unlikely to limit the dispersal of tropical species to
subtropical locations.
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