Vol. 506: 145-161, 2014
doi: 10.3354/meps10816

MARINE ECOLOGY PROGRESS SERIES

Mar Ecol Prog Ser Published June 23

High-resolution ecological niche modelling
of the cold-water coral Lophelia pertusa in the
Gulif of Mexico

Samuel E. Georgian!*, William Shedd?, Erik E. Cordes!

!Department of Biology, Temple University, 1900 N 12th Street, Philadelphia, Pennsylvania 19122, USA

2Bureau of Ocean Energy Management, US Department of the Interior, 1201 Elmwood Park Boulevard, New Orleans,

Louisiana 70123, USA

ABSTRACT: The niche of many deep-sea species remains poorly resolved despite decades of
seafloor exploration. Without better information on the distribution and habitat preference of key
species, a complete understanding of the ecology of deep-sea communities will remain unattain-
able. It is increasingly apparent that cold-water corals are among the dominant foundation species
in the deep sea, providing both structurally complex habitat and significant ecosystem services. In
this study, the niche and distribution of the cold-water coral Lophelia pertusa in the Gulf of Mexico
was evaluated using the maximum entropy (Maxent) approach. Ecological niche models were
constructed for a broad region of the northern Gulf of Mexico using data gridded at a spatial
resolution of 25 m, including bathymetry, substrate type, export productivity, and aragonite satu-
ration state at depth. Fine-scale models were constructed at a resolution of 5 m using only
remotely sensed bathymetric and surface reflectivity data. The broad-scale model performed well,
with an area under the curve (AUC) of 0.981. All fine-scale models performed well when verified
using training data (average AUC of 0.963) and when validated using independent occurrence
data from a new geographic region (average AUC of 0.937). The distribution of L. pertusa in the
Gulf of Mexico was found to be controlled primarily by depth, local topography, and availability of
hard substrate. While these factors have long been associated with the success of cold-water
corals, their relative importance has never been quantified in the Gulf of Mexico, making it histori-
cally difficult to precisely delineate L. pertusa's niche and predict its distribution in unexplored
regions. Given these results, we suggest that future expeditions combine remotely sensed data
with niche modelling techniques to increase the efficiency of deep-sea exploration.
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INTRODUCTION

Understanding the environmental and geographic
distribution of species is an ongoing challenge in
deep-sea ecology. Distribution patterns in the deep
sea are generally poorly resolved, in part because of
the difficulty and expense of surveying deep-water
regions and the vast area of unexplored seafloor (e.g.
Gage 2004). It has been estimated that only 0.0001 %
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of the deep sea has been visually surveyed (Gjerde
2006), and much of this past work has focused on a
few relatively well studied areas (e.g. the northeast-
ern Atlantic). A better understanding of species’ bio-
geographic distributions is fundamental for design-
ing and implementing management plans, shaping
future research efforts, and assessing anthropogenic
impacts. Given the recent increase in the rate and
scale of anthropogenic disturbance to the deep sea
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(Glover & Smith 2003, Guinotte & Fabry 2008, Mon-
tagna et al. 2013), it is imperative to more fully
characterize the distribution and niche of deep-sea
species before these ecosystems are irrevocably
altered or lost.

Cold-water corals support biodiversity hotspots in
the deep sea by creating structurally complex ha-
bitats and providing ecosystem services such as
nutrient cycling and carbon sequestration (Buhl-
Mortensen et al. 2010). Lophelia pertusa (Linnaeus
1758) is one of the most abundant and widespread
cold-water corals (Roberts et al. 2009). It forms exten-
sive reef structures that cover areas on the order of
kilometers squared and over 100 m high (De Mol et
al. 2002, Wheeler et al. 2007) and serve as important
carbon sinks in the deep sea (van Weering et al.
2003). Over 1300 species were found to associate
with L. pertusa reefs in the North Atlantic (Roberts et
al. 2006), including several commercially important
fish (Costello et al. 2005). Extant cold-water coral
mounds have been shown to demonstrate continuous
growth for the past 50000 years or longer (Schroder-
Ritzrau et al. 2005), suggesting that the distribution
of L. pertusa may be structured primarily by environ-
mental factors that are relatively stable over long
time periods. However, the factors responsible for
controlling its distribution in the Gulf of Mexico are
only partially understood (Schroeder et al. 2005,
Cordes et al. 2008, Davies et al. 2010).

Previous work has shown that cold-water corals
typically occur on elevated and irregular seafloor
features where the current regime and topography
combine to generate locally accelerated, turbulent
flows that increase food availability, larval dispersal,
and sediment and waste removal (Thiem et al. 2006,
Dorschel et al. 2007, White et al. 2007, Mienis et al.
2012). The availability of hard substrata is thought
to be a requirement for larval recruitment (e.g. Frei-
wald et al. 1999). However, settlement also occurs on
mixed bottoms, small substrata (including shells,
cobbles, or boulders), and man-made objects (Wilson
1979, Gass & Roberts 2006, Larcom et al. 2013), and
the extent to which substrate may structure spatial
distributions remains unclear. The success of cold-
water corals is also influenced by the aragonite or
calcite saturation state, with numerous field studies
reporting that most cold-water corals persist and
grow at higher saturation states (Guinotte et al. 2006,
Lunden et al. 2013) and experimental results that
demonstrate an energetic cost associated with calcifi-
cation at low saturation states (e.g. Turley et al. 2007,
Maier et al. 2009). Finally, cold-water corals are
heterotrophic filter feeders that are reliant on the

transfer of energy from surface primary production
(Roberts et al. 2009), of which only 1 to 3% reaches
the deep sea (Deuser 1986). Therefore, cold-water
corals are expected to occur in regions that receive a
high export of surface productivity (e.g. Tittensor et
al. 2009).

Ecological niche models are an emerging tool
being used to characterize the distribution of both
terrestrial and marine organisms by statistically cou-
pling occurrence records with environmental para-
meters. This approach has recently gained traction in
the deep sea, where extensive direct observations
are logistically difficult, and occurrence data are
often sparse. L. pertusa has been modelled globally
at a scale of 30 arc seconds (approximately 1 km),
with depth, temperature, and aragonite saturation
state found to be the most important drivers of its dis-
tribution (Davies & Guinotte 2011). Tittensor et al.
(2009) similarly produced a global model of cold-
water scleractinian corals on seamounts using a grid
size of approximately 1° and found that occurrence
was positively linked with high aragonite saturation
states and elevated dissolved oxygen concentrations.
Other studies have modelled L. pertusa's niche at
regional scales using finer spatial resolutions ranging
from 30 to 750 m (Guinan et al. 2009, Howell et al.
2011, Rengstorf et al. 2013, Ross & Howell 2013). In
addition, Dolan et al. (2008) used a multibeam system
mounted on a remotely operated vehicle (ROV) to
model suitable habitat at a resolution of 0.5 m; how-
ever, they did not differentiate between occurrences
of L. pertusa and Madrepora oculata, which are
thought to fill different niches (Orejas et al. 2009).
Notably, none of these modelling studies included
the Gulf of Mexico, which is geologically unique
(Bryant et al. 1990) and contains genetically isolated
L. pertusa populations (Morrison et al. 2011). There-
fore, it is possible that L. pertusa occupies a different
niche in the Gulf of Mexico than in other biogeo-
graphic regions, as has been shown in other species
(see review by Pearman et al. 2008).

Niche models can be especially vital for conser-
vation efforts when the rate of anthropogenic distur-
bance greatly outpaces our ability to survey benthic
environments and identify sensitive coral habitats, as
appears to be the case in the deep Gulf of Mexico
(White et al. 2012). There is an immediate need to
better establish the niche of L. pertusa in the Gulf of
Mexico and to develop a better approach for locating
novel coral sites. The aim of this study was to use eco-
logical niche modelling to quantify the aspects of L.
pertusa's niche that relate to the availability of hard
substrate, aragonite saturation state, export pro-
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ductivity, and seafloor topography. In addition, we
sought to map potentially suitable habitat in the
northern Gulf of Mexico at 2 spatial scales to inform
conservation and management decisions and to facil-
itate the discovery of new L. pertusa reefs in the
region.

MATERIALS AND METHODS
Presence data

We classified study sites according to their location
within the U.S. Bureau of Ocean Energy Manage-
ment (BOEM) lease blocks in the Viosca Knoll (VK),
Garden Banks (GB), Green Canyon (GC), and Mis-
sissippi Canyon (MC) protraction areas (see Table 1).
Video data collected during ROV and human-
operated vehicle (HOV) dives spanning from 2005 to
2013 —all cruises associated with the Lophelia I and
II projects, funded by the BOEM and NOAA Office of
Exploration and Research (OER), and cruise NA028
of the Ecosystem Impacts of Oil and Gas Inputs to the
Gulf (ECOGIG) project—were reviewed to extract
the presence of living Lophelia pertusa colonies.
These occurrences were linked to ultra-short base-
line navigational data (slant error of 1%) to yield a
set of georeferenced locations. Live L. pertusa
colonies are highly visible and easily distinguishable
from other species, making the probability of detec-
tion extremely high within the field of view of sur-
veyed areas. Additional occurrences were obtained
from data logs recorded during the cruises listed
above, Schroeder et al. (2005), and the Smithsonian
National Museum of Natural History (NMNH) data-
base. Only occurrence records obtained from direct
observation were included from the NMNH database
to avoid potential inaccuracies in the recorded loca-
tion of samples collected by trawling or unknown
methods and to avoid the use of occurrences of dead
coral skeleton of unknown age. Duplicate occur-
rences within the same grid cell were removed prior
to analysis.

Environmental data
Analysis scale
Modelling the ecological niche is highly dependent
on choosing the appropriate scale for analysis, re-

garding both the grain and extent of environmental
variables (Wheatley & Johnson 2009). This is espe-

cially true with terrain variables, which are inher-
ently scale dependent. Previous work with Lophelia
pertusa has demonstrated the importance of seafloor
features including fine-scale sediment waves (Dolan
et al. 2008), carbonate mounds (Guinan et al. 2009),
seamounts (Tittensor et al. 2009), and continental
slopes (Davies & Guinotte 2011). Therefore, we used
a multiscale approach to model L. pertusa's distribu-
tion at a fine-scale resolution (5 m) at 7 sites covering
a total of 189 km? and at a broad-scale resolution
(25 m) covering 67000 km? in the northern Gulf of
Mexico. Within our study area, L. pertusa commonly
grows in small, isolated thickets (<2 m across) that
are likely to be influenced by local features best char-
acterized on a fine scale. However, at numerous loca-
tions, it grows in large reef patches tens or hundreds
of meters across that are more likely to be influenced
by broad-scale factors. Therefore, this combination of
scales is expected to capture the full range of envi-
ronmental variation likely to be controlling L. per-
tusa's distribution in the Gulf of Mexico. In addition,
the coarser resolution of the broad-scale model
allowed for the inclusion of environmental variables
that did not exist at a high enough resolution to
inform fine-scale models.

Broad-scale model

Variables were selected a priori based on environ-
mental factors believed or known from previous
work to influence cold-water coral growth and sur-
vival. Bathymetric data were obtained from the
Texas Sea Grant College Program (publicly available
at http://gcoos.tamu.edu/products/topography) and
gridded at their native resolution of 25 m using the
World Geodetic System 1984 geographic coordinate
system. Slope, aspect, roughness, and 3 types of cur-
vature were calculated from this bathymetry layer
using DEM Surface Tools (v2.1.292; Jenness 2013).
Slope was measured in degrees using the 4-cell
method (Fleming & Hoffer 1979), which has been
shown to marginally outperform Horn's method, the
default in ArcGIS (Horn 1981, see Jones 1998). Ben-
thic environments with steeper slopes generally have
locally accelerated currents and, as a result, consid-
erably different facies and community types (Mohn &
Beckmann 2002). The direction of the steepest slope,
referred to as aspect, has a strong effect on the cur-
rent regime in areas with a strong unidirectional
current and has been shown to partially determine
the distribution of filter feeders including Lophelia
pertusa (Guinan et al. 2009). Aspect has an inherent
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circularity when calculated in radians; therefore, it
was cosine transformed to create an index of north-
ness and sine transformed to create an index of east-
ness. Roughness is a measure of topographical com-
plexity, with areas with greater complexity often
exhibiting higher diversity levels (e.g. Kostylev et al.
2005). We estimated roughness as the ‘surface ratio’
in DEM Surface Tools, calculated as the ratio of sur-
face area (as defined by Jenness 2004) to planimetric
area. We calculated 3 types of curvature following
Jenness (2013) to quantify the shape of the seafloor
and how water is expected to flow over surfaces
(Evans 1980, Moore et al. 1991, Wood 1996, Porres de
la Haza & Pardo Pascual 2002). General curvature
assigns more positive values to more convex seafloor
surfaces and more negative values to more concave
surfaces. Cross-sectional curvature values indicate
that water is expected to diverge at positive values
and converge at negative values. Positive longitudi-
nal curvature values indicate that water is expected
to decelerate, and negative values indicate that
water should accelerate. Finally, we calculated the
topographic position index (TPI; Weiss 2001) using
Land Facet Corridor Designer (v1.2.884; Jenness et
al. 2013). TPI quantifies the relative elevation of
points considering their surrounding features and is
thought to be important for filter feeders that may
have a preference for elevated topography that is
more exposed to currents (e.g. Wilson et al. 2007). To
assess the potential role of both large and small sea-
floor features, we calculated TPI at the finest scale
allowed by the resolution of the bathymetry data and
at a broader scale determined empirically through a
model selection process (see 'Model tuning’).
Seafloor locations containing hard substrata were
available as a single polygon layer from BOEM and
were converted to a 25 m resolution binomial grid
(1 = hard bottom, 0 = soft bottom). These data were
generated from 3-dimensional seismic data originally
acquired by the oil industry and managed by BOEM.
The acoustic horizon of the seafloor was mapped
using both automatic interpretation software (Geo-
Frame, Schlumberger) and manual interpretation of
high-amplitude sites. These relatively low resolution
seismic data have a frequency at the seafloor of
approximately 50 to 60 Hz and a vertical resolution of
8 to 12 m. The horizontal samples vary from survey to
survey but are typically 15 to 25 m. ‘High positive'
anomalies are acoustically faster than both seawater
and soft bottoms, resulting in strong responses on
the amplitude maps. In the Gulf of Mexico, a high
positive response is often exhibited because of the
presence of acoustically fast authigenic carbonates

formed by microbial oxidation of hydrocarbons.
These rocky, calcium carbonate substrates are suit-
able habitats for corals and other sessile inverte-
brates, provided that bottom currents are adequate
to prevent sedimentation of the rock surface (e.g.
Schroeder 2002).

Aragonite saturation states were calculated from
total alkalinity and pH values measured in water
samples obtained at depth from a 2010 cruise on the
R/V 'Ronald H. Brown' (Lunden et al. 2013) and cal-
culated from carbonate data collected during a 2007
Gulf of Mexico and East Coast Carbon cruise (Wang
et al. 2013). Within the study region, aragonite satu-
ration states averaged 1.52 and ranged from 0.98 to
4.94. To eliminate gaps between points, these data
were interpolated to a slightly higher spatial resolu-
tion using the inverse distance weighting function in
ArcGIS 10.1 with default parameters (power = 2,
search radius = variable, number of points = 12).
Export productivity (mg C m~2 d~!) was modelled as
particulate organic carbon (POC) flux to the seafloor
from surface net primary productivity (NPP) using
the negative depth (Z) decay exponential function:
POC flux = 3.523 x NPP x Z™ %73 (Pace et al. 1987).
NPP (g m~2 d~') was modelled using the Eppley Ver-
tically Generalized Production Model (Eppley 1972,
Behrenfeld & Falkowski 1997, see Carr et al. 2006)
using surface chl a, photosynthetically available
radiation, and sea surface temperature data from the
moderate resolution imaging spectroradiometer.
Data layers were downloaded as the 2002-2012 aver-
age at a spatial resolution of 0.416° using Marine
Geospatial Ecology Tools for ArcGIS 10.2 (Roberts et
al. 2010). Euphotic depth was estimated using the
Case I Morel & Berthon (1989) model. Export produc-
tivity within the study area averaged 35.3 + 53.2 (SD)
mg C m~2 d-!, which compares well with previous
estimates in the region measured using sediment
traps (60.3 mg C m~2 d°'; Redalje et al. 1994), calcu-
lated from sediment community oxygen consumption
(25.3 mg C m2 d°}; Rowe et al. 2008), and modelled
from surface productivity (17.9 mg C m~2 d~%; Biggs et
al. 2008). The aragonite saturation state and export
productivity layers were resampled to match the res-
olution and extent of the bathymetry data with no
additional interpolation.

Fine-scale models
High-resolution bathymetric data were acquired

for 7 sites (Fig. 1) in 2008 using a Kongsberg-Simrad
EM1002 multibeam echosounder (95 kHz, 111
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Fig. 1. Broad-scale habitat suitability model for Lophelia pertusa in the Gulf of Mexico. Warmer colors (orange to yellow) indi-

cate locations that are predicted to be more suitable (suitability is not shown when less than 0.2). Black triangles indicate the

locations of fine-scale sites (west to east: 1-Garden Banks GB535, 2-Green Canyon GC354, 3-Green Canyon GC234,
4-Mississippi Canyon MC?751, 5-Mississippi Canyon MC885, 6—Viosca Knoll VK862/VK906, 7-Viosca Knoll VK826)

beams, 150° coverage) mounted on the R/V 'Nancy
Foster'. Despite postprocessing, these data con-
tained visible ‘ribbing’ artifacts that most multibeam
data are subject to (Hughes Clarke 2003); however,
these imperfections comprised a negligible portion
of the data at each site. These data were gridded at
their native resolutions of either 5 or 8 m and used
to derive the terrain variables slope, aspect, rough-
ness, curvature, and TPI as described above. Sur-
face reflectivity data were available at a high reso-
lution (generally finer than 10 m) from the BOEM
database, collected using backscatter from multi-
beam and side-scan sonar surveys. Each image was
georeferenced and then reclassified using a histo-
gram-equalized scheme to categorize surface reflec-
tivity values into 4 classes (very high, high, low, and
very low), with higher reflectivity indicating a
stronger acoustic return and the presence of more
hard substrata. The resulting layers were resampled
to match the resolution and extent of the bathymetry
with no interpolation.

Model generation

Most traditional methods for modelling species’
distributions require both presence and absence
data. When high-quality absence data are available,
presence-absence models perform slightly better
than presence-only models. However, when ab-
sence data are of poor quality or potentially unreli-
able, presence-only models have been proven to be
more robust, especially if the species’ distribution is
not in equilibrium (Hirzel et al. 2001). Obtaining
high-quality absence data in the deep sea is usually
impossible because of the prohibitive amount of
time and expense required for exhaustive explo-
ration and survey. Accordingly, datasets on the
absence of deep-sea species are typically sparse
and biased because of the limited field of view of
the ROV and lack of systematic observations across
all of the potentially occupied substrata. Regardless
of the environment, habitat suitability predictions
from absence data may be inaccurate or misleading
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because of dispersal limitation, biotic interactions,
detection error, or historical reasons (see Hirzel et
al. 2002). Deep-sea ecosystems may be especially
prone to the historical removal of organisms from
otherwise suitable locations because of anthro-
pogenic disturbances (Fossd et al. 2002, Larsson &
Purser 2011). In addition, recent studies have found
that presence-only modelling results were in agree-
ment with more traditional presence-absence ap-
proaches for both shallow- (Couce et al. 2012) and
deep-water corals (Tracey et al. 2011). Therefore,
we chose the machine-learning Maxent algorithm
(v3.3.3k; Phillips et al. 2006) because it utilizes
pseudoabsence (background) data rather than true
absence data and has consistently outperformed
other traditional (Reiss et al. 2011) and presence-
only techniques (Elith et al. 2006, Tittensor et al.
2009, Tong et al. 2013). This approach has been
successfully applied in many recent studies model-
ling the niche of shallow-water (Couce et al. 2012),
mesophotic (Bridge et al. 2012), and deep-sea corals
(Tittensor et al. 2009, Davies & Guinotte 2011, Quat-
trini et al. 2013, Rengstorf et al. 2013).

Models were created using default Maxent para-
meters that have been shown to optimize model
performance (convergent threshold = 107, number
of background points = 10000, default prevalence =
0.5; see Phillips & Dudik 2008) However, the num-
ber of maximum iterations was increased to 5000 to
ensure convergence, and the regularization multi-
plier was optimized empirically (see '‘Model tun-
ing'). A jackknifing procedure was employed to
calculate the percent contribution of variables to
each model. Since the data were normally distrib-
uted (Shapiro-Wilk, p = 0.208), we used a 1-way
ANOVA with a Holm-Sidak post hoc test to assess
whether predictions differed significantly among
surface reflectivity classes for the fine-scale models
(SigmaPlot 12.3). The environmental layers used in
the broad-scale model all differed significantly
from a normal distribution because of their large
sample size, even when log transformed (Shapiro-
Wilk, p < 0.01, N = 673 646). Therefore, the Spear-
man's rank correlation was calculated between
each layer (SigmaPlot 12.3; Table S1 in the Supple-
ment, available at www.int-res.com/articles/suppl/
m506p145_supp.pdf). Spearman'’s correlations were
also calculated to determine the relationship
between additional metrics that were not normally
distributed (Shapiro-Wilk, p < 0.05): model per-
formance (area under the curve), sample size,
niche breadth, and site area. Since Maxent has
been shown to be robust regarding correlated

inputs (Phillips et al. 2006, Elith et al. 2011), even
highly correlated variables were not removed prior
to analysis to avoid biasing the results based on
preconceived perceptions of variable importance
(see Drake et al. 2006). However, correlated vari-
ables should be treated with caution when inter-
preting the importance of variables in models (Tit-
tensor et al. 2009, Huang et al. 2011). Models
produced a continuous raw output for statistical
analysis, to which we applied a logistic function to
produce a habitat suitability index, which approxi-
mates the probability of occurrence at each locality.

Model verification

We employed a cross-validation procedure to ver-
ify model performance by randomly partitioning
occurrences into 10 calibration and evaluation
datasets, using 70% of occurrences for calibration
and 30 % for evaluation. The predictive ability of all
models was assessed with a 1-tailed exact binomial
test to determine whether models predict test
points better than a random model, using the mini-
mum training threshold to distinguish suitable
habitat from nonsuitable habitat (Phillips et al.
2006). The ability of models to accurately predict
test data was also assessed using a threshold-inde-
pendent receiver operating characteristic (ROC)
curve, which tests the ability of the model to cor-
rectly rank both presences and pseudoabsences
(Swets 1988). ROC curves are evaluated by the
area under the curve (AUC) metric, which in pres-
ence-only models indicates the probability that the
model will correctly rank occurrences over back-
ground locations. The maximum theoretical AUC in
a presence-only model is generally unknowable
but always less than 1 if the evaluation data are not
independent from the training data, and a random
model has a theoretical AUC of 0.5 (Wiley et al.
2003, Phillips et al. 2006).

Sampling bias

To test for sampling bias that may have resulted
from targeted exploration during ROV and HOV
dives, we used an independently collected dataset of
occurrences observed during photographic transects
conducted by the autonomous underwater vehicle
(AUV) 'Sentry’' (Woods Hole Oceanographic Institu-
tion) in 2009. Six transects averaging 885 + 123 (SD) m
in length were conducted in the area covering the
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large knoll at the center of the VK826 site in an
ordered, predetermined fashion. An additional
Lophelia pertusa model was constructed at VK826
using this dataset (N = 505) and compared to the
original model using a Spearman's correlation
(SigmaPlot 12.3) and the niche overlap test (ENM-
Tools v1.3; Warren et al. 2008, 2010). The niche over-
lap test calculates a modified Hellinger distance (van
der Vaart 1998), referred to as the I metric, that
ranges from 0 to 1, with values 0.0-0.2 = 'no or lim-
ited' niche overlap, 0.2-0.4 = 'low’ overlap, 0.4-0.6 =
‘moderate’ overlap, 0.6-0.8 = 'high’' overlap, and
0.8-1.0 = 'very high' overlap (R6dder & Engler 2011).

Model validation

To test the ability of models to predict occurrences
in a new region, each of the fine-scale models gener-
ated for other sites was projected onto the VK826 site
and evaluated against the independent ‘Sentry’ data-
set of occurrences. The performance of each pro-
jected model was evaluated using ROC curves and
AUC as above. As a final validation, we ground-
truthed specific model predictions at an unexplored
region of the VK826 site during an ECOGIG consor-
tium cruise in 2013. Ground-truthing results were
analyzed by comparing the original VK826 model to
the models projected onto VK826 using only the
occurrences obtained from the new region of the site.

Model tuning

Rather than simply using the default settings in
Maxent, we optimized the regularization multiplier
(B) using a model selection procedure following War-
ren & Seifert (2011). Regularization is a smoothing
function that controls model complexity, with higher
values resulting in simpler models with fewer para-
meters. For each site, we calculated a series of mod-
els with regularization multipliers of 1, 3, 5, 7, 9, 11,
13, 15, 17, and 19. The performance of each variant
was assessed by calculating a sample size-corrected
Akaike Information Criterion (AICc; Warren & Sei-
fert 2011) score, using training data from both the
same geographic area and the independent ‘Sentry’
dataset. The default regularization (3= 1) in Maxent
consistently produced the best results when models
were verified against training data (Fig. Sla in the
Supplement, available at www.int-res.com/articles/
suppl/m506p145_supp.pdf). However, when tested
against the independent ‘Sentry’ data at VK826, fine-

scale model performance was instead optimized by
decreasing model complexity using values for
between 5 and 9 (Fig. S1b in the Supplement). The
average performance (AUC) of B-optimized and
B-default models was not different when evaluated
against test data from the same geographic region
(t-test, t=2.18, p = 0.91), but B-optimized models per-
formed significantly better when tested against the
independent ‘Sentry’ data (Fig. 2, t-test, t = 2.3,
p <0.05). The average performance of default models
was lower when evaluated against ground-truthing
data, but this decrease was not significant (f-test,
t = 2.26, p = 0.31), possibly because of the much
smaller sample size (N = 13). To maximize the ability
of models to predict occurrences at novel sites, the
regularization multiplier that maximized model trans-
ferability for each model was used in the generation
of all fine-scale models (see Table 1).

Since TPI measures are inherently scale depend-
ent (Rengstorf et al. 2012), we employed a similar
model-selection process to determine the scale that
optimized model performance. Each model was run
using a TPI layer calculated at a scale of 25, 50,
100, 150, 200, 300, 400, 500, 600, 750, and 1000 m,
and the relative performance of each model variant
was evaluated using AICc scores. For both the
broad- and fine-scale models, performance tended
to increase when TPI was calculated at broader
scales, plateauing after the 500 m scale. In the
broad-scale model, TPl calculated at a scale of
750 m exhibited the highest performance by a
small margin and was used during subsequent
model creation. TPI calculated at a scale of 500 m
(TPI-500) optimized model performance in 5 out of
7 fine-scale models: VK826, VK906, GB535, MC751,
and GC354 (Fig. Slc in the Supplement). At
GC234, TPI did not contribute any information at
any scale and therefore had no effect on model
performance. Although the 500 m scale was not
optimal for GC234, or MC885 where suitability was
optimized at a scale of 100 m, we calculated TPI at
this scale for all fine-scale models to ensure that
the models would be directly comparable.

Niche metrics

We calculated niche breadth in accordance with
the inverse concentration metric developed by
Levins (1968) using ENMTools (Warren et al. 2008,
2010). Niche breadth essentially describes a species’
ability to tolerate deviations from its optimal environ-
mental conditions. Larger values indicate that the
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Fig. 2. Average fine-scale model performance (area under
the curve, AUC) when model complexity (B) was optimized
through a model tuning procedure (dark grey) or left as the
default in Maxent (B= 1, light grey), assessed against test
occurrences from within each site and against independent
autonomous underwater vehicle ‘Sentry’' and ground-truthing
occurrences at the Viosca Knoll VK826 site. Significant dif-
ferences are marked with an asterisk (t-test, 2-tailed, o.=0.05).
Error bars indicate standard deviation

species occupies a wider niche space, while smaller
values indicate a more specialized niche. The per-
centage of area predicted to be highly suitable was
calculated using a binary prediction of suitability
created using the sensitivity—specificity sum maxi-
mization approach (Liu et al. 2005), divided by the
total area of each site.

Predictive modelling program

To allow researchers who are unfamiliar with mod-
elling techniques to apply our models to their own
data to predict Lophelia pertusa locations, we incor-
porated each model into the downloadable program
Cold-water Coral Modeler, freely available along
with a user's manual on the Cordes website at http://
astro.temple.edu/~ecordes/modelling.html. The pro-
gram was constructed in C# using Microsoft Visual
Studio 2012. It utilizes the lambda file created by
Maxent during model generation to project a predic-
tive model onto bathymetric data input by the user,
generating a habitat suitability map in a novel geo-
graphic region.

RESULTS
Broad-scale model

A single model was constructed for Lophelia per-
tusa at a resolution of 25 m for an area of the north-
ern Gulf of Mexico covering approximately 67000 km?
(Fig. 1). Model performance was excellent, signifi-
cantly outperforming a random model (exact bino-
mial test, p < 0.001) with a high AUC of 0.981 + 0.001
(Table 1). The presence or absence of hard substrata
was the best predictor of L. pertusa distribution at
the broad scale, contributing 43.0% of information
to the model (Table 1). Locations with hard substrata
had significantly higher suitability indices than loca-

Table 1. Input data and evaluation for broad- and fine-scale Lophelia pertusa models. The regularization multiplier (B) used in

each model is listed, along with the number of spatially explicit occurrences used for training, area (km?) modelled, and niche

breadth. Average area under the curve (AUC) + SD values are shown with significance marked (exact binomial test, *p < 0.01,

**p < 0.001). The 2 primary explanatory variables for each model are listed along with the percentage of information
contributed by each variable. TPI: topographic position index at a scale of 500 m

Site Area [ Sample Average Niche breadth Suitable Variable 1 Variable 2
(km?) size AUC = SD (x 1079 area (%)

Viosca Knoll

VK826 18 5 1242 0.941 £ 0.007** 125.12 4.7 TPI-500 (59.0 %) Depth (39.6 %)

VK862/VK906 49 7 425 0.978 + 0.003** 51.29 1.9 TPI-500 (96.4 %) Roughness (1.6 %)

Mississippi Canyon

MC751 8 5 166 0.983 £ 0.004** 46.11 1.8 Depth (47.7 %) TPI-500 (28.6 %)

MC885 63 5 11 0.928 + 0.025** 233.75 6.3 TPI-500 (49.3 %) Reflectivity (28.1 %)

Garden Banks

GB535 25 7 26 0.992 + 0.002** 96.53 1.6 TPI-500 (84.1 %) Roughness (11.7 %)

Green Canyon

GC354 10 9 29 0.977 £ 0.019** 189.92 6.3 Reflectivity (40.5 %) Depth (38.5%)

GC234 16 5 15 0.940 + 0.025* 526.81 3.7 Depth (61.2%) Reflectivity (38.3 %)

Broad scale 67364 450 0.981 + 0.001** 57.08 0.6  Hard bottom (43.0 %) Depth (27.2%)
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Fig. 3. (a) Average suitability indices for hard and soft bot-
toms for the broad-scale model. Locations with hard bottoms
had significantly higher suitability indices. Different letters
above bars indicate significantly different suitability indices
(t-test, 2-tailed, o= 0.01). (b) Response of the predicted habi-
tat suitability to changes in surface reflectivity data, aver-
aged across all fine-scale models. Higher reflectivity indi-
cates the presence of more hard substrata. Different letters
above bars indicate significantly different suitability indices
(ANOVA p < 0.01, post hoc Holm-Sidak p < 0.05). Error bars
indicate standard deviation

tions with soft substrata (t-test, 2-tailed, p < 0.001;
Fig. 3a). Depth was the secondary explanatory vari-
able in the broad-scale model, contributing 27.2%
of information (Table 1). The highest suitability
indices for L. pertusa occurred between depths of
300 and 600 m (Fig. S2h in the Supplement). Depth
was significantly but weakly correlated with TPI
calculated at the 750 m scale (Spearman's correla-
tion, p = -0.047, p < 0.05) and the 25 m scale (Spear-
man's correlation, p = 0.003, p < 0.05; Table S1 in
the Supplement). TPI was a good predictor of L.
pertusa only when calculated at a scale of 750 m
(percent contribution of 21.6%). The suitability
index was extremely low (<0.05) at negative TPI
values but increased rapidly when TPI was positive
until reaching a peak at approximately 50, after
which it declined (Fig. S3h in the Supplement).

Fine-scale models

Maxent models were constructed for Lophelia
pertusa at a scale of 5 m at 7 sites in the Gulf of Mexico
(VK826, VK862/VK906, MC751, MC885, GB535,
GC234, and GC354) (Table 1), visualized as habitat
suitability maps (Fig. 4). Verification of models with
test data showed that all models were robust. The av-
erage test AUC for all sites was 0.963 + 0.03, with a
lowest AUC value of 0.928 + 0.025 at MC885. All mod-
els significantly outperformed a random model (exact
binomial test, p < 0.01; Table 1). Niche breadth aver-
aged 181.36 = 167.19 (SD) x 1072 across all sites and
ranged from 46.11 x 10~% at MC751 to 526.81 x 10~ at
GC234. VK862/VK906, GB535, and GC354 all had in-
termediate niche breadths of 51.29 x 1073, 96.53 x
1073, and 189.92 x 1073, respectively (Table 1). AUC
had a significant negative correlation with niche
breadth (Spearman's correlation, p = -0.821, p < 0.05),
indicating that models performed better when L. per-
tusa occupied a narrower niche space. The number of
occurrences used to train models was strongly but not
significantly negatively correlated with niche breadth
(Spearman's correlation, p = —0.643, p = 0.10), al-
though this relationship was largely driven by GC234,
which had the largest niche breadth (526.81 x 107%)
and the second smallest sample size (N = 15). In gen-
eral, models trained with more occurrences had
higher AUC values, although this relationship was not
significant (Spearman's correlation, p = 0.393, p =
0.34), and this pattern did not hold at VK826, which
had the largest sample size (N = 1242) and a relatively
low AUC of 0.941. Site area (km?) was not correlated
with either niche breadth (Spearman's correlation, p =
0.179, p = 0.66) or AUC (Spearman's correlation, p =
—-0.286, p = 0.49). At all sites, the area predicted to be
highly suitable was extremely low, ranging from 1.6 to
6.3 % (Table 1).

In 6 out of 7 fine-scale models, suitability indices for
L. pertusa were higher at positive TPI values, indica-
ting that elevated seafloor features generally provided
better habitat than depressions or flat areas (Fig. S3 in
the Supplement). However, suitability peaked prior to
the highest TPI value found at 3 of the sites: VK906,
MC751, and MC885 (Fig. S3b—d in the Supplement).
At GC234, TPI provided no information to the model,
and therefore suitability at this site did not vary with
TPI values (Fig. S3g in the Supplement). TPI calcu-
lated at the 500 m scale was the primary or secondary
explanatory variable in 5 out of 7 models, contributing
an average of 63.5% of information in those models
(Table 1). Roughness was one of the top 2 explanatory
variables only at GB535 (percent contribution of
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11.7 %) and VK906 (percent contribution of 1.6 %) and
had negligible contributions to other fine-scale mod-
els. At all sites, suitability increased with roughness
but generally plateaued around values of 1.2 (data not
shown), which indicates a relatively flat surface.

Depth was the primary or secondary explanatory
variable in 4 out of 7 L. pertusa models, contributing
an average of 46.8 % of information in those models
(Table 1). Suitability indices tended to be higher in
the shallower regions of each site, with the highest
index values between depths of approximately 300
and 600 m, matching the most common depth range
for L. pertusa in the Gulf of Mexico (Fig. S2a—g in the
Supplement). Surface reflectivity was the primary
explanatory variable at GC354, contributing 40.5 %
of information, and was the secondary explanatory
variable at MC885 and GC234, contributing 28.1 %
and 38.3% of information, respectively. Locations
with very high reflectivity values had significantly
higher suitability indices than sites with high, low, or
very low reflectivity values (ANOVA p < 0.01, post
hoc Holm-Sidak p < 0.05; Fig. 3b).

Test for sampling bias

An additional Lophelia pertusa model was con-
structed at VK826 using independent data obtained
from AUV ‘Sentry' transects as a general test for
sampling bias. This model had a test AUC of 0.958 +
0.004 and significantly outperformed a random
model (exact binomial test, p < 0.01). The test model
was significantly correlated with the original VK826
model (Spearman's correlation, p = 0.938, p < 0.01),
and the models had a ‘very high' level of niche over-
lap (I=0.97).

Model validation

All fine-scale models projected onto the VK826 site
(Fig. S4 in the Supplement) performed reasonably
well when tested against the independent ‘Sentry’
dataset, with AUC values ranging from 0.878 to
0.972 and an average AUC of 0.937 + 0.033 (Fig. 2,
Table 2). Not surprisingly, the original VK826 model
had the highest AUC (0.972) when tested against the
independent ‘Sentry’ data and had the highest corre-
lation (Spearman's correlation, p =0.938, p < 0.01) and
overlap (I = 0.97) with the 'Sentry’ model. The MC?751
model had ‘moderate’ niche overlap (/= 0.46) and had
the weakest correlation with the ‘Sentry’ model, al-
though significance was obtained because of the ex-

Table 2. Evaluation of fine-scale models projected onto the
VK826 site and validated against both the independent
autonomous underwater vehicle ‘Sentry’ data and ground-
truthing data. The area under the curve (AUC) of each mo-
del is shown, along with the Spearman's correlation (p, p <
0.01) and niche overlap (I) with the original VK826 model

Site AUC Spear-  Overlap
‘Sentry’ Ground man's (I)
truth p
Viosca Knoll
VK826 0.972 0.928 0.938 0.970

VK862/VK906 0.961 0.881
Mississippi Canyon

0.813 0.891

MC751 0.926 0.769 0.256 0.456
MC885 0.952 0.847 0.564 0.714
Garden Banks

GB535 0.958 0.891 0.643 0.895
Green Canyon

GC354 0.914 0.820 0.550 0.782
GC234 0.878 0.742 0.643 0.721

tremely large sample size (Spearman's correlation, p =
0.256, p < 0.01, N = 729230). The remaining models
were all significantly and moderately to highly corre-
lated with the ‘Sentry’ model and exhibited 'high’ or
‘very high' niche overlap (Table 2). Visually, the pro-
jected models generally matched well with both the
original VK826 model and with the known distribution
of Lophelia pertusa at the site but had a tendency to
overpredict suitability (Fig. S4 in the Supplement).

The VK826 model predicted several areas of high
suitability that had not been previously surveyed at
this site. Ground-truthing of specific model predic-
tions at the VK826 site resulted in the discovery of 2
large L. pertusa mounds. The VK826 model had an
AUC of 0.928 when tested using L. pertusa location
data from the ground-truthing area of the site (N =
13). Models projected onto VK826 exhibited much
poorer performance when tested against ground-
truthing data (Fig. 2) but still outperformed a random
model (exact binomial test, p < 0.01) and had a rea-
sonable ability to discriminate with an average AUC
of 0.840 + 0.067 (Table 2). AUC scores calculated
from ‘Sentry’ data were highly correlated with scores
calculated using ground-truthing data (Spearman's
correlation, p = 0.929, p < 0.01).

DISCUSSION

Ecological niche models were developed at 2
scales to assess the niche of Lophelia pertusa in the
northern Gulf of Mexico and to facilitate discovery of
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L. pertusa at sites that have only been explored using
remotely sensed data. Fine-scale models built at a
high resolution (5 m) using only topographic vari-
ables and surface reflectivity data were sufficient to
accurately quantify L. pertusa's niche within sites
and predict occurrences in a different geographic
area. Collecting ship-based multibeam bathymetry
and surface reflectivity data is relatively inexpensive
and rapid compared to surveying regions using
ROVs or HOVs; when coupled with the ecological
niche models developed here, this approach is capa-
ble of greatly increasing the efficiency of future
expeditions. On average, a very small fraction of the
modelled area (less than 7 % for all models) was pre-
dicted to be highly suitable, greatly narrowing down
potential dive targets in new regions.

The higher suitability indices observed at positive
TPI values demonstrated that L. pertusa has a clear
preference for more complex, elevated topography
and indicated that depressions and flat areas gener-
ally comprise substandard habitat. Elevated regions
increase local current speeds, boosting the transport
of food and nutrients (Thiem et al. 2006), increasing
larval supply (Piepenburg & Miiller 2004), and
reducing sediment deposition (Rogers 1994). These
results were not surprising, as previous work has
often associated the presence of L. pertusa and other
cold-water corals with steep, elevated, and complex
topography even at broader scales (e.g. Bryan &
Metaxas 2006, Davies et al. 2008, but see Tittensor et
al. 2009), an association known as the ‘enhanced cur-
rent hypothesis' (see Masson et al. 2003). However,
suitability indices reached their largest values before
the largest TPI value observed at 3 of the sites
(Fig. S3 in the Supplement), indicating that there
may be an obstacle to colonization or survival at the
topographic peaks of some sites. These findings are
consistent with recent studies that recorded reduced
diversity on the summits of seamounts relative to the
surrounding slopes, thought to be influenced in part
by extreme hydrological forces, exposure to oxygen-
minimum zones, or the fine-scale topography of the
summit (see review by Clark et al. 2010). At sites with
large mound structures, such as the salt domes of the
Gulf of Mexico, the summits may experience drama-
tically accelerated currents that have been shown to
prevent the recruitment of other invertebrate larvae
(e.g. Mullineaux & Garland 1993) and negatively
affect L. pertusa feeding rates (Purser et al. 2010).
Alternatively, it is plausible that since locations with
extremely high TPI values were not as common
at most sites, they were less likely to be inhabited
simply by chance.

In both fine- and broad-scale models, L. pertusa
was generally predicted to be prevalent only where
there were hard substrata. This finding confirms pre-
vious work suggesting that L. pertusa and other coral
species require hard substrata for the initial attach-
ment and recruitment of larvae (Wilson 1979, Gass &
Roberts 2006) and may largely explain the absence of
corals at locations that are otherwise suitable. The
lack of hard substrata has been previously suggested
to limit the size and density of L. pertusa reefs in the
northeastern Atlantic (Long et al. 1999) and may be
similarly limiting populations in the Gulf of Mexico
given the reduced suitability at locations with soft
bottoms.

Depth was commonly the most important variable
in models. However, it seems likely that the impor-
tance of depth was caused by covarying factors such
as carbonate chemistry and export productivity,
which both contributed surprisingly little information
to the broad-scale model. The aragonite saturation
state has been shown to be extremely influential on
the growth and survival of cold-water corals in
experimental (Maier et al. 2009), field (Lunden et al.
2013), and modelling studies (Tittensor et al. 2009,
Quattrini et al. 2013). It is important to note, however,
that L. pertusa only occurred in a narrow range of
saturation states (1.25 to 1.69) in this study. Previous
work that found a preference for higher saturation
states documented occurrences across a much broa-
der range of values (e.g. Davies & Guinotte 2011).

Export productivity was similarly unimportant in
the broad-scale model, despite the clear importance
of food supply to coral growth and survival. As with
aragonite saturation state, this may be partially be-
cause of its intrinsic relationship with depth or may
be the result of a spatial offset between surface pro-
ductivity and benthic food supply. In the northern
Gulf of Mexico, the lateral transport of POC by
advection contributes significantly to the available
POC pool at the seafloor, particularly near the out-
flow of the Mississippi River (Rowe et al. 2008). Given
the similar lack of importance of export productivity
in other modelling studies (Tittensor et al. 2009,
Davies & Guinotte 2011), it may be beneficial to
incorporate direct measurements of POC flux and
resuspension rates at depth to more accurately cap-
ture fine-scale variability in food availability.

Many other environmental factors that partially
correlate with depth, including temperature, salinity,
and dissolved oxygen, did not exist at a high enough
spatial resolution or on a long enough time series to
be included here but are also likely to be important
components of L. pertusa's niche. These factors may
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also affect L. pertusa's modelled niche breadth (e.g.
Davies et al. 2008), which varied considerably among
sites in this study. More work is needed to more accu-
rately determine L. pertusa's niche breadth in the
Gulf of Mexico and elsewhere, as this metric has sub-
stantial ecological implications. Niche breadth repre-
sents a potential tradeoff between habitat use and
growth; generalist species gain the ability to occupy
more habitats but frequently have reduced growth
rates (Caley & Munday 2003). In addition, more spe-
cialized species with a smaller niche breadth have
been shown to be more sensitive to the loss in suit-
able habitat caused by climate change (Thuiller et al.
2005). As these environmental data continue to be
mapped with higher precision in the deep Gulf of
Mexico, it may be possible to delineate how these
variables affect L. pertusa's distribution and niche
breadth and to model the potential loss in suitable
habitat under future scenarios involving ocean acidi-
fication, warming, or deoxygenation.

Both fine- and broad-scale models reflected the
known biogeography and ecology of L. pertusa but
refined our understanding of the scale at which
these variables operate. Despite the broad-scale
topography often included in modelling studies (e.g.
Tittensor et al. 2009, Davies & Guinotte 2011, Ross &
Howell 2013), there is evidence to suggest that fine-
scale features may be more important for successful
recruitment and growth. For example, Roberts et al.
(2003) found that mounds less than 10 m in diameter
frequently corresponded with large L. pertusa colo-
nies, and a study in Irish waters found that a 1000 m
grid size was insufficient to adequately detect car-
bonate mounds in the region (Rengstorf et al. 2012).
Similarly, a scale of 750 m failed to predict known L.
pertusa occurrences on fine-scale features (Ross &
Howell 2013). The high-resolution bathymetry used
here further reveals the potential of relatively small
features to affect coral distribution, likely through
modification of local current regimes. Only Dolan et
al. (2008) used higher resolution terrain data (grid
size of 0.5 m) in their modelling study of cold-water
corals on the Irish continental slope. However, their
study required an ROV-mounted sonar system and
therefore could not predict occurrences in new re-
gions unless such high-resolution data were already
available or obtained using near-bottom surveys.

Terrain attributes are inherently scale dependent.
Choosing the appropriate scale of analysis ultimately
depends on the environmental heterogeneity that
organisms respond to, which is likely to be highly
dependent on the study area and the variable in
question (Wiens 1989). In this study, TPI calculated at

a broad scale (500 or 750 m) tended to optimize
model performance in both the broad- and fine-scale
models. Rather than reflecting an inherent niche
requirement of L. pertusa, these likely were simply
the most appropriate scales to characterize the large
carbonate mounds found at many sites, which are
generally wider than 500 m. In regions with smaller
or larger mounds, a different scale may be more
appropriate. For example, the MC885 site contains a
series of smaller mounds (<200 m in diameter), and
TPI was optimized at the 100 m scale at this site.
Given these results, it appears to be important to
ensure that the analysis scale is within the same scale
domain of the target features within the study area.
Rengstorf et al. (2012) conducted a multiscale terrain
analysis to model L. pertusa's niche in the northeast-
ern Atlantic but only included resolutions from 50 to
1000 m in their analysis and did not quantify the
effect of scale on model performance. A more de-
tailed multiscale study (e.g. Wilson et al. 2007) that
quantifies how a broad range of scales affects model
performance is the next step toward more fully char-
acterizing L. pertusa's niche in the Gulf of Mexico
and elsewhere.

While many ecological niche studies have relied
solely on model verification, recent work highlights
the importance of employing true model validation
when possible by testing models with independent
data in a neighboring geographic region (Aratjo &
Guisan 2006). The performance of models in this
study was considerably reduced when they were
projected to a new region and tested using an inde-
pendent dataset; however, the projected models still
performed reasonably well and can therefore be
expected to be of value at truly unexplored sites. It is
important to note, however, that we validated our
models within the same geographic region, and our
results will not necessarily extrapolate as well to
other portions of the Gulf of Mexico or other ocean
basins. More work is needed to determine if L. per-
tusa occupies a similar niche space in different bio-
geographic regions. This validation schema also pro-
vided a useful framework to test how modifying the
regularization multiplier affected model perform-
ance. We found that the default settings generated
relatively complex models that were heavily biased
toward performing well under model verification but
had reduced performance when validated against
independent data in a neighboring geographic re-
gion. In addition to increasing the transferability of
models to new regions or time periods, increasing the
regularization multiplier results in more parsimo-
nious models that are less likely to overfit training
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data and are easier to interpret biologically (see War-
ren & Seifert 2011). The verification of the prediction
of 2 previously unknown L. pertusa mounds within
the relatively well explored VK826 site further vali-
dates the accuracy of this approach and highlights
the potential utility of fine-scale models.

Despite the high performance of all models, there
were relatively large regions that were predicted to
be suitable but are not currently known to be inhab-
ited. It is possible that the models simply overesti-
mated the suitable habitat for each species. Niche
models rely on the theory that a species’ distribution
is largely driven by the portions of its ecological
niche that can be readily quantified. While there is
ample evidence for this theory (see Schoener 1989), it
is also clear that other factors, such as disease, sea-
sonal variability, climate change, or resource avail-
ability, may partially structure distributions and
reduce the size of the realized niche. Unfortunately,
most of these factors are currently intractable in mod-
elling efforts, especially in the deep sea. In addition,
many assumptions of niche theory are often violated
out of necessity during model construction. If species’
distributions are not in equilibrium, dispersal is limit-
ing, the niche is diverging, or biotic interactions
strongly influence distribution, then niche models
will be inherently inaccurate (see review by Wiens et
al. 2009). Given these considerations, it is plausible
that unoccupied regions that were predicted to be
suitable may be unsuitable in reality because of any
number of factors that could not be included during
model creation and that further field surveys and
modelling efforts may greatly increase our under-
standing of L. pertusa's distribution. However, many
unfilled locations occurred in regions that have not
been well surveyed, and it seems likely that exten-
sive cold-water coral populations remain to be dis-
covered in the Gulf of Mexico.

CONCLUSION

The lack of information concerning the distribution
of cold-water corals in the Gulf of Mexico represents
a serious obstacle to research and conservation
efforts in the region. In this study, we used ecological
niche models to quantify the niche of the cold-water
Lophelia pertusa and to predict its occurrence
throughout the northern Gulf of Mexico. Modelling
results revealed that L. pertusa's distribution was pri-
marily driven by depth, locally elevated topography,
and the need for hard substrata suitable for recruit-
ment. These results were not surprising given our

existing knowledge of cold-water coral distribution
and habitat preference, but our multiscale, high-
resolution niche modelling approach allowed us to
precisely quantify L. pertusa's niche and provide a
more inexpensive and accurate method for locating
novel coral sites. The habitat suitability maps presen-
ted here will also inform management efforts, a par-
ticular concern in the Gulf of Mexico because of
heavy oil and natural gas exploration and extraction
activities and threats from other forms of anthropo-
genic disturbance including ocean acidification and
deep-water fishing. Therefore, we suggest that fu-
ture expeditions and resource management planning
in the deep Gulf of Mexico and elsewhere combine
remotely sensed data with these models to better
understand what constitutes suitable habitat for L.
pertusa and other cold-water corals and to predict
their distribution in unexplored regions.
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