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INTRODUCTION

Larval dispersal has profound effects on population
and community dynamics (Kinlan & Gaines 2003),
genetics (Palumbi 1994, Hellberg 2009), and bio-

geography (Lester & Ruttenberg 2005). Empirical
studies (e.g. Jones et al. 1999, 2005, Swearer et al.
1999, Planes et al. 2009) have advanced our under-
standing of larval dispersal. However, to date, these
studies have been limited to cases involving self-
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ABSTRACT: Using calcified structures as natural geochemical tags to estimate levels of popula-
tion connectivity is becoming increasingly common. However, the technique suffers from several
logistical and statistical problems that constrain its full application. Foremost is that only a subset
of potential sources is sampled, often compounded by under-sampling within locations at an
overly coarse spatial scale. This introduces unknown error and prevents the creation of a range-
wide connectivity matrix. To address this issue, we analyzed the natural geochemical tags of
embryonic statoliths in the whelk Kelletia kelletii (Forbes, 1850). We sampled from 23 sites over
the entire geographic range in 2004 and 2005 from Monterey (California, USA) (36°N) to Isla
Asunción, (Baja California, Mexico) (27°N). We then used geospatial statistics (kriging) to make
continuous along-coast maps of embryonic statolith chemistry. This allowed us to estimate chem-
istry at unsampled locations. We used this new continuous assignment method to estimate the
spatial error associated with assignment by the classic method of discriminant function analysis
(DFA). Then, we compared the performance of the 2 methods at classifying unknown embryonic
statoliths. We found large spatial errors often associated with DFA assignments, even when tradi-
tional DFA accuracy assessments indicated the method was performing well. The continuous
method provided an improved assessment of uncertainty in assignments. It outperformed the DFA
method in classifying unknown embryos to the vicinity of their true source. Geospatial statistics
also provided useful information on other range-wide variables, such as adult reproductive abun-
dance. As a proxy for larval supply, such information can aid future assignments of recruits. Our
combined analyses help inform sampling designs and motivate the development of a new
approach for population connectivity studies.
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recruitment (Jones et al. 1999, 2005) or dispersal
across a small part of a species’ range (Becker et al.
2007, Planes et al. 2009, Carson 2010, Christie et al.
2010, Buston et al. 2012, Almany et al. 2013, Chittaro
& Hogan 2013). At present, there are no empirical
estimates of demographic connectivity among many
populations across a species’ entire geographic
range (Pineda et al. 2007, but see Walther et al. 2008
for a juvenile dispersal example). Such estimates
would allow us to model the spatial and temporal
dynamics of meta-populations (Botsford et al. 2009).

Empiricists and modelers have long recognized the
need for such global information on species. The goal
is to construct a population connectivity matrix (Bots-
ford et al. 2009), in which the key data are the frac-
tion of larvae from each potential source ( j) traveling
to each potential destination (i) throughout a species’
range (our Fig. 1; Largier 2003, Mitarai et al. 2008).

Some studies have measured components of the
matrix in the field. For example, mark-recapture and
DNA parentage analysis studies (Jones et al. 1999,
2005, Almany et al. 2007) provide a binary measure
of larval dispersal by categorizing settlers as locally
produced or not (e.g. A and B in Fig. 1). A few field
studies using either DNA parentage analysis (Planes
et al. 2009, Buston et al. 2012, Saenz-Agudelo et al.
2012) or natural geochemical tags (Becker et al. 2007,
Standish et al. 2008, Carson 2010, Chittaro & Hogan
2013) have been able to estimate exchange of larvae
among several locations (C in Fig. 1) along a part of a
species’ range, an impressive advance toward the
construction of a full connectivity matrix. Yet, since
these studies did not sample all potential sources,
they could not rule out possible contributions from
the rest of the species’ range. As a result, a risk
remains for misidentifying sources and underesti-
mating dispersal distances.

Theoretically, geochemical tagging approaches
could characterize the tags of developing larvae from
all possible sources, but this potential has not been
realized (Campana 1999, Munch & Clarke 2008,
Neubauer et al. 2010). Natural geochemical tags,
such as otoliths (Campana 1999) and statoliths
(Zacherl et al. 2003, Zacherl 2005), are biogenic car-
bonates, CaCO3 crystals enmeshed within a protein
matrix, that begin forming in the embryo at its birth
location (Chia et al. 1981). Layers are continually
added throughout the embryo’s life and become per-
manently incorporated into the structure. Divalent
cations from the surrounding seawater (i.e. Mg+2 and
Sr+2) co-precipitate with CaCO3. Abiotic factors (e.g.
temperature, salinity, chemistry) and biological fac-
tors such as growth rate (Carré et al. 2006, Hamer &
Jenkins 2007), genetics (Wheeler 1992), and maternal
investment (Thorrold & Jones 2006, Lloyd et al. 2008)
vary across a species’ range and can influence uptake
of cations into biogenic carbonates (Kalish 1990,
Thorrold & Jones 2006), potentially providing every
larva with a geographically-specific geochemical tag.
Use of otolith/statolith geochemical tags have so far
permitted identification of recruit sources and partial
estimates of connectivity (Swearer et al. 1999, Hamer
et al. 2005, Becker et al. 2007, Carson 2010).

The potential for geochemical tags to generate a
full and robust connectivity matrix has not yet been
realized because most natural geochemical tag stud-
ies have struggled with common logistical chal-
lenges. They may have (1) only sampled a small part
of a species’ range, (2) under-sampled within sites,
(3) sampled at a scale that was too coarse, and/or (4)
not characterized temporal variation. It is difficult to
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Fig. 1. An idealized population connectivity matrix that
describes the relationships among source (j) and destination
(i) patches of propagules. Patches can occur in a variety of
configurations, ranging from continuous coastlines to non-
continuous reefs, islands, estuaries, marine reserves, etc.
Each vertical line indicates a potential source location, and
each horizontal line indicates a potential destination loca-
tion. The diagonal line represents propagules produced at a
source location returning to settle at the same location as a
destination, sometimes referred to as ‘self-recruitment’. Let-
ters indicate the 3 cases of patch configurations character-
ized by recent larval assignment studies. (A) A case of self-
recruitment with propagules at jx returning to ix (e.g. Jones
et al. 1999, Almany et al. 2007). (B) Propagules are marked
at one source location and recaptured at a few destinations
(e.g. Jones et al. 2005, Planes et al. 2009). (C) A case of iden-
tifying recruits from a small number of sources at a few des-
tinations (e.g. Becker et al. 2007, Carson 2010). Note that
none of these cases succeed in fully characterizing the 

connectivity matrix across a species’ range
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know whether previous studies addressed challenges
(2) and (3) above without explicit tests such as a
power analysis.

These logistical challenges are compounded by
statistical challenges. The analytical framework most
frequently applied to geochemical tagging data is
discriminant function analysis (DFA). DFA has many
shortcomings (White & Ruttenberg 2007), and the
most problematic is that it ignores unsampled sources
between locations as well as spatial autocorrelation
of geochemical tags. Thus, the results of DFA lack
spatial continuity and a means to perform spatial un -
certainty assessment. DFA is also unable to specify
how far away from a sample location assignment pre-
dictions hold. Unlike DFA, kriging can estimate con-
tinuous spatial patterns from scattered point samples.
Kriging is a geospatial statistical method that has
been used extensively in geology (Goovaerts 1999)
and is increasingly finding application in landscape
ecology and genetics (e.g. Manel et al. 2003, Wasser
et al. 2004, Murphy et al. 2008). However, the use of
kriging in marine ecology has been more limited
(Robertson 1987, Legendre & Fortin 1989, Gustafson
1998), and kriging has not been applied to the prob-
lem of natural geochemical tagging.

In this study, we analyze natural geochemical tags
in embryonic statoliths over the entire range of an
open coast marine gastropod, Kelletia kelletii. We
address each of the common logistical and statistical
challenges associated with this approach by charac-
terizing within-site, among-site, and temporal varia-
tion in statolith chemistry and by using geospatial
statistics (multivariate kriging) to estimate tags at
unsampled locations. We test the performance of
DFA against that of the new geospatial method
developed here by characterizing spatial uncertainty
and classifying individuals left out of model develop-
ment. Last, we show how geospatial statistics can
also be used to characterize the strength of potential
larval sources using adult abundance and habitat
availability, and we demonstrate the utility of this
information for evaluating competing assignments to
sources with similar elemental signatures.

MATERIALS AND METHODS

Study organism

Kellet’s whelk Kelletia kelletii (Forbes, 1850) is a
neogastropod found on rocky reefs from Monterey,
California, USA, to Isla Asunción, Baja California,
Mexico (Herrlinger 1981). Adults reproduce once a

year, in May to August, at the kelp/sand interface
(D. C. Zacherl pers. obs.), where females deposit ben-
thic egg capsules (Rosenthal 1970). Embryos brood
within egg capsules, developing statoliths after 15 to
19 d (Zacherl et al. 2003). Veligers hatch after 30 to
34 d (Rosenthal 1970). Laboratory studies suggest a
planktonic larval duration of at least 5.5 wk at 15°C
(Romero et al. 2012). The part of the statolith formed
before hatching can be analyzed using mass spec-
trometry and used as a tag of a recruit’s source loca-
tion (Zacherl 2005).

Sampling natural tags from sources across the range

SCUBA divers collected mature egg capsules from
rocky reefs (15 to 18 m) from mid-June to early
August in both 2004 (at 12 sites) and in 2005 (at 17
sites) (Fig. 2, Table 1) to sample natural geochemical
tags throughout the entire range of K. kelletii. We
collected at least 10 broods from each site and froze
them at −80°C until analysis.
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Fig. 2. Kelletia kelletii. Egg-mass collection sites for 2004
and 2005. Sites span the entire range of K. kelletii to charac-
terize the elemental composition of embryonic statoliths
from probable sources of larvae. Site names are coded as in
Table 1 and grouped into 3 geographical regions: North, 

Bight and Baja (see ‘Materials and methods’)
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Ensuring sufficient sampling within sites

We used Monte Carlo simulations of a DFA to
determine a statolith sampling strategy that would
capture variation in elemental signatures within each
site. We used data from Zacherl (2005) to parameter-
ize the variance in metal/calcium (Me/Ca) ratios
among statoliths within broods, among broods within
sites, and among sites (‘training data’). These data
consisted of 7 Me/Ca ratios (Zn/Ca, Sr/Ca, Ba/Ca,
Ce/Ca, Pb/Ca, Mg/Ca, and Mn/Ca) recorded for
1384 individual embryonic statoliths in 140 broods
distributed among 7 sites (2 to 7 broods per site, 7 to
10 statoliths per brood). Training data were log10(x + 1)
transformed for normality, standardized, and then
transformed using a principal components rotation to
remove correlations among elemental ratios (‘trans-
formed training data’).

We carried out Monte Carlo simulations using
pseudo-random numbers drawn from normal distri-
butions describing among-site, among-brood, and
within-brood variance, estimated by maximum likeli-
hood in a hierarchical linear model fit to the trans-
formed training data. Simulated sample designs as-
sumed 37 sites and varied the number of broods per
site from 5 to 95 and the number of statoliths per
brood from 1 to 10. For each sample design, we
 performed a minimum of 1000 Monte Carlo realiza-
tions. Random samples of 2 to 100 simulated statoliths
were then drawn from the simulated pool of all sta-
toliths from a site (i.e. without respect to brood). We
rotated the resulting simulated sample data back into
the original coordinate space (to account for cross-
correlation among elemental ratios) and subjected the
back-transformed simulated data to DFA. Classifica-
tion success to the site level was assessed using the
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Site Site Latitude Longitude Year Statoliths Mg/Ca Sr/Ca Ba/Ca Ce/Ca Pb/Ca
code name (°N) (°W) (N) (mmol mol−1) (mmol mol−1) (μmol mol−1) (μmol mol−1) (μmol mol−1)

North region
MO Monterey 36.6182 121.897 2004 50 1.90 (0.02) 9.31 (0.05) 7.68 (0.12) 0.06 (0.01) 0.19 (0.02)

2005 50 1.33 (0.02) 9.22 (0.05) 7.09 (0.07) 0.04 (0.002) 1.77 (0.08)
WC Whalers Cove 36.5207 121.9392 2005 49 1.55 (0.02) 8.89 (0.05) 7.87 (0.09) 0.06 (0.003) 2.13 (0.07)
CM Cambria 35.5701 121.1252 2005 50 1.83 (0.02) 9.19 (0.06) 11.02 (0.13) 0.08 (0.003) 6.35 (0.41)
DC Diablo Canyon 35.2245 120.8775 2005 50 1.52 (0.02) 8.90 (0.06) 7.60 (0.11) 0.08 (0.01) 1.33 (0.09)
JA Jalama 34.4942 120.5045 2004 50 1.91 (0.02) 8.53 (0.04) 7.04 (0.17) 0.16 (0.01) 0.47 (0.17)

Bight region
CO Cojo 34.4481 120.4018 2004 50 2.13 (0.04) 9.11 (0.08) 9.11 (0.28) 0.11 (0.01) 0.80 (0.09)

2005 50 1.73 (0.02) 7.75 (0.07) 6.93 (0.09) 0.15 (0.01) 0.60 (0.05)
AC Adams Cove 34.0234 120.4357 2005 50 1.83 (0.02) 9.18 (0.06) 6.76 (0.11) 0.05 (0.01) 0.35 (0.04)
RR Rodes Reef 34.0389 120.1180 2004 49 2.05 (0.03) 9.35 (0.06) 7.74 (0.28) 0.06 (0.01) 0.40 (0.03)
SP South Point 33.8916 120.1216 2005 48 1.84 (0.03) 9.05 (0.07) 6.69 (0.14) 0.10 (0.01) 0.86 (0.19)
PE Pelican 34.0274 119.6905 2005 50 1.74 (0.03) 8.52 (0.08) 9.29 (0.23) 0.09 (0.01) 0.46 (0.03)
YB Yellowbanks 33.9913 119.5646 2004 50 2.06 (0.04) 8.40 (0.05) 5.93 (0.11) 0.05 (0.004) 0.38 (0.05)

2005 50 1.64 (0.02) 8.69 (0.06) 7.39 (0.10) 0.04 (0.003) 0.77 (0.03)
TA Tajiguas 34.4592 120.0949 2004 50 1.95 (0.03) 8.17 (0.07) 6.33 (0.08) 0.06 (0.003) 0.34 (0.01)
EW Ellwood 34.4271 119.9239 2004 50 2.15 (0.03) 8.07 (0.10) 6.03 (0.20) 0.08 (0.01) 0.74 (0.50)
IV Isla Vista 34.4047 119.8675 2004 50 2.19 (0.04) 8.57 (0.06) 8.11 (0.14) 0.10 (0.004) 0.66 (0.02)

2005 49 1.84 (0.03) 9.16 (0.07) 9.76 (0.23) 0.17 (0.01) 0.96 (0.05)
PD Point Dume 33.9935 118.8048 2004 50 1.80 (0.02) 7.44 (0.08) 5.55 (0.10) 0.13 (0.01) 0.48 (0.10)

2005 50 2.00 (0.04) 8.69 (0.07) 9.65 (0.52) 0.14 (0.01) 0.54 (0.08)
PV Palos Verdes 33.7105 118.3177 2004 50 1.92 (0.04) 8.29 (0.06) 8.79 (0.39) 0.08 (0.01) 0.41 (0.03)

2005 50 2.28 (0.04) 8.73 (0.06) 8.47 (0.14) 0.10 (0.004) 0.71 (0.02)
DP Dana Point 33.4757 117.7333 2004 50 2.17 (0.04) 7.73 (0.08) 7.00 (0.21) 0.15 (0.01) 0.48 (0.04)

2005 50 1.83 (0.02) 8.15 (0.05) 7.55 (0.10) 0.09 (0.01) 2.07 (0.24)
PL Point Loma 32.6933 117.2709 2004 50 2.04 (0.02) 9.05 (0.08) 12.94 (0.39) 0.05 (0.003) 1.52 (0.16)

Baja region
LB La Bufadora 31.7233 116.7175 2005 50 1.60 (0.02) 8.85 (0.06) 6.52 (0.09) 0.10 (0.01) 0.57 (0.04)
ISM Isla San Martin 30.4853 116.0975 2005 50 1.64 (0.02) 8.45 (0.06) 6.32 (0.08) 0.01 (0.002) 3.02 (0.10)
PB Punta Baja 29.9216 115.7714 2005 49 1.53 (0.02) 8.99 (0.07) 6.61 (0.07) 0.12 (0.02) 2.85 (0.29)
ISR Isla San Roque 27.1545 114.3602 2005 50 1.90 (0.02) 9.66 (0.06) 7.66 (0.14) 0.03 (0.004) 1.27 (0.09)

Table 1. Kelletia kelletii. Names, codes and years of egg-mass collection sites, regional classification, GPS locations, number 
of statoliths sampled per site (N) and average metal/calcium ratios (±1 SE)
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discriminant function derived from the full, simulated
data set (model success) and by  cross-validation with
10% of data withheld (cross-validation success).

The mean and standard error of model and cross-
validation success were then plotted vs. the number
of individual statoliths sampled from the site pool
under different sampling designs (statoliths/brood
and broods/site). We chose the sample sizes and
brood pooling strategy to give the maximum mean
model and cross-validation classification success
with the lowest standard error of classification within
the constraints of sampling effort. The number of sta-
toliths per site had more effect on classification suc-
cess than the number of broods per site. Regardless
of the number of broods sampled per site, classifica-
tion success plateaued after 30 statoliths. The out-
come of these simulations resulted in our chosen
sampling strategy: to pool 500 larvae from 10 broods
per site and subsample 50 statoliths per site. These
analyses were carried out in MATLAB R12 using the
Statistics Toolbox (Mathworks).

Statolith elemental analysis

We isolated embryonic statoliths of K. kelletii and
analyzed them for trace elements (Mg, Sr, Ba, Pb,
and Ce) using techniques detailed in Zacherl (2005),
Koch (2008) and the Supplement at www.int-res.
com/ articles/suppl/m508p033_supp.pdf. All isolation
steps were completed in an analytical chemistry lab-
oratory at the Marine Science Institute, University of
California Santa Barbara (UCSB). Fifty larvae from 1
egg capsule were haphazardly selected from each of
10 broods per site (500 larvae total) for cleaning. Of
these, 50 statoliths per slide were haphazardly
selected for analysis using laser ablation inductively
coupled plasma mass spectrometry (LA-ICP-MS). We
conducted all elemental analyses using a UP-213
laser ablation system (Solid state Nd:YAG, UP-213;
New Wave Research) coupled to an ICP-MS
(Finnegan Element 2). We standardized elemental
counts using a Me/Ca ratio.

Classical assignment approach using ANOVA,
MANOVA, and DFA

We compared samples using nested multivariate
analysis of variance (MANOVA) with 2 fixed factors
(region, site [region]) to determine among-site and
among-region spatial variability of trace elements in
embryonic statoliths within each year (2004 and 2005).

All data were log10(x + 1) transformed to ensure
they met the assumptions of analysis of variance
(ANOVA) and MANOVA, including normality and
homogeneity of variances (Huberty & Olejnik 2006).

We grouped sites into 3 distinct geographic regions
a priori (north of Point Conception [North], Southern
California Bight [Bight] and Baja California [Baja])
based on topography and oceanographic conditions
(Zacherl et al. 2003, Zacherl 2005) (Table 1). The
colder California Current bathes sites north of Point
Conception. The warmer, saltier California Counter
Current influences the sites south of Point Conception.

We used a posteriori contrast tests to indicate
which regions and which sites within regions were
significantly different from each other. Then, we ran
a DFA using all Me/Ca ratios. We used a jack-knife
serial-deletion cross-validation technique to estimate
the success rate of DFA at assigning statoliths to site
nested within region.

We compared 2 years (2004 and 2005) of data from
a subset of sites (Monterey, Jalama, Ellwood, Yellow-
banks, Point Dume, and Dana Point) using a nested
ANOVA (year, site [year]) and MANOVA (year, site
[year]) to determine the temporal variability of trace
elements in statoliths. Then, we used jack-knife
serial-deletion cross-validation to estimate the suc-
cess rate of DFA at assigning statoliths to year at each
site. The DFA was run assuming equal-probability
prior distributions.

To estimate a p-value for the jack-knife reclassifi-
cation success of the DFAs, we analyzed the dataset
using a randomization bootstrapping technique
(White & Ruttenberg 2007). In total, 5000 iterations of
the model were run to estimate the probability of our
result being significantly different from random by
chance alone. We ran all statistical analyses using the
program JMP version 8.0 (SAS Institute) and MAT-
LAB R13 (Mathworks).

Geospatial statistics

Kriging can interpolate continuous spatial patterns
from scattered point samples (Isaaks & Srvivastava
1989, Cressie 1993, Goovaerts 1997, Chiles &
Delfiner 2012) by predicting values at unsampled
locations based on spatial autocorrelation between
pairs of sampled points (variogram model). Each
unsampled point can be predicted as a weighted
average of all sampled points, where the weights are
derived from the variogram function. Kriging repro-
duces the data values at actual sample points. When
data are normally distributed or can be transformed,
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and their mean and variance are stationary over the
study area, kriging yields the best, unbiased linear
predictor at unsampled locations and provides an
estimate of uncertainty (Chiles & Delfiner 2012).

We used multivariate ordinary kriging (Chiles &
Delfiner 2012) to estimate the joint spatial pattern of
all 5 Me/Ca ratios (see the Supplement). Me/Ca ratios
were log10(x + 1) transformed for normality, centered,
standardized, and transformed into principal compo-
nents using the pooled covariance matrix before krig-
ing. We performed leave-one-site-out cross-validation
to assess accuracy of kriging predictions and report
cross-validation root-mean-square errors as a measure
of prediction error at unsampled locations (Fig. S2 in
the Supplement; Deutsch &  Journel 1998).

Continuous assignment and spatial uncertainty
assessment using geospatial statistics

Positional uncertainty in assignment can be de -
rived by applying the same assignment principle
used to determine classification success in DFA,
while considering the kriging-predicted elemental
values at unsampled locations between sample sites.
In DFA classification, an individual of unknown ori-
gin is assigned to the group (site) to which it is closest
in multivariate space. Multivariate distance is meas-
ured by the Mahalanobis distance metric, which
measures the distance between a point and the cen-
troid of a group in multivariate space assuming a
multivariate normal distribution. If the multivariate
normal assumption holds, this leads to a maximum
likelihood classification (Huberty & Olejnik 2006). To
derive an equivalent continuous assignment method
based on kriged geochemical signatures and associ-
ated measures of positional error, we first define a
multivariate normal (MVN) distribution of the ele-
mental signatures zm at each m of the M possible
locations on the coast:

zm ~ MVN(μm, Cmij) (1)

where μm is the kriging mean at location m. Cmij is 
the M × K × K matrix consisting of the M variance-
covariance matrices for locations along the coast.
Each location-specific variance-covariance matrix Cij

is K × K, where K is the number of elements, and is
defined as follows:

(2)

where sij is the within-site covariance of the Me/Ca
ratios of elements i and j, and σk is the kriging vari-
ance of element k. At sample locations, the mean and
covariance will be equal to the sample mean and
variance because the kriging variance is 0 (Deutsch
& Journel 1998). At unsampled locations, the pre-
dicted mean is the kriging mean, and the predicted
variance for each elemental ratio (diagonal of the
covariance matrix) reflects the sum of sampling error
(sij) and spatial uncertainty (σk). Then, for each of the
N individuals sampled in a year, the Mahalanobis
distance to each of the M possible coastal locations is
calculated. The location with the minimum absolute
value of the Mahalanobis distance is the position
along the coast to which that individual is assigned.

To measure positional error in assignment, we car-
ried out assignment in this way and then calculated
the along-coast distance between the maximum like-
lihood assignment and the true location of origin of
each individual embryonic statolith, and we summa-
rized positional error using the mean and quantiles of
this ‘distance error’ distribution.

Comparison of DFA and 
continuous geospatial methods

To compare the classification success resulting
from DFA to that from the continuous geospatial
method, we applied each method to re-classify em -
bryonic statoliths from known sites. Frequency histo-
grams of along-coast re-classification assignments
for statoliths from each site of origin were used to
compare results across methods. For simplicity of
visualization, figures show results mapped vs. lati-
tude rather than along-coast distance, but all analy-
ses of distances between sites for comparing DFA
and continuous geospatial methods refer to distances
measured along the coastline (including shortest dis-
tance across water to islands for island sites). Note
that, in some cases, sites are much further apart in
terms of along-coast distance than they appear when
mapped vs. latitude.

To compare the overall performance of DFA vs. the
continuous geospatial method when confronted with
statoliths from a source (i.e. a source not used in
model fitting), we conducted leave-one-site-out cross-
validation exercises at a subset of 3 sites. In each exer-
cise, all information pertaining to one site was com-
pletely removed, and all stages of DFA and geospatial
analyses were repeated (including variogram model
inference and kriging). Then, the 50 statoliths from
the left-out site were classified using the  cross-
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validation discriminant function and kriging atlas. Fre -
quency histograms of along-coast assignments for sta-
toliths from each left-out site were used to compare
performance across methods. 

Source strength

We also show how geospatial statistics can be used
to assess the relative magnitude of potential larval
sources across the range, which may provide prior
probability information useful in distinguishing
sources difficult to separate by natural geochemical
tags alone. We gathered reproductive-adult density
data from 61 sites (26 of our own, 35 from CRANE;
see the Supplement). We used kriging to estimate
adult abundances at all potential sources across the
entire range as a proxy of source strength by combin-
ing adult density with spawning habitat data col-
lected from satellites and aerial photographs (see
Broitman & Kinlan 2006). Adult density data were
log10(x + 1) transformed before kriging to normalize
data. We calculated the omni-directional sample var-
iogram, using the Euclidean distance between (lati-
tude, longitude) points. Use of latitude, longitude
allowed us to include both island and coastline sites
in the same analysis. We fit an exponential variogram
model to the sample variogram using a weighted
non-linear least-squares algorithm (Pardo-Igúzquiza
1999; see the Supplement). Because the sample vari-
ogram exhibited continuity near the origin, we
elected to fit a model without a nugget effect. We
used the ordinary kriging package in GSLIB (Deutsch
& Journel 1998) to predict adult density at the mid-
points of grid cells defined by 1 km intervals along
the 1:250000 World Vector Shoreline (Soluri &
Woodson 1990) (starting at a point 36.7821°N,
121.7990°W and proceeding southward along the
coast in 1 km intervals). For islands, 1 km intervals
were defined based on the northernmost point on the
island coastline, proceeding counterclockwise.

RESULTS

Spatial variation of natural geochemical tags 
in 2004 and 2005

Embryonic statolith Me/Ca ratios collected in 2004
differed significantly among all 12 sites (MANOVA,
followed by Bonferroni-corrected contrasts, p < 0.0001;
Table S2 in the Supplement) and 2 regions (MANOVA,
p < 0.0001; Table S2). Compared with statoliths from

the Bight, embryonic statoliths from the North had
higher Sr/Ca and Ce/Ca ratios but lower Mg/Ca,
Ba/Ca, and Pb/Ca ratios (see Table 1 for per-site aver-
ages used to calculate regional averages).

Using DFA, we generated canonical variance plots
for sites and regions using embryonic statoliths from
2004 (Fig. 3A,C). The group centroids for each site
occupied unique locations in canonical space, but
95% confidence ellipses of the centroids typically
overlapped with at least 1 other site (Fig. 3A); the
regional group centroids and confidence ellipses oc -
cupied different regions in canonical space (Fig. 3C).
The magnitude of the vectors of the standardized dis-
criminant functions indicated that Ba/Ca and Sr/Ca
ratios played the most important roles in discrimi -
nating statoliths among sites (Fig. 3A), versus Pb/Ca
and Sr/Ca ratios for among-region discrimination
(Fig. 3C). The directions of the vectors depict the
regional trends (Fig. 3C) in Me/Ca ratio.

Leave-one-out jack-knife validation — used to
determine whether the chemical composition of a
statolith collected in 2004 could predict its site and
region of formation — successfully assigned statoliths
to their site of origin 56% of the time compared to 8%
by chance alone (Fig. 3A, Table S3 in the Supple-
ment). Statoliths from Monterey and Point Loma
were distinct from statoliths from almost all other
sites and had the highest classification success (82%
and 88% respectively). Grouping sites into the 2 geo-
graphic regions sampled in 2004 (North and Bight)
increased the classification success to 78% compared
to 50% by random chance alone (Fig. 3C, Table S3).

The chemical composition of embryonic statoliths
collected in 2005 also differed significantly among
all 17 sites (MANOVA, followed by Bonferroni-
 corrected contrasts, p < 0.0001; Table S2) and all 3 re -
gions (MANOVA, followed by Bonferroni-corrected
contrasts, p < 0.0001; Table S2). Embryonic statoliths
from the North had the highest Sr/Ca, Ba/Ca and
Pb/Ca ratios (Table 1). The Bight had the highest
Mg/Ca and Ce/Ca ratios (Table 1).

The DFA canonical variance plots for sites and re -
gions using embryonic statoliths from 2005 (Fig. 3B,D)
show group centroids for each site occupying unique
locations in canonical space, but as with 2004, 95%
confidence ellipses of the centroids typically over-
lapped with at least 1 other site (Fig. 3B); the regional
group centroids and confidence ellipses occupied
very different locations in canonical space (Fig. 3D).
The magnitude of the vectors of the standardized dis-
criminant functions indicated that Ba/Ca and Pb/Ca
played the most important roles in discriminating sta-
toliths among sites (Fig. 3B), versus Ba/Ca and
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Mg/Ca for among-region discrimination (Fig. 3D).
The directions of the vectors (Fig. 3D) were again
consistent with the regional trends in Me/Ca ratio.

The leave-one-out jack-knife validation success for
2005 was 70% (t-test, p = 0.0002) successful at
assigning all statoliths to their site of origin compared
to 6% expected by chance alone (Table S3). Some
sites were distinct from almost all other sites and had
very high classification success. For example, Isla
San Martin had classification success of 100%, and
Cambria (96%) (Table S3), Cojo (88%), Monterey
(88%), and Palos Verdes (82%) also had relatively
high classification success rates (Table S3). Grouping
sites into 3 geographic regions (North, Bight, and
Baja) increased the classification success to 81% (t-

test, p = 0.0002) compared to 33.3% by random
chance alone (Fig. 3D, Table S3).

Temporal variation in natural geochemical tags

The multi-elemental chemistry of statoliths among
sites and regions varied significantly between 2004
and 2005 (MANOVA, p < 0.0001; Table S4 in the
Supplement), as did individual Me/Ca ratios in sta-
toliths at the majority of sites examined (Table S5 in
the Supplement). Mg/Ca ratios varied significantly
between years at every site examined (Table S5).
The Ce/Ca ratio was the most temporally stable,
varying significantly between years at 4 of the 7 sites
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Fig. 3. Kelletia kelletii. Plots depicting scores for the first 2 canonical axes of discriminant function analysis that tested for spa-
tial variation in the elemental composition of embryonic statoliths collected at sites in (A) 2004 and (B) 2005 and sites nested
within regions in (C) 2004 and (D) 2005. Ellipses are the 95% confidence intervals of the group means. The length and
 direction of bi-plot rays reflect the relative contribution of each element to discriminating among regions. Letters in (A,B) 

correspond to site codes in Table 1. Regions: NO, North; BI, Bight; BA, Baja
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(Table S5). Mg/Ca, Sr/Ca and Ce/Ca ratios varied in
a consistent way between regions from year to year
(Fig. 4). Sr/Ca and Ba/Ca ratios were higher in the
North than the Bight in both years, whereas Mg/Ca
and Ce/Ca ratios were significantly higher in the
Bight than the North in both years. Ba/Ca and Pb/Ca
ratios did not show consistent spatial trends between
years (Fig. 4). For instance, the Pb/Ca ratio was high-
est in the Bight in 2004 but was much higher in the
North during 2005 (Fig. 4).

Geostatistical approach

Variogram models fit to empirical variogram esti-
mates (Fig. S1 in the Supplement) yielded estimates
of the range parameter, a measure of the ‘patch
scale,’ or characteristic length scale of autocorrela-
tion. The weighted average range parameter for ele-
mental signatures was 102 km in 2004 and 183 km in
2005, with 100 km for the first principal component
(PC1) and 140 km for PC2 in 2004 and with 324 km
for PC1 and 73 km for PC2 in 2005 (Table S6 in the
Supplement). Principal component axis loadings and
elemental signature correlation matrices are shown
in the Supplement (Tables S7 & S8).

The along-coast predictions of Me/Ca ratios show a
mixture of meso-scale variability (10s to 100s km)
and more localized small-scale variability (10s km).
The large-scale regional patterns were less promi-
nent. Three Me/Ca ratios (Sr/Ca, Mg/Ca, and Ba/Ca)
tended to be more smoothly distributed. This resulted
in lower uncertainties than for the more spatially
uncertain patterns of Ce/Ca and Pb/Ca ratios (Fig. 4).
The area between 33.5 and 34.5° N latitude shows
the highest spatial variability for all the elements
except Pb/Ca and, to a lesser extent, Mg/Ca (Fig. 4).

Since no sites were sampled south of 32.5° N in
2004, kriging predictions for all elements for the
southern part of the study area in 2004 are equal to
the mean Me/Ca ratio for all sites within the 900 km
kriging search radius, and uncertainty is equal to the
total among-site variance. Note that discontinuities
in the kriging predictions occur at the southern edge
of the domain in 2004 because the far northern sites
fall out of the 900 km search window.

Spatial uncertainty assessment

We estimated the spatial uncertainty of assignments
using the continuous geospatial method and com-
pared it to DFA by building frequency histograms of

maximum likelihood re-classification assignment lo -
cations for embryonic statoliths (Fig. 5). Use of the
continuous method (right-hand panel of each pair
of plots in Fig. 5) corrects for the ‘no other source’
assumption in DFA by giving the best estimate of cor-
rect assignment based on kriging inferences about
populations between sampled locations. In the cases
of Cojo and Monterey embryonic statoliths in 2005
(Fig. 5B,C), the DFA method yielded 88%  re-
classification success for both sites (Table 2, Table S3).
In contrast, a continuous assignment method reveals
that the distance error associated with an 88% as -
signment success could range from 37 km (Cojo
2005) to 315 km (Monterey 2005). Eighty percent of
statoliths could be assigned to Monterey within a
10 km range in 2005, but one would have to consider
sources >200 km away to get the 88% reclassifica-
tion success reported by DFA. Cojo 2005 had smaller
distance error, but only 31% of statoliths could be
assigned within 10 km. In years (2004; Fig. 5A) and
regions (Baja, Fig. 5D) with less sampling effort, both
methods had greater error in assignment (greater
spread in histograms in Fig. 5A,D), but the continu-
ous geospatial method allowed that uncertainty to be
spread over any site along the coast, whereas for
DFA, the mis-classifications were necessarily (and
misleadingly) clustered at the discrete set of sites
included in the analysis.

Leave-one-site-out cross-validation comparison

A more powerful test of the real-world perform-
ance of assignments using the DFA vs. continuous
geospatial methods is provided by the leave-one-
site-out cross-validation analysis (Fig. 6). In this test,
the DFA method was constrained to assign unknown
statoliths to one of the limited set of known sites
(which did not include the true source), whereas the
continuous method considered all potential sources.
In all cases tested, assignments using the continuous
geospatial method outperformed or matched the
DFA. The continuous method assigned unknown sta-
toliths to the vicinity of their site of origin more often
than other locations, with a high degree of fidelity
(Fig. 6A,B right-hand panels). For example, the con-
tinuous method assigned 62% of statoliths from
Monterey (2005) and 66% from Cambria (2005) to
within 100 km along-coast of their site of origin, even
though the site of origin was not included in the krig-
ing atlas (Fig. 6A,B right-hand panels). Along-coast
distances of these assignments ranged from 23 to
93 km (0.15° to 0.62° latitude; along-coast distances
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and latitudes can be correlated using Fig. 2). In the
case of Palos Verdes (2004), where both methods per-
formed equally poorly overall, the continuous method
had the advantage of more accurately representing
the uncertainty of assignments (Fig. 6C). The DFA
method gave very high assignment frequencies to
incorrect sites, giving the false impression of accu-
racy. In 2004, DFA assigned 98% of statoliths from
Palos Verdes to sites more than 100 km along-coast
from the true origin (Fig. 6C, left-hand panel). These
mis-assignments included 7 sites to the north (MO,

JA, TA, CO, IV, RR, and PD) and 1 site to the south
(PL) with along-coast distances of 138 to 832 km
(0.28° to 2.91° latitude) (Figs. 2 & 6C). In 2005, DFA
assigned 72% from Palos Verdes to sites more than
100 km along-coast from the true origin (Fig. 6D, left-
hand panel). These mis-assignments included 4 sites
to the north (CO, IV, AC, and PD) and 1 site to the
south (ISR) with along-coast distances of 138 to
1205 km (0.28° to 6.56° latitude) (Figs. 2 & 6D). Note
that while un known statoliths are often clas sified
nearest the site of origin by the continuous method,
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Fig. 4. Range-wide natural geochemical tag atlas. Observed natural geochemical tags (Mg/Ca, Sr/Ca, Ba/Ca, Ce/Ca, and
Pb/Ca) in Kelletia kelletii embryonic statoliths in 2004 (triangles, 1st column) and 2005 (squares, 2nd column) are shown with
the continuous kriged interpolation (blue lines) and 95% confidence limits (pink lines). For visualization of spatial patterns
along the coastline, the results are plotted in latitude-longitude space in the 3rd (2004) and 4th (2005) columns using a 

colormap that varies from blue (minimum) to red (maximum)
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Fig. 4 (continued)
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Fig. 5. Comparison of discriminant function analysis (DFA) and continuous re-classification of individuals from known sources.
Each pair of plots compares the frequency histogram of the maximum likelihood (ML) re-classification assignment locations
for individuals originating at a given site (true site of origin, indicated by the blue dotted reference line) for the DFA method
(left-hand panel of each pair of plots) vs. continuous method (right-hand panel of each pair of plots). DFA assignments can only
occur to one of the sampled locations. The continuous method provides a means to consider all potential sources and thereby
evaluate the spatial uncertainty associated with DFA assignments. The true site of origin was included in the training sets for
both methods. Solid red bars are histograms at finest possible resolution given the kriging atlas (~1 km along-coast bins), plot-
ted vs. latitude. Outlined black bars are the result of summing the fine-scale histogram along the latitude axis in 0.45° (~50 km)
bins. Note that histograms were calculated as a function of latitude for visualization only. Frequencies calculated in along-
coast distance bins (not shown) differ from frequencies calculated in the latitudinal bins shown here. To represent the range
of results, 4 examples are shown based on re-classification of embryonic statoliths originating at sites (A) Cojo in 2004, (B) Cojo 

in 2005, (C) Monterey in 2005, and (D) La Bufadora in 2005
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in some cases, substantial mis-assignment rates may
occur to distant sites, as oc curred in the Palos Verdes
analysis in 2004 and 2005 (Fig. 6C,D). More informa-
tion than provided by elemental signatures alone
(e.g. source strength, see below) would be required
to reduce these rates of mis-classification. However,
in cases where uncertainty in the kriging atlas was
high (e.g. Fig. 6C), the continuous method accurately
represented greater uncertainty in assignment from
the uncertainty in unsampled sites’ elemental signa-
tures. The continuous method also revealed effects of
variation in the along-coast resolution of the atlas,
reflected in the spread of fine-scale assignments
around sites of origin (e.g. compare red bars in Fig.
6A,D right-hand axes).

Accounting for source strength: incorporating
continuous along-coast predictions of reproductive

adult abundance

The scale of spatial autocorrelation in adult Kelletia
kelletii abundance was 201 km (Fig. S3 in the Supple-
ment). Estimated reproductive adult abundances of
K. kelletii were highest in the middle (~34° to 31° N)
and lowest at the northern and southern parts of
the geographic range (Fig. 7). The 2 highest observed
peaks in adult abundance occurred near major up-
welling centers just south of Point Conception (Cali-
fornia, USA) and near Punta Colonet (Baja California,
Mexico) (Fig. 7, Table S1 in the Supplement). They
shared a similar scale of spatial autocorrelation as
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Site DFA reclass. DFA dist. —————————— Reclassification success continuous method (%) —————————
code success (%) error (km) 1 km 5 km 10 km 20 km 50 km 100 km 200 km 500 km 1000 km

(A) 2004
MO 82.0 194.1 2.5 8.5 14.3 37.9 64.7 65.8 83.3 100.0 100.0
JA 66.0 114.8 0.0 31.8 44.0 50.4 53.9 61.4 79.7 100.0 100.0
TA 50.0 82.4 3.9 23.0 23.4 23.7 24.4 62.1 76.6 100.0 100.0
CO 46.0 60.7 0.0 5.8 19.1 22.4 39.3 72.7 76.9 97.6 99.9
EW 52.0 60.5 10.8 26.4 30.0 31.6 36.0 69.6 79.6 95.8 100.0
IV 58.0 251.5 5.7 11.5 13.4 13.8 18.1 42.0 47.3 83.7 91.1
RR 36.7 22.4 0.0 0.0 0.0 30.8 73.4 87.4 89.4 100.0 100.0
PD 64.0 79.5 0.0 5.3 10.6 29.6 63.5 64.4 94.7 100.0 100.0
YB 54.0 34.8 6.0 13.7 23.5 48.7 56.1 71.5 72.6 95.8 100.0
PV 48.0 125.3 0.0 0.0 0.0 0.0 19.4 26.2 65.1 85.5 100.0
DP 28.0 43.1 0.0 0.0 1.0 12.3 32.1 36.6 77.3 93.6 100.0
PL 88.0 276.4 0.0 13.7 19.3 52.1 73.0 73.7 74.2 100.0 100.0

Mean 56 112.1 2.4 11.6 16.6 29.4 46.2 61.1 76.4 96.0 99.2

(B) 2005
MO 88.0 315.2 0.0 36.5 79.7 87.0 87.3 87.5 87.7 90.9 100.0
WC 71.4 389.0 3.9 22.2 36.0 38.2 39.1 43.6 68.9 73.1 100.0
CM 96.0 991.8 0.0 28.0 43.2 80.3 93.2 93.4 93.7 94.0 96.4
DC 54.0 344.3 1.9 7.5 10.9 21.5 31.9 35.2 49.4 85.8 100.0
CO 88.0 37.1 1.6 6.0 31.0 55.8 89.5 90.2 92.1 97.4 100.0
IV 65.3 32.2 0.0 0.5 7.5 27.5 77.2 86.4 95.1 97.4 100.0
PE 66.0 119.7 3.5 9.2 17.8 23.5 35.6 40.5 83.9 90.0 100.0
AC 74.0 331.9 7.6 30.7 41.4 42.4 46.3 55.2 70.1 79.9 100.0
PD 54.0 108.1 0.0 1.7 8.0 11.9 24.2 49.4 87.6 90.1 100.0
YB 68.0 263.8 1.6 9.3 18.7 19.7 21.4 22.6 36.1 97.6 100.0
SP 25.0 49.0 0.0 0.0 0.0 10.7 25.1 44.3 49.0 57.6 100.0
PV 82.0 37.4 0.0 4.5 14.2 49.8 83.5 84.3 92.0 94.2 100.0
DP 48.0 292.6 0.0 0.1 2.8 15.6 23.7 24.7 41.7 79.4 100.0
LB 66.0 409.7 2.0 5.7 15.3 39.4 45.5 46.3 54.2 87.6 100.0
ISM 100.0 387.5 0.0 1.1 2.6 17.3 86.6 87.6 87.9 100.0 100.0
PB 59.2 143.1 0.0 0.0 0.0 2.5 51.6 55.1 74.5 94.2 100.0
ISR 78.0 734.3 0.0 6.0 10.7 41.6 75.0 75.4 75.7 76.3 93.9

Mean 70 293.3 1.3 9.9 20.0 34.4 55.1 60.1 72.9 87.4 99.4

Table 2. Re-classification success and distance error at given distance thresholds for embryonic statolith sources in (A) 2004
and (B) 2005, comparing discriminant function analysis (DFA) with the continuous assignment method. DFA distance error
was calculated using the continuous approach and represents the distance away from the source over which one would need
to bin the continuous results to get the percentage re-classification success reported by DFA. Thus, it is a measure of the spa-
tial uncertainty of DFA assignments. Also shown is the distribution of percentages of re-classification success obtained using 

the continuous method by binning at various distances from sources. See Table 1 for site codes
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previously re ported for kelp surface canopy cover
(188 km) (Broitman & Kinlan 2006). We found the
lowest densities of adults at several sites along the
Big Sur Coast (Cambria, San Simeon, La Cruz) in
 central California and on Santa Rosa Island (John-
sons Lee, Beacon Reef) in the Santa Barbara Channel

(Fig. 7, Table S1). Low habitat availability accounted
for lower abundances elsewhere, including much of
the southernmost part of the range.

The potential value of using the abundance of re -
productive adults as a proxy for larval source strength
can be seen by re-visiting the Palos Verdes leave-
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Fig. 6. Leave-one-site-out cross-validation. For 4 sets of 50 statoliths, the site of origin was completely left out of all stages of
discriminant function analysis (DFA) and continuous analyses, and then those statoliths were classified by each technique.
Results are compared in each pair of plots A−D. Symbology is as in Fig. 5. The excluded sites were (A) Monterey 2005, 
(B) Cambria 2005, (C) Palos Verdes 2004, and (D) Palos Verdes 2005. Note that histograms were calculated as a function of lat-
itude for visualization only. Frequencies calculated in along-coast distance bins (not shown) differ from frequencies calculated
in the latitudinal bins shown here. Percentages of unknown statoliths classified to within 100 km along-coast of their true
 origin for the 2 methods were as follows: (A) DFA: 58%, Continuous: 62%; (B) DFA: 0%, Continuous: 66%; (C) DFA: 2%, 

Continuous: 2%; (D) DFA: 28%, Continuous: 48%
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one-site-out cross-validation analysis (Fig. 6C,D). In
both years, statoliths from Palos Verdes were mis-
classified at fairly high rates to sites in 2 distinct clus-
ters in the Baja region, 100s of km south of Palos
Verdes. Examining the pattern of adult abundance
(Fig. 7) reveals that both of those peaks fall in areas
with virtually no possible source of K. kelletii larvae,
which if incorporated into the analysis as a prior
probability could improve assignment rates using
this kriging atlas. In 2005, when the geochemical
sampling was more extensive, the addition of adult
abundance as a source-strength proxy would allow
almost all unknown statoliths to be definitively
assigned to the vicinity of the correct site (i.e. by com-
bining the pattern shown in the right-hand axes of
Fig. 6D with Fig. 7).

DISCUSSION

Our sampling design and statistical approach
allowed us to confront many of the challenges that
thwart geochemical tagging studies. We sampled
across the species’ entire range, as opposed to sam-
pling only a small subset of potential sources. We
used Monte Carlo simulations to calculate the num-
ber of statoliths we needed to sample within sites in
order to ensure accurate representation of within-site
variability of geochemical tags. We tested for among-
site and among-time variation using classical dis-
criminant analyses. Then, we critically examined the
performance of DFA in this application against an
alternative continuous geospatial method. With any
estimate of dispersal or connectivity based on point
samples (e.g. the classical DFA approach), there is

always a chance that assignments to sources are
wrong (Campana 1999, Munch & Clarke 2008). With-
out explicitly testing for positional error, there is no
way to know the robustness of resultant predictions.
If researchers only sample across a portion of the
 species’ geographic range, then the problem is com-
pounded with unknown error of potential mis-
assignment or underestimation of dispersal distance.
Even if samples are taken throughout a species’
range, it remains logistically challenging to sample
every possible source. The continuous geospatial
method took advantage of natural spatial autocorre-
lation and used kriging to interpolate tags at unsam-
pled locations. This allowed us to estimate a larval
source atlas from all potential sources and to estimate
the spatial error of assignments associated with DFA.
Comparison of DFA to the continuous geospatial
method revealed a serious problem with the applica-
tion of linear discriminant approaches to assignments
in open coast systems. Because DFA does not include
the majority of potential sources along a coastline, it
can make false high-accuracy assignments to sites
that are not the true source. DFA does not provide an
estimate of spatial uncertainty that would allow
detection of such errors.

Using standard DFA, sites were significantly differ-
ent, with respectively 56% and 70% reclassification
successes for 2004 and 2005, compared to 8% and
6% by chance alone. The classic approach would be
to group sites into regions to further increase classifi-
cation success (i.e. 78% in 2004, 81% in 2005; Table
S3). However, doing this sacrifices the ability to build
a detailed connectivity matrix to estimate larval dis-
persal at fine spatial scales (Neubauer et al. 2010,
Miller et al. 2013). Furthermore, DFA provides no
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Fig. 7. Kelletia kelletii. Range-
wide pattern of reproductive
adult abundances (number of
individuals per km of coast-
line), estimated by kriging
density estimates from tran-
sect surveys conducted in
2004 and 2005 and multiply-
ing by habitat area per unit
coastline from kelp canopy-
cover remote sensing. Results
are plotted (A) vs. latitude or
(B) in latitude-longitude space
using a colormap that varies
from blue (minimum) to red 

(maximum)
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estimate of spatial uncertainty associated with later
assignments of recruits to potential sources. Most im -
portantly, DFA ignores potential unsampled sources
along the coastline when making assignments.

The geospatial method allowed us to assign
unknown individuals to a continuous coastline with
measures of spatial uncertainty. We found that spa-
tial uncertainty was large, averaging 112 km for 2004
and 293 km for 2005 (Table 2). A comparison of the 2
methods (left versus right-hand panels of each pair of
plots in Fig. 5) reveals that classical DFA is con-
strained to assign an unknown recruit to only those
precise locations sampled, despite the fact that
nearby potential sources may have a similar chemical
signature. Thus, DFA ‘appears’ to assign unknown
individuals more accurately. But this is only because
it ignores the spatial error of assignment success
since sites between locations are not considered. A
continuous assignment method can account for
potential unsampled sources and give an estimate of
spatial uncertainty to each assignment.

This point is underscored by the leave-one-site-out
cross-validation comparison of DFA and continuous
geospatial methods when confronted with individu-
als from unknown sources (Fig. 6). DFA makes very
high (apparent) accuracy assignments to the wrong
sources (Fig. 6A−D). The geospatial method can
make similarly high accuracy assignments to the
vicinity of the correct source when justified by a full
consideration of all possible sources along the coast
(Fig. 6A,B) but also accurately represents the along-
coast uncertainty when the natural geochemical tag
atlas is uncertain (Fig. 6C,D).

In many cases where uncertainty in the underly-
ing kriging atlas makes assignment purely based on
elemental signatures difficult (Fig. 6C,D), continu-
ous geospatial statistics can provide additional in -
sight and improve assignment based on range-wide
proxies for larval source strength (Fig. 7). Our exer-
cise combining source strength with a continuous
assignment method is similar to emerging approaches
that combine multiple independent data sets to esti-
mate sources and/or connectivity (Gaggiotti et al.
2002, 2004, Smith & Campana 2010, Rushing et al.
2014). For example, to assign wintering songbirds to
breeding grounds, Rundel et al. (2013) combined 2
independent data sets — genetic and stable iso-
tope — in a Bayesian framework. While not specifi-
cally aiming to estimate connectivity, Rundel et al.
(2013) demonstrated that the integration of the 2 data
sets resulted in assignment estimates with higher
spatial precision than could be achieved using one
method alone.

For a continuously distributed species when only a
subset of sites is sampled, the accuracy of DFA will
be a function of the selection of sites sampled, rather
than the true accuracy of assignments. By sampling
at a scale larger than the underlying scale of geo-
chemical autocorrelation, one can improve the accu-
racy of apparent DFA re-classification success. How-
ever, this is a trivial — and misleading — result of the
fact that the DFA accuracy calculation ignores all
populations between sample locations. A researcher
would not know the error in their sampling design
and re-assignment accuracy without testing for spa-
tial autocorrelation. Sampling sites at a spatial scale
that is too coarse would decrease the ability to detect
spatial autocorrelation. Thus, in the context of open-
coast populations, DFA will tend to report the highest
rates of classification success in the situations when it
is doing worst. In the extreme case where a few,
widely separated sites are chosen, DFA is likely to
report very high re-classification accuracy. The con-
tinuous assignment method considers all possible
sources and reveals that such DFA assignments have
high spatial uncertainty and contain little informa-
tion. Using a continuous assignment method does not
guarantee improved spatial certainty, as shown by
our re-classification experiments for poorly sampled
years/regions (Fig. 5A,D). However, it does guaran-
tee that spatial uncertainty will be accurately repre-
sented in the presence of unknown sources, subject
to the assumptions of the geospatial modeling tech-
nique used. Such measures of spatial uncertainty can
be used to (1) assign weight to the evidence for par-
ticular assignments, (2) guide future sampling, (3)
determine the scale to which a given source atlas can
measure dispersal, and (4) determine the spacing of
sites at which recruits should be collected.

Our analyses of the 2004 data revealed that ex -
tending statolith sampling south of Point Loma, USA,
down to Punta Eugenia, Mexico, would improve
our assignments. This conclusion was driven by the
high kriging uncertainties in the Baja region in 2004
(Fig. 4) and examination of the low percentage of
holdout data that were within ±1 SD of the prediction
bounds for elements in 2004 (Table S9 in the Sup -
plement). When we performed leave-one-out cross-
validation of elemental kriging data, only a small per-
centage of the left-out data fell within ±1 SD of
predicted values (e.g. 25% for Ce/Ca in 2004,
Table S9, compared to an expectation of ~68% given
the normally distributed error assumption). This in -
accuracy in the kriging model guided our choice of
sampling sites in 2005, which improved our spatial
characterization of tags in that year (Fig. 4; Table S9,
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column 2). As this demonstrates, geospatial methods
can readily be used to optimize sampling and pro-
duce a source atlas that maximizes the information
available on which to base assignments for a given
number of samples (see Brus & Heuvelink 2007).

We were also able to determine the spatial scale to
which our source atlas was capable of resolving
 dispersal patterns. The median resolution of our
2004 source atlas (i.e. along-coast distance at which
50% of re-classifications were correct; Table 2) was
~63 km. In 2005, the improved spatial sampling
regime increased our median source atlas resolution
to 43 km. However, these are range-wide averages.
A detailed model of spatial variation in natural tags
can identify areas where larval dispersal can and
cannot be finely resolved. Re-classification, leave-
one-out cross-validation, and related simulation
studies can be used to assess the performance of an
atlas for each sampled and unsampled location along
the coast, and further sampling can be used to tune
the atlas. This approach represents a powerful new
tool for the design and optimization of natural tag
atlases.

The spatial scale of autocorrelation in natural geo-
chemical tags is also useful for planning the next
stage in a tagging study. Knowledge of the spatial
pattern of tag variability can be used to determine
the optimal location and spacing of recruit collection
sites. This would maximize the power to make infer-
ences regarding sources. Given the more robust
extent of sampling undertaken in 2005, our spatial
scale of autocorrelation of elements was 183 km. This
means that a sampling design with sufficient sites
spaced within this scale coast-wide could represent
the spatial variation in geochemical tags across the
range. However, in areas of high spatial variability —
such as 4 where 2 water masses collide — sampling
would need to be conducted at a smaller scale. This is
obvious from examination of the kriging of elements
shown in Fig. 4 (e.g. note the exceptional variation in
Sr/Ca across the Channel Islands). A similar pattern
of small-scale spatial variability has been observed
in trace elements along the open-coast of northern
California, an area of strong upwelling (Miller et al.
2013).

More formal methods of geospatial optimization
(e.g. Brus & Heuvelink 2007) could be used to plan
and test different recruit sampling designs. Other
interpolation techniques, such as universal kriging
(which allows incorporation of environmental covari-
ates) or spatial models estimated in a hierarchical
Bayesian framework, could also be applied (Munch &
Clarke 2008, Carroll et al. 2010) and may improve

estimation of the continuous geochemical atlas,
reducing uncertainty. Regardless, it would seem pru-
dent to abandon a DFA approach in geochemical tag-
ging studies for open-coast marine species in favor of
continuous methods, such as the geospatial method
presented here.
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