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INTRODUCTION

Large predators can play a key role in determining
the abundance and composition of their prey (Ray et
al. 2005, Estes et al. 2011). As a consequence, de -
clines in the abundance of these predators sometimes
result in changes in the abundance of prey, and these
can further cascade down to lower trophic levels
(Hairston et al. 1960, Prugh et al. 2009). Because of
their integral role in ecosystems, it is important to get
accurate estimates of the abundances of large preda-
tors — a task which can be challenging because these
species are often rare, sparsely distributed, or elu-
sive, characteristics that make estimating abundance
particularly difficult (Thompson 2004). Camera traps

are frequently used to estimate the abundance of
species with these characteristics (O’Connell et al.
2011). They have been used to generate estimates of
the density of individuals and the number of species,
and can also be used to generate insights about
behaviour or demographic parameters (Head et al.
2013).

The methods that are most typically used to quan-
tify the abundances of coastal sharks are visual cen-
suses by divers, observations using video cameras
(usually employing the use of bait as an attractant)
and mark-recapture methods based on tagging. Each
of these methods has its own set of biases and uncer-
tainties, and different methods can yield very differ-
ent estimates of abundance (McCauley et al. 2012).
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For example, visual censuses can introduce biases
associated with behavioural responses to the pres-
ence of divers, and uncertainties associated with
non-instantaneous counts (Ward-Paige et al. 2010),
while the use of bait might yield results that vary
according to the dispersal of olfactory compounds
and interspecies interactions around the bait (Bassett
& Montgomery 2011, Trenkel & Lorance 2011).

Because policies about harvesting or conserving
sharks are influenced by advice determined — at
least partly — from the results of such surveys (Te -
chera & Klein 2011), it is important to understand the
uncertainties associated with different methods, and
also to attempt to use methods that best reflect the
true density of sharks (i.e. the number of individual
sharks per unit area). Observations made using
remote underwater video cameras without bait offer
perhaps the best opportunity to attain this goal,
because they avoid the biases that are associated
with divers and bait; the cameras themselves might
introduce some biases (e.g. the potential to attract or
deter sharks), but any biases are likely to be minor
compared to those associated with divers and bait.

However, observations made using video cameras
have one critical constraint — they do not provide
estimates of density. Rather, they provide informa-
tion about the frequency of observation or, in some
cases, relative abundance. In situations in which
individuals can be distinguished, capture-recapture
models can be used (Marshall & Pierce 2012), but in
situations in which individuals cannot be distin-
guished, or in which recapture rates are very low,
these models are less useful. Here, we report the
results of a study using an agent-based model that
incorporates information about shark behaviour to
provide estimates of density derived from video
observations. We use this method to estimate the
density of the blacktip reef shark Carcharhinus
melanopterus (Quoy & Gaimard, 1824) found in reef
flat habitat on Ningaloo Reef (Australia) at 2 times of
day: solar noon and just before sunset (dusk). The
general approach we used involves: (1) an agent-
based model of the movement tracks of individual
sharks, (2) the use of this model to estimate the fre-
quency that sharks would be detected by video cam-
eras (with associated uncertainty) and (3) a compari-
son between the modelled frequency of observation
and the actual frequencies of shark observations
yielded by video camera deployments.

Estimating shark abundance in this manner is an
inverse problem, that is, a problem in which solutions
are generated by generating estimates of parameters
from observations (Tarantola 1987, Symons & Bos -

chetti 2012). Because of this, a different approach is
needed to that used to solve forward problems, those
in which calculations are made based on some pa-
rameters (e.g. the density of sharks) in order to repro-
duce some observations (e.g. the frequency of obser-
vations of sharks from video camera deployments).

If the movement tracks of individual sharks could
be described by simple statistics, allowing estimation
of the probability of an observation of a shark at a
given location, then the inverse problem described
above would be fairly simple. This would occur if, for
example, the movement of each individual was
unconstrained, such as might occur if an individual
were foraging for a uniformly or randomly distrib-
uted resource in an essentially boundless area. This
is roughly the idea on which most algorithms to
establish animal abundance are based. However,
when the movement of individuals is constrained, for
example by coastline, reefs, heterogeneous habitat,
interference with other individuals, or ocean cur-
rents, the probability of observing a shark at a spe-
cific location can no longer be described by a simple
formula, but needs to be computed. This is what our
agent-based model does.

MATERIALS AND METHODS

Study area and video camera deployments

We surveyed 16 sites in and around the Mandu
Sanctuary Zone (1185 ha) in the Ningaloo Marine
Park (22° 04’ S, 113° 53’ E): 8 sites were in the Sanctu-
ary Zone (SZ) and 8 sites were in the adjoining
Recreation Zone (RZ). We focused the surveys on
reef flat habitat, which is typically shallow (<3 m)
and dominated by tabulate coral of the genus Acrop-
ora. Surveys were conducted between 1 and 6 June
2010. We surveyed each site at 2 times of day — solar
noon and dusk. At each site, we deployed a single
video camera (Sony DCR-HC15E) in a housing
moun ted on a concrete block. Cameras recorded
from at least 60 min before sunset and for at least
60 min following solar noon; recording times ranged
from 60 to 94 min (mean ± SD: 87 ± 7 min).

In the laboratory, video footage was viewed on a
computer screen, and all sharks passing through the
field of view were recorded. We recorded the time
and duration (in seconds) of each observation. From
these recordings, we calculated the observed fre-
quency of shark detection, Fobs as the ratio between
the total time all sharks were observed in front of a
camera, tsh, and the total filming time, tc.
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The video camera deployments yielded 1611 min
of video at noon (average: 89 min) and 1258 min at
dusk (average: 84 min). Three species of sharks were
observed (Table 1). Sharks were observed at 15 sites
(94%) at dusk and 4 sites (25%) at noon. The most
frequently observed species was Carcharhinus mela -
nopterus, which was observed at 13 sites (81%) at
dusk and 4 sites (25%) at noon. Subsequent model-
ling therefore focussed on this species.

The agent-based model

In the agent-based model, the movement of indi-
vidual sharks is constrained by barriers and influ-
enced by habitat. We extracted the coastline and reef
crest (both barriers to movement) from Google Earth.
We represented these features, and the reef flat, in a
model domain encompassing 3400 × 5050 m, with
grid cells of 3 m × 3 m (Fig. 1). The model requires
3 main components: (1) statistical distributions
describing the lengths of straight-line movements
and the turning angles, (2) an algorithm controlling
the way each individual interacts with habitats and
with obstacles to movement and (3) a way to deter-
mine when each modelled individual can be ‘de tec -
ted’ by the cameras in the model.

In the current implementation we did not account
for how sharks interact with each other or how they
interact with the video camera. However, should
these behaviours be deemed important, and should
information about them become available, they could
be included in the model.

Shark movement patterns

In our model the position of a shark at time step i is
given as:

xi =  xi–1 + ricos αi ;  yi =  yi–1 + risinαi (1)

where x and y determine the position of the shark (in
Cartesian coordinates), r is the length of a straight-

line movement performed by the shark (hereafter
referred to as a step) and α is the orientation of the
step. The variables r and α were chosen stochasti-
cally from the following distributions:

P(r) ~ r –μ for  r ∈ [minstep,maxstep] (2)

and αi =  α i –1 + θi

θi =  (1 – kdir) εi + kdir τi , kdir ∈ [0,1] (3)

Species Noon Dusk
No. of sites Avg. dur. (s) Fobs No. of sites Avg. dur. (s) Fobs

Carcharhinus melanopterus 4 12 0.0006 13 21 0.0056
Negaprion acutidens 0 − 2 15
Triaenodon obesus 1 7 4 5

Table 1. Summary of species of sharks observed, number of sites at which each species was recorded, the average duration
(Avg. dur.) each individual spent in the field of view (in seconds, calculated only for sites at which the species was observed), 

and the frequency of shark detection (Fobs) for Carcharhinus melanopterus

Fig. 1. An example of the movement patterns reproduced by
the model, showing 40 movement tracks (orange lines), for
kdir = 0 (where kdir is the form of the path an individual trav-
els and 0 = fully random), plotted over the study area. Ma-
genta boundaries show the reef flat habitat. Black repre-
sents land and reef crest (barriers to movement). Red dots 

indicate where cameras were located in field surveys
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In Eq. (2), P(r) is the probability of occurrence of a
step of length r, minstep and maxstep are the mini-
mum and maximum step lengths, respectively (Sims
et al. 2008, Humphries et al. 2010), and μ is the scal-
ing exponent, which determines how step lengths
are distributed within this range (in particular the
relative distribution of small versus large steps,
which determines the complexity of the path moved
by each individual, as well as the total area covered
in a given time interval). Ideally, μ, minstep and
maxstep should be determined empirically from
observations of shark movement, but such informa-
tion was not available, so we chose to use minstep =
3 m, maxstep = 100 m, and 3 values for μ to encom-
pass the expected range (1.7, 2 and 2.3). These val-
ues were chosen based on theoretical and empirical
studies of a range of taxa, including carcharhinid
sharks (Sims et al. 2008, 2012, Humphries et al.
2010). We chose a lower maxstep than that observed
in many of the species in those studies, because there
is some evidence that the step lengths exhibited by
C. melanopterus are shorter than those of other
sharks (Papastamatiou et al. 2009).

Depending on the value of the exponent μ, Eq. (2)
reproduces 2 behavioural patterns commonly des -
cribed in the literature: Lévy flight (1 < μ ≤ 3) and
Brownian motion (μ > 3). Empirical observations sug-
gest that Lévy flights are suitable for modelling for-
aging behaviour in animals (Viswanathan et al. 1996,
Marell et al. 2002, Reynolds et al. 2007a,b), including
sharks (Sims et al. 2008, 2012, Humphries et al.
2010). With μ ≈ 2, Lévy flight should provide an opti-
mal search pattern (Sims et al. 2008, 2012, Vis wa -
nathan et al. 2008, Humphries et al. 2010, James et
al. 2011, Reynolds 2012), and, consequently, it is
often assumed to be a biologically justified model for
foraging animals. However, the choice is not critical
to our approach, and a different distribution could be
adopted by modifying the algorithm.

In Eq. (3), θ is the turning angle, defining the
change of direction between 2 consecutive steps.
Here ε i is drawn from a uniform random distribution,
and τ i is the direction towards a desired location, in
the case of oriented movement. For our discussion,
the crucial parameter in this equation is kdir ∈ [0,1]
(where kdir is the form of the path an individual trav-
els) which determines a balance between fully ran-
dom (kdir = 0) and directional (kdir = 1) movement. The
relationship 0.05 < kdir < 0.3 has been suggested to
provide a realistic description of animal movement
(Nams 2006). Eq. (2) allows each individual to follow
paths which are constrained by the distributions in
Eq. (3). However, movement is further constrained by

the coastline and model boundaries. The coastline
and model boundaries are treated as ‘hard’ bound-
aries which an individual cannot cross and which
require movement away. The rationale for treating
the model boundary in this way lies in the fairly short
simulation time (90 min), which led us to treat both
the shark population and the study area as closed.
Similarly, the reef crest is treated as a boundary that
a shark cannot cross. We included 2 broad ‘habitats’,
the reef flat habitat in which the video cameras were
deployed and the rest of the coastal waters (see
Fig. 1). We ran the model with kdir = 0, simulating un -
oriented Lévy flight (Viswanathan et al. 1999, Bar-
tumeus et al. 2002, Sims et al. 2008, Humphries et al.
2010, James et al. 2011) and with kdir = 0.25, which,
together with τi, yields directional movement to -
wards the reef flat habitat (Nams 2006).

In our model sharks move at a constant speed. The
most appropriate average swimming speed is uncer-
tain, so we used 3 values (0.5, 0.7 and 1 m s−1) based
on literature values: swimming speeds for C. mela -
nopterus and other species of carcharhinid sharks
encompass this range (Webb & Keyes 1982, Sund-
ström et al. 2001, McCauley et al. 2012).

In the final step, we included cameras in the model
and defined the area within which they could record
an observation (our video cameras were set to the
widest angle and were fitted with an additional
wide-angle lens so the angle of view was approxi-
mately 45°; based on field measurements, we deter-
mined that the maximum distance from the camera at
which an individual’s species could reliably be iden-
tified was 6 m) and recorded the duration each indi-
vidual spent within the area in which they could be
observed. This provided us with Fmod, the modelled
frequency of a shark being observed:

(4)

where tsh is the time a shark has spent in the cameras’
visual field, tsim is the simulation time and nc is the
number of cameras.

Model runs and statistics of shark abundance

Because some parameters governing shark move-
ment (μ, speed, minstep and maxstep) were derived
from estimates for related species, or from theoretical
studies, we evaluated the extent to which these
parameters affect the result. Simulations suggested
that minstep and maxstep have a minor influence on
the results (see the Supplement at www.int-res.com/

F
t

t nmod = sh

sim c

http://www.int-res.com/articles/suppl/m508p201_supp.pdf
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articles/suppl/m508p201_supp.pdf), so we de ci ded
to fix their values to 3 and 100 m, respectively. To
account for the uncertainty in the remaining para -
meters, we conservatively decided to allow them to
vary within ranges.

In addition to parameter uncertainty, simulation
results can vary considerably between model runs
due to the inherent stochasticity in Lévy flight. In
order to account for this, we ran 100 simulations for
each parameter combination, resulting in 900 simula-
tions. This gives an estimated distribution of Fmod.

Fmod is a function of the number of simulated
sharks. By calculating Fmod for shark populations of
different sizes, we obtained Fs

mod, where s is the
 density. Fs

mod represents the modelled distribution of

shark observations, as a function of the density,
which accounts for the uncertainty in our knowl-
edge of shark behaviour as well as its inherent
 stochasticity.

The last step in our approach involves comparing
the observations from field deployments, Fobs, to
modelled observations, Fs

mod, to determine the value
of s that provides the best match (Fig. 2). For a given
value of x (e.g. 40 sharks km−2), the location at which
a line parallel to the y-axis intersects a given per-
centile (e.g. 80th percentile), gives the Fs

mod below
which 80% of observations lies. In other words, a
point (x,y) in Fig. 2 shows the percentile of models
run with a density x of sharks which gives modelled
shark observations Fs

mod < y.
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Fig. 2. Modelled frequency of observations (Fs
mod) plotted against (modelled) shark density, for (a) kdir = 0 (with lower left part

of the plot magnified in Panel b) and for (c) kdir = 0.25 (with lower left part of the plot magnified in Panel d). The x-axis repre-
sents density s (ind. km−2); the y-axis represents Fs

mod. The distribution of all 900 model runs is represented in terms of per-
centiles: the thick black line corresponds to the median; thin grey lines correspond to the 10, 30, 70 and 90 percentiles. The
solid red line represents the mean of the 900 model runs dotted red lines represent the SD. The horizontal lines indicate the 

observed frequency of observation (Fobs) for dusk (dotted) and noon (dashed)

http://www.int-res.com/articles/suppl/m508p201_supp.pdf
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Acoustic tracking

Because the results of agent-based modelling sug-
gested that the best outcomes were achieved when
kdir was varied between noon and dusk and between
reef flat and other coastal habitats (see ‘Results’), we
examined the results of an acoustic tagging study for
evidence that this pattern would be supported by
the available data. The acoustic tagging study was
under taken in Mangrove Bay (21° 57’ S, 113° 56’ E),
approximately 10 km north of our study area. The
study has been operating since 2008, and a total of
60 acoustic receivers (VR2; Vemco) have been de -
ployed over an area of approximately 28 km2. Fifteen
individuals of C. melanopterus (size range: 78 to
134 cm fork length) have been implanted with coded
transmitters (V13 and V16, Vemco; intervals between
transmissions averaged between 60 and 80 s), follow-
ing the procedure outlined in Pillans et al. (2011). We
restricted the dataset to 11 individuals for which
detections spanned a period of at least
100 d. We then calculated the overall
mean number of detections in 60 min
intervals to examine diel patterns in
detection. This procedure was con-
ducted for 5 distinct habitats: reef flat
(6 re ceivers, 39 683 detections), lagoon
(24 receivers, 80 272 detections), reef
slope (24 receivers, 32 836 detections),
reef pass (2 re cei vers, 7910 detections)
and Mangrove Bay (4 re cei vers, 8629
detections).

RESULTS

In order to determine the expected
density of sharks (ind. km−2) we
matched the modelled values of Fs

mod

that corresponded to Fobs (Table 1,
Fig. 2). For kdir = 0, the Fs

mod median
curve (thick black line) suggests a
density of approximately 90 ind. km−2

at dusk (80% CI: 80−100) and 9 ind.
km−2 at noon (80% CI: 8−12). For kdir =
0.25, the Fs

mod suggests a density of
approxi mately 20 ind. km−2 at dusk
(80% CI: 16−26) and 2 ind. km−2 at
noon (80% CI: 1.5−3.0).

It might be reasonable to assume
that kdir = 0.25 at dusk (when they
were more frequently observed on the
reef flat) and kdir = 0 at noon (when

sharks were assumed not to be foraging). In this case
the 2 estimates of density would be slightly different,
with 80% confidence intervals of 16 to 26 ind. km−2 at
dusk (median = 20) and 8 to 12 ind. km−2 at noon
(median = 9). This result could be produced if some
individuals leave the reef flat during certain times of
the day, returning before or during dusk.

Results from acoustic receivers in Mangrove Bay
provided some support for this hypothesis; individual
Carcharhinus melanopterus were detected by re cei -
vers in reef flat habitat more frequently in the
evening and in the early morning than at other times
of day (Fig. 3). This result would be expected if indi-
viduals were undertaking oriented movements to the
reef flat at these times of day, so that kdir = 0.25 might
be appropriate. Diel patterns in detection were gen-
erally not clear for the other habitats included in
acoustic tracking, although there was also a pattern
of higher detection rates on the reef slope during
daylight hours.
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Fig. 3. Mean number of detections (±SE) of Carcharhinus melanopterus with
surgically implanted acoustic tags, recorded by receivers in 5 different habi-

tats at different times of day (binned into 60 min categories)
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DISCUSSION

The blacktip reef shark Carcharhinus melanop -
terus was the most frequently observed species of
shark in the reef flat habitat, where we conducted
our surveys. Our model-based method for estimating
the density of C. melanopterus yielded (median)
 estimates of 2 to 9 ind. km−2 at solar noon and 20 to
90 ind. km−2 at dusk. These estimates are at the
upper range of estimates reported by other authors
(Table 2). For example, of 45 underwater visual cen-
sus (UVC) surveys around islands in the Pacific
Ocean, only 4 islands yielded estimates of >10 ind.
km−2 (Nadon et al. 2012); the highest of these was at
Palmyra, where the estimate was 91 ind. km−2. High
densities have also been reported at Aldabra (62 ind.
km−2), from mark and recapture surveys (Stevens
1984). In contrast, surveys of 8 reefs on the Great Bar-
rier Reef yielded very low estimates of C. melanop -
terus density (1 individual recorded during surveys
of 8 reefs; Ayling & Choat 2008). Direct comparisons
among these estimates are complicated by the differ-
ent methods used: different methods can yield differ-
ent estimates of density (McCauley et al. 2012), and
UVC methods can yield over-estimates of density
(Ward-Paige et al. 2010). In addition, many of the sur-
veys focussed on forereef habitats, where C. mela -
nopterus often occurs in low density and other spe-
cies of sharks are more abundant (Ayling & Choat
2008, Nadon et al. 2012) — this pattern is also ob -
served at Ningaloo Reef (M. A. Vanderklift, M. D. E.
Haywood & R. C. Babcock unpubl. data).

Our surveys yielded a higher frequency of observa-
tions at dusk than at solar noon. This pattern could be
generated by 2 (non-exclusive) mechanisms: C. me -
lanopterus might exhibit diel patterns in habitat use
or in movement patterns (for example swimming
speed). Both hypotheses could be supported by the
results yielded by detection patterns of individuals

with surgically implanted acoustic transmitters. We
also note that the median estimates of density at dusk
with oriented movement — which would be applica-
ble if individuals were moving towards this habitat
(20 ind. km−2) — were slightly higher than those
obtained for noon with unoriented movement, which
would be applicable if individuals were not exhibit-
ing diel patterns in habitat use (9 ind. km−2).

This pattern is also congruent with observations of
the activity patterns of C. melanopterus and other
species of sharks; some studies using acoustic tags
have found diel patterns in detection that imply
changes in habitat use (Papastamatiou et al. 2010,
Speed et al. 2011). However, data on diel patterns of
density in different habitats are few. In one study,
McCauley et al. (2012) found no difference in the
density of sharks between day and evening. Move-
ment patterns may also be associated with tides.
C. melanopterus has been observed to move into
shallow habitats during rising tides (Stevens 1984),
but this does not account for our observations, as the
dusk surveys were conducted on a falling tide, while
solar noon coincided with a rising tide.

In our model the main variables are given by μ,
minstep, maxstep, kdir and swimming speed, each of
which can be altered as appropriate for different spe-
cies. However, our approach does not rely on a spe-
cific model of animal behaviour, because the frame-
work has the flexibility to accommodate different
types of behaviour. An exponential distribution of
step sizes, Brownian motion, or other movement pat-
terns could be implemented and included in the
approach as appropriate.

Additional steps to implement the model in other
situations include: definition of the spatial elements
of the model domain (i.e. the dimensions of the area,
the grid size, obstacles to movement) and how indi-
viduals behave (e.g. whether they interact with each
other, with the video cameras, or with map borders;
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Density (ind. km−2)                Method                                     Location                                                      Study

9                                              Noon, kdir = 0                            Ningaloo Reef                                            This study
90                                            Dusk, kdir = 0                            Ningaloo Reef                                            This study
2                                              Noon, kdir = 0.25                       Ningaloo Reef                                            This study
20                                            Dusk, kdir = 0.25                       Ningaloo Reef                                            This study
0                                              UVC                                          Main Hawaiian Islands                             Nadon et al. (2012)
0                                              UVC                                          Northwest Hawaiian Islands                     Nadon et al. (2012)
0−2.7                                       UVC                                          Great Barrier Reef                                     Ayling & Choat (2008)
0.6−8.7                                    UVC                                          American Samoa                                        Nadon et al. (2012)
0−14.3                                     UVC                                          Mariana Islands                                         Nadon et al. (2012)
62                                            Mark-recapture                        Aldabra Island                                           Stevens (1984)
0−91.2                                     UVC                                          Pacific Remote Islands                               Nadon et al. (2012)

Table 2. Densities of Carcharhinus melanopterus yielded by this study and others. UVC: underwater visual census
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whether they retain a memory of a previous path).
Implementation involves decisions about the range
of values associated with each parameter, such as we
did for swimming speed and μ. In addition, because
of the stochasticity of the model, a decision is needed
about how many times to repeat each run (in our
case, we chose 100 times for each combination of
parameters).

Compared to traditional approaches to determine
animal abundance (e.g. linear models based on
data collected from visual censuses or capture-
recapture models), the proposed method is time-
consuming to implement and to run. However,
methods for estimating abundance should ideally
account for patterns of animal movement and inter-
actions with the environment. Methods which do
not require the user to make decisions on these
processes will inevitably make the decision for the
user, in ways which are often hidden behind the
maths. In such cases the user might not know how
results depend on those implicit choices. The
strength of the agent-based model is the flexibility
it provides, as well as the explicit incorporation of
decisions about parameters. In addition, no assump-
tions are made about the distribution of in dividuals;
for example, they can be distributed uniformly, ran-
domly, or according to any other pattern. However,
if the modelled distribution Fs

mod departs substan-
tially from a uniform distribution, effort should be
allocated towards choosing a suitable statistic for
comparisons with Fobs.

The agent-based model enabled us to generate
estimates of density for blacktip reef sharks from
remote underwater video observations that provided
data on detection frequency. The estimates yielded
by this method are among the highest reported for
this species. Studies of sparsely distributed or elusive
species can be improved by combining methods —
for example studies that have integrated data from
DNA-based or telemetry studies with data from cam-
era trap surveys have yielded estimates that are more
precise than those obtained with camera traps alone
(Gopalaswamy et al. 2012, Sollmann et al. 2013).
Because of the ecological importance of sharks, and
the benefit that accurate estimates can provide in the
development of policies concerning harvesting and
conservation, continued refinement of the methods is
necessary.

Acknowledgements. We thank D. Thomson, K. Cook,
C. Sey tre and J.-B. Cazes for assistance in the field and lab-
oratory. This research was supported by the CSIRO Wealth
from Oceans Flagship and the Western Australian Depart-
ment of Environment and Conservation.

LITERATURE CITED

Ayling AM, Choat JH (2008) Abundance patterns of reef
sharks and predatory fishes on differently zoned reefs in
the offshore Townsville region:  final report to the Great
Barrier Reef Marine Park Authority. Great Barrier Reef
Marine Park Authority, Townsville

Bartumeus F, Catalan J, Fulco U, Lyra M, Viswanathan G
(2002) Optimizing the encounter rate in biological inter-
actions:  Lévy versus Brownian strategies. Phys Rev Lett
88: 097901

Bassett DK, Montgomery JC (2011) Investigating nocturnal
fish populations in situ using baited underwater video: 
with special reference to their olfactory capabilities.
J Exp Mar Biol Ecol 409: 194−199

Estes JA, Terborgh J, Brashares JS, Power ME and others
(2011) Trophic downgrading of planet earth. Science
333: 301−306

Gopalaswamy AM, Royle JA, Delampady M, Nichols JD,
Karanth KU, Macdonald DW (2012) Density estimation in
tiger populations:  combining information for strong
inference. Ecology 93: 1741−1751

Hairston NG Jr, Smith FE, Slobodkin LB (1960) Community
structure, population control, and competition. Am Nat
94: 421−425

Head JS, Boesch C, Robbins MM, Rabanal LI, Makaga L,
Kühl HS (2013) Effective sociodemographic population
assessment of elusive species in ecology and conserva-
tion management. Ecol Evol 3: 2903−2916

Humphries NE, Queiroz N, Dyer JRM, Pade NG and others
(2010) Environmental context explains Lévy and Brown-
ian movement patterns of marine predators. Nature 465: 
1066−1069

James A, Plank MJ, Edwards AM (2011) Assessing Lévy
walks as models of animal foraging. J R Soc Interface 8: 
1233−1247

Marell A, Ball JP, Hofgaard A (2002) Foraging and move-
ment paths of female reindeer:  insights from fractal
analysis, correlated random walks, and Levy flights. Can
J Zool 80: 854−865

Marshall AD, Pierce SJ (2012) The use and abuse of photo-
graphic identification in sharks and rays. J Fish Biol 80: 
1361−1379

McCauley DJ, McLean KA, Bauer J, Young HS, Micheli F
(2012) Evaluating the performance of methods for esti-
mating the abundance of rapidly declining coastal shark
populations. Ecol Appl 22: 385−392

Nadon MO, Baum JK, Williams ID, McPerson JM and others
(2012) Re-creating missing population baselines for
Pacific reef sharks. Conserv Biol 26: 493−503

Nams VO (2006) Detecting oriented movement of animals.
Anim Behav 72: 1197−1203

O’Connell AF, Nichols JD, Karanth KU (2011) Camera traps
in animal ecology. Springer, Dordrecht

Papastamatiou YP, Lowe CG, Caselle JE, Friedlander AM
(2009) Scale-dependent effects of habitat on movements
and path structure of reef sharks at a predator-domi-
nated atoll. Ecology 90: 996−1008

Papastamatiou YP, Friedlander AM, Caselle JE, Lowe CG
(2010) Long-term movement patterns and trophic ecol-
ogy of blacktip reef sharks (Carcharhinus melanopterus)
at Palmyra Atoll. J Exp Mar Biol Ecol 386: 94−102

Pillans R, Babcock R, Patterson T, How J, Hyndes G (2011)
Adequacy of zoning in the Ningaloo Marine Park: 
final report. CSIRO Marine & Atmospheric Research,

208

http://dx.doi.org/10.1016/j.jembe.2010.02.009
http://dx.doi.org/10.1890/08-0491.1
http://dx.doi.org/10.1016/j.anbehav.2006.04.005
http://dx.doi.org/10.1111/j.1523-1739.2012.01835.x
http://dx.doi.org/10.1890/11-1059.1
http://dx.doi.org/10.1111/j.1095-8649.2012.03244.x
http://dx.doi.org/10.1139/z02-061
http://dx.doi.org/10.1098/rsif.2011.0200
http://dx.doi.org/10.1038/nature09116
http://dx.doi.org/10.1002/ece3.670
http://dx.doi.org/10.1086/282146
http://dx.doi.org/10.1890/11-2110.1
http://dx.doi.org/10.1126/science.1205106
http://dx.doi.org/10.1016/j.jembe.2011.08.019
http://dx.doi.org/10.1103/PhysRevLett.88.097901


Vanderklift et al.: Estimating shark density

Brisbane
Prugh LR, Stoner CJ, Epps CW, Bean WT, Ripple WJ, Lalib-

erte AS, Brashares JS (2009) The rise of the mesopreda-
tor. Bioscience 59: 779−791

Ray JC, Redford KH, Steneck RS, Berger J (2005) Large car-
nivores and the conservation of biodiversity. Island Press,
Washington, DC

Reynolds AM (2012) Truncated Lévy walks are expected
beyond the scale of data collection when correlated ran-
dom walks embody observed movement patterns. J R
Soc Interface 9: 528−534

Reynolds AM, Smith AD, Menzel R, Greggers U, Reynolds
DR, Riley JR (2007a) Displaced honey bees perform opti-
mal scale-free search flights. Ecology 88: 1955−1961

Reynolds AM, Smith AD, Reynolds DR, Carreck NL,
Osborne JL (2007b) Honeybees perform optimal scale-
free searching flights when attempting to locate a food
source. J Exp Biol 210: 3763−3770

Sims DW, Southall EJ, Humphries NE, Hays GC and others
(2008) Scaling laws of marine predator search behaviour.
Nature 451: 1098−1102

Sims DW, Humphries NE, Bradford RW, Bruce BD
(2012) Lévy flight and Brownian search patterns of a
free-ranging predator reflect different prey field charac-
teristics. J Anim Ecol 81: 432−442

Sollmann R, Gardner B, Chandler RB, Shindle DB, Onorato
DP, Royle JA, O’Connell AF (2013) Using multiple data
sources provides density estimates for endangered
Florida panthers. J Appl Ecol 50: 961−968

Speed CW, Meekan MG, Field IC, McMahon CR and others
(2011) Spatial and temporal movement patterns of a
multi-species coastal reef shark aggregation. Mar Ecol
Prog Ser 429: 261−275

Stevens JD (1984) Life-history and ecology of sharks at
Aldabra Atoll, Indian Ocean. Proc R Soc Lond B Biol Sci
222: 79−106

Sundström LF, Gruber SH, Clermont SM, Correia JPS and
others (2001) Review of elasmobranch behavioral studies
using ultrasonic telemetry with special reference to the
lemon shark, Negaprion brevirostris, around Bimini
Islands, Bahamas. Environ Biol Fishes 60: 225−250

Symons J, Boschetti F (2012) How computational models
predict the behavior of complex systems. Found Sci 18: 
809−821

Tarantola A (1987) Inverse problem theory. Elsevier, Amster -
dam

Techera EJ, Klein N (2011) Fragmented governance:  recon-
ciling legal strategies for shark conservation and man-
agement. Mar Policy 35: 73−78

Thompson WL (2004) Sampling rare or elusive species:  con-
cepts, designs, and techniques for estimating population
parameters. Island Press, Washington, DC

Trenkel VM, Lorance P (2011) Estimating Synaphobranchus
kaupii densities:  contribution of fish behaviour to differ-
ences between bait experiments and visual strip tran-
sects. Deep-Sea Res I 58: 63−71

Viswanathan GM, Afanasyev V, Buldyrev SV, Murphy EJ,
Prince PA, Stanley HE (1996) Levy flight search patterns
of wandering albatrosses. Nature 381: 413−415

Viswanathan GM, Buldyrev SV, Havlin S, da Luz MG,
Raposo EP, Stanley HE (1999) Optimizing the success of
random searches. Nature 401: 911−914

Viswanathan GM, Raposo EP, da Luz MGE (2008) Lévy
flights and superdiffusion in the context of biological
encounter and random searches. Phys Life Rev 5: 
133−150 doi: 10.1016/j.plrev.2008.03.002

Ward-Paige C, Flemming JM, Lotze HK (2010) Overesti -
mating fish counts by non-instantaneous visual censuses: 
consequences for population and community descrip-
tions. PLoS ONE 5: e11722

Webb PW, Keyes RS (1982) Swimming kinematics of sharks.
Fish Bull 80: 803−812

209

Editorial responsibility: Ivan Nagelkerken, 
Adelaide, South Australia, Australia

Submitted: July 18, 2013; Accepted: April 2, 2014
Proofs received from author(s): June 10, 2014

http://dx.doi.org/10.1371/journal.pone.0011722
http://dx.doi.org/10.1016%2Fj.plrev.2008.03.002
http://dx.doi.org/10.1038/44831
http://dx.doi.org/10.1038/381413a0
http://dx.doi.org/10.1016/j.dsr.2010.11.006
http://dx.doi.org/10.1016/j.marpol.2010.08.003
http://dx.doi.org/10.1007/s10699-012-9307-6
http://dx.doi.org/10.1023/A%3A1007657505099
http://dx.doi.org/10.1098/rspb.1984.0050
http://dx.doi.org/10.3354/meps09080
http://dx.doi.org/10.1111/1365-2664.12098
http://dx.doi.org/10.1111/j.1365-2656.2011.01914.x
http://dx.doi.org/10.1038/nature06518
http://dx.doi.org/10.1242/jeb.009563
http://dx.doi.org/10.1890/06-1916.1
http://dx.doi.org/10.1098/rsif.2011.0363
http://dx.doi.org/10.1525/bio.2009.59.9.9

	cite37: 
	cite10: 
	cite21: 
	cite32: 
	cite43: 
	cite17: 
	cite28: 
	cite3: 
	cite8: 
	cite12: 
	cite34: 
	cite39: 
	cite19: 
	cite48: 
	cite2: 
	cite7: 
	cite14: 
	cite25: 
	cite36: 
	cite40: 
	cite42: 
	cite38: 
	cite22: 
	cite44: 
	cite5: 
	cite50: 
	cite24: 
	cite46: 
	cite30: 
	cite41: 
	cite15: 
	cite26: 


