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ABSTRACT: Count data are often used to assess relative population size and population trends
with sufficient power and confidence for wildlife population studies, including those for nesting
sea turtles. Although access to sea turtles while nesting is relatively simple compared to many
other migratory marine animals, optimal surveys tagging every individual through the nesting
season are often not feasible due to time, financial and other logistic constraints. Partial survey
counts can then be used to estimate population abundance. Several models have previously been
published describing the seasonal shape in abundance for nesting turtles, but none have com-
pared different model fits using a numerical approach and all have limited general application as
they describe only 1 location or 1 species. We compared 22 non-parametric and parametric mod-
elling approaches for 9 populations of sea turtles comprising 3 different species: green sea turtles
Chelonia mydas, loggerhead sea turtles Caretta caretta and leatherback sea turtles Dermochelys
coriacea. Although models showed marked differences in the shape of their fit, all models pro-
vided reasonable estimates of annual nesting abundance, with mean errors less than 8 % for 50 %
data coverage and mostly 8 to 10% for 20% random coverage. Of the 3 models that produced
significantly lower mean absolute error, we recommend using generalized additive models to esti-
mate annual abundance due to their ease of fitting, flexibility across populations and seasonal
shapes and their good predictive ability.
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INTRODUCTION

Count data for wildlife populations are often used
in conservation research—trying to ensure the popu-
lation stays within sustainable limits to ensure its sur-
vival, or to test whether populations of pest species
remain below critical levels known to threaten other
populations (Williams et al. 2002). Data collection for
long-term monitoring of wildlife populations need to
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be collected consistently enough to be comparable
between years and populations and precise enough
to show changes in a population with sufficient con-
fidence and power (Gerrodette 1987, Hayes & Steidl
1997, Sims et al. 2008). Where different survey meth-
ods or effort have occurred, modelling techniques
may assist to standardise data. This is common with
fisheries data, when the number of crew, number of
bait tanks or fishing lines change, and technological
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advances in vessel and catch methods mean that
catch per unit effort estimates need to be adjusted
between years (Hilborn & Mangel 1997, Rodriguez-
Marin et al. 2003). Determining the accuracy of mon-
itoring regimes is often more difficult, as it is often
not possible to conduct a complete survey of the pop-
ulation to verify predicted error. Nesting sea turtles
are unique in this regard, due to their easy accessibil-
ity during nesting migrations, and with adequate
resources, a complete survey of the annual nesting
population is sometimes possible (e.g. Limpus 1985,
Boulon et al. 1996, Richardson et al. 2006, Chaloupka
et al. 2008). Sea turtles also generally display strong
site fidelity to their nesting area, both within a nest-
ing season and in subsequent nesting seasons (Bjorn-
dal et al. 1983, Limpus 1985, Girondot & Fretey 1996,
Miller 1997, Limpus et al. 2003, Dethmers et al. 2006)
adding to the ease of accessibility. All species of sea
turtles (except for the flatback turtle Natator depres-
sus) are listed as Vulnerable, Endangered or Criti-
cally Endangered on the IUCN red list (IUCN 2012),
so understanding population function to efficiently
monitor population size is often a priority for conser-
vation agencies and managers.

Monitoring nesting sea turtles is often confined
temporally to 1 or several periods within the nesting
season (e.g. Girondot & Fretey 1996, Limpus 2009).
Although tagging every individual through the
nesting season is ideal for population estimates and
understanding the breeding biology of sea turtles, it
is often not feasible due to time, financial and other
logistic constraints. Access to the animals may also
prohibit a full-time tagging census ever being con-
ducted. This occurs on nesting beaches where ani-
mal densities are either too great (e.g. arribada
nesting for olive ridley turtles: Gates et al. 1996;
green turtles Chelonia mydas nesting at Raine
Island, Torres Strait: Limpus et al. 2003), beaches
are very dispersed (e.g. Ningaloo region, Western
Australia: Bool et al. 2009; Gabon, Equatorial West
Africa: Witt et al. 2009) or access to the beach for
researchers is difficult or dangerous due to remote-
ness or rugged coastlines (e.g. Raine Island: Limpus
et al. 2003; Kimberley region of Western Australia:
Whiting et al. 2008) or potential dangers to
researchers from poachers or wildlife present on the
nesting beach (e.g. jaguars: Autar 1994; saltwater
crocodiles: Whiting & Whiting 2011). When a full-
time tagging census is not feasible, a shorter count
survey may be adopted.

The accuracy of estimating the annual abundance
of nesting turtles from partial survey counts will
depend on the monitoring regime, and may depend

on the seasonal length, species of turtle and popula-
tion size (Jackson et al. 2008, Sims et al. 2008, Whit-
ing 2010). The component monitored will also impact
on the total error, with higher errors associated with
counts of tracks or egg counts from harvest data, than
with counts of clutches or turtles. Surveys are often
comprised of mid-season counts (e.g. Limpus 2009),
intermittent counts throughout the season (e.qg.
Girondot & Fretey 1996, Bjorndal et al. 1999, Whiting
et al. 2008) or a combination of the 2 methods (e.g.
Bool et al. 2009). Temporal variability between stud-
ies may also occur in the monitoring regime; for
example, some populations would be better suited to
short frequent surveys and others are more suited
to longer, less frequent surveys. Optimal survey
regimes will depend on the access to the beach and
resources available to each monitoring program.

Several models have previously been published
describing the seasonal shape in abundance of nest-
ing turtles (e.g. Girondot & Fretey 1996, Bjorndal et
al. 1999, Godley et al. 2001, Troéng et al. 2004,
Girondot et al. 2006, 2007, Gratiot et al. 2006, Whit-
ing et al. 2008, Godgenger et al. 2009, Witt et al.
2009, Girondot 2010), but none compared different
model fits using a numerical approach and all have
been limited by their application to either only 1 loca-
tion or 1 species. Here we compared previously pub-
lished and additional non-parametric and parametric
modelling approaches to describe the within-season
abundance of nesting sea turtles, investigating 9
populations of sea turtles comprising 3 different spe-
cies. We used a total track count approach rather
than an individual based capture-mark-recapture
approach to broaden the scope of the research as
more data are available. Estimating annual abun-
dance from sampled capture-mark-recapture analy-
ses is also sensitive to changes in clutch frequencies,
which may bias estimates appreciably (Hays 2000).
We did not incorporate environmental parameters in
the models as, even when environmental parameters
such as moon phase or tidal height are shown to have
a significant relationship, the predictive power is low
(Pike 2008). Furthermore, the influence between
nesting abundance and tidal cycle is often not consis-
tent between nesting populations, rookeries or some-
times even years within the same population (Cald-
well 1959, Bustard 1979, Frazer 1981, 1983, Girondot
& Fretey 1996, Lux et al. 2003, Girondot et al. 2006,
Pike 2008). We have consequently limited our model
application to those transferable between species,
populations and years, and also to models that do not
require substantial a priori information for the nest-
ing population.
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Table 1. Location, species, factor counted and seasonal range of the nightly count data used for comparing models describing
seasonal nesting abundance of 3 sea turtle species

Study site Factor Season No. of Data reference
counted range  seasons
Green turtle Chelonia mydas
Bramble Cay, Torres Strait Turtles Oct-Mar 1 Limpus et al. (2001); C. J. Limpus unpubl. data
Heron Island, Australia Turtles Oct-Mar 1 C.J. Limpus unpubl. data
Sabah Turtle Islands, Malaysia Turtles All year N. Pilcher & L. Ali unpubl. data for 1991-1997
from Sabah Parks
Guinea-Bissau, Africa Tracks Jul-Dec 1 Catry et al. (2002)
Loggerhead turtle Caretta caretta
Mon Repos, Australia Turtles Oct-Mar C.J. Limpus unpubl. data
Heron Island, Australia Turtles Oct-Mar 1 C.J. Limpus unpubl. data
Jupiter/Carlin, Florida, USA Nests May-Aug 1 Davis et al. (1994)
Leatherback turtle Dermochelys coriacea
Playa Grande, Costa Rica Turtles Oct-Feb 1 Lux et al. (2003)
Chiriqui Beach, Panama Clutches Mar-Jul 1 Ordonez et al. (2007)
METHODS are complex, rely on tagging information and are
sensitive to inter-annual changes in inter-nesting
Data intervals and clutch frequencies. As this information
is often not available, we investigated models de-
Nightly track count data were provided by the scribing the overall shape of the nesting season, com-

authors and sourced from the literature for 3 species
of sea turtles: green Chelonia mydas (n = 4 popula-
tions), loggerhead Caretta caretta (n = 3 populations)
and leatherback Dermochelys coriacea (n = 2 popula-
tions) turtles (Table 1). The time-series of nightly
nesting data was complete for all populations investi-
gated, with the exception of the leatherback popula-
tion nesting at Chiriqui Beach, Panama. For this pop-
ulation, data for 1 mo at the start of the nesting
season were collected every 2 d. To generate a com-
plete time-series for the Chiriqui Beach population,
missing values were interpolated as an average of
the counts for the days immediately before and after.
Models were fit to data comprising the full time-
series available, and data sets generated by random
sampling of the nightly data to give subsets compris-
ing 20 % and 50 % of the nightly counts. For sampled
data, we used 20 replicate subsets per population per
year to investigate the fit of each model.

Models

Nesting abundance for sea turtles is generally
peaked and may have a multi-modal distribution
(e.g. Chevalier et al. 2000, Witt et al. 2009). Models
describing the shape of the nesting season using bio-
logical parameters (such as arrival and departure
dates, inter-nesting intervals and clutch frequencies)

paring non-parametric models with 15 parametric
models (Table 2). Non-parametric models were cho-
sen to allow the structure of the fit to be determined
from the data without assuming a priori any particu-
lar functional form (Black et al. 2009). Non-paramet-
ric models can take any functional form, with peaked
models including skewed and non-skewed forms,
single or multi-modal peaks and different extents of
kurtosis. Non-parametric models are sensitive to the
degree of smoothing, with bandwidth selection often
more important than the choice of smoothing al-
gorithm (Wand & Jones 1995). Conversely, paramet-
ric models were investigated using assumptions
about the underlying mathematical distributional
form of the observed variables (Marshall & Scott
2009). Non-parametric models have fewer assump-
tions than parametric models, making them more
robust and giving them wider applicability (Gibbons
& Chakraborti 2003, Wasserman 2007). Parametric
models are more constrained in their functional form,
but if an appropriate model is available, then it has
higher power than non-parametric models (Gibbons
& Chakraborti 2003, Wasserman 2007). When a suit-
able parametric model is available, the higher power
of parametric models means that a smaller sample
size is needed than for non-parametric modelling for
conclusions with the same degree of confidence. Pre-
diction of nesting using moving averages, Lagrange
interpolation, linear interpolation or kernel density
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Table 2. Description of models used to describe the nesting season and estimate annual nesting abundance of sea turtles.
Within the formulas, y refers to the nightly nesting abundances, x refers to time, and a to g refer to the parameters in the
model. All formulae are based on those of Ratowsky (1990) unless otherwise noted

Model Type Formula(e) and Reference(s)
Non-parametric Generalized gam function in library(mgcv) in R
models additive model Three approaches were used:

- Uniform weights

- Endpoints down-weighted by factors of 10, 100 and 1000

- Endpoints up-weighted by factors of 10, 100 and 1000

(Hastie & Tibshirani 1990, Bjorndal et al. 1999, Troéng et al. 2004, Troéng
& Rankin 2005, R Development Core Team 2012)

3 parameter models Exponential y exp(ax2 +bx+ c)

Quadratic polynomial Yy = ax?+bx+c

Trigonometric y = —bcos(cx +a)
. . a 2n a
4 parameter model Trigonometric y = ECOS —(x-c)|+—+d
(Gratiot et al. 2006)
-x+b -
5 parameter models Gompertz y[0:a] = aexp(—exp( - D i ylare] = aexp[—exp( X+d)]
e
_— a a
Logistic y[O.a] = y[a.oo] =
14| 2 1+ =
b d
. . a . —_ a
Sigmoidal y[O:a] -4 . ylaie] = — T
1+exp b) 1+eXp( )
Trigonometric-1 y[O-a] = Ecos 2—n(x—c) ; [a-oo} = Ecos 2—ﬂ:(x—e]
g BE RN R Py 2% d
Trigonometric-2 [O-a] = Zcos Z—R(X-c) +d; y[a'oc] = 2cos 2—n(x—c) +d
yitar=sg b ' ' 2 e
a a
6 parameter model Logistic y[O:a] = 7C+d; ylaie] = ——+d
1+(5)
1+ e
_— a a
7 parameter models Logistic y[O:a] = 75‘1; y[a:oo] = 71(9
1+[£] 1+[£J
b e
. . a a
Sigmoidal-1 y[O:a} = i y[a:oo] =
[ (—X+b]] [—X+e]]
1+exp 1+exp
c
1 —1/exp(b)
Sigmoidal-2 y[0:d] = a(l + (2""1’(1’) - 1)exp(—(d - x)))
c

—1/exp(e)
yld:e] = a[1+(2exP(e) —1)exp(%(g—x)))

(Girondot et al. 2007)
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Table 2. (continued)

Model Type Formula and Reference(s)

7 parameter models (continued)
Trigonometric-1

y[O:(a+d)] = %cos[%(x—c)j+d; y[(a+d):oo] = %cos(z?n(x—f)]+g

Trigonometric-2 y [0 : b] =a

weli2)

y[b:c] = 3 g-a)+a
y[c:e}: g
yle:d] = M (g-1)+1
y[d:oo]: f

(Girondot 2010)

interpolation methods were not investigated due to
their limited predictive power when partial season
counts are conducted.

Parametric models were selected using a minimum
of 3 parameters (Table 2), to allow for changes in am-
plitude, position and distribution (Ratkowsky 1990).
The fits of these models were compared with 2 para-
metric models that have previously been used to
describe seasonal nesting abundances for sea turtles
(Girondot et al. 2006, Gratiot et al. 2006, Girondot
2010). Parametric models investigated were re-
stricted to models with good estimation properties
(Ratkowsky 1990) and models that allowed conver-
gence for full-season data for at least 95 % of the data
sets. Parametric models were fit by minimizing the
sum-of-squares using the optim or nls functions in R
(R Development Core Team 2012). Two sets of initial
starting values were chosen for each model, 1 for the
shorter season populations (3—6 mo nesting season)
and 1 for nesting seasons extending over 7 mo. Initial
starting values were chosen to allow convergence for
data at least 95% of the time. We investigated
non-parametric model fit using generalized additive
models (GAMs) using a penalised regression spline
approach with automatic smoothness selection via
generalized cross-validation (Wood & Augustin 2002,
Crawley 2007, Wood 2010). Non-parametric models
were fit using the mgcv package in R (Wood 2010, R

Development Core Team 2012) using automatic
smoothing parameter selection, and the dimension of
the basis used to represent the smoothing term was
not specified. For non-parametric models, we com-
pared models with 3 different weighting structures:
(1) uniform weighting of all sampled data and end-
points; (2) assigning lower weights to the endpoints
to account for uncertainty (Bjorndal et al. 1999); and
(3) assigning higher weights to the endpoints to con-
strain the nesting season. Different weights were
investigated with factor differences of 10, 100 and
1000. Predicted values for both parametric and non-
parametric models were restricted to non-negative
values.

Comparing the non-parametric and parametric
models using standard model selection tools such as
Akaike's information criterion (AIC) or likelihood
ratio tests was not appropriate, as these tools require
the log-likelihood to be computed with the same
method, which does not work for GAMSs that use
penalised likelihood maximization rather than log-
likelihood (Marx & Eilers 1998). AIC was used to
compare parametric models to each other as the
same fitting approach was used to calculate the log-
likelihood of the function. All models were further
compared using the residual sum-of-squares and
mean absolute error. Goodness-of-fit between mod-
els was compared across the populations using a
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Fig. 1. Examples of model fits (solid lines) for 20 models showing data for loggerhead turtles Caretta caretta nesting at Mon

Repos, Australia, during the 2000-2001 nesting season (points). GAM refers to generalized additive models with '~' denoting

downweighting and '+' denoting upweighting for the GAM with uniform weighting, see Fig. 4f; Trig: trigonometric model;

Poly: polynomial model; Exp: exponential model; Gomp: Gompertz model; Sig: sigmoidal model; par: (no. of) parameters.
See Table 2 for full model descriptions
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Kruskal-Wallis rank sum test, as it allows comparison than many of the other models, whereas the GAMs
between the non-parametric and parametric meth- with ends upweighted by 100 and 1000, Exponential
ods (Conover & Iman 1981) and the variation in 3 parameter and Trigonometric 4 parameter models

abundance between the populations
causes inflated standard deviations
in model fits, rendering traditional
ANOVA methods unsuitable. Post
hoc analysis was conducted using the
pgirmess package in R (Giraudoux
2012). To avoid pseudo-replication,
we calculated means using the mean
values for each population by aver-
aging different years for the Mon
Repos (Queensland, Australia) and
Sabah Turtle Island (Malaysia) popu-
lations.

RESULTS
Goodness-oi-fit of models

All models tested were reasonable
in their description of seasonal nest-
ing for turtles, but the functional
forms of the models were different
for the same data and showed
slightly different peaks in the nesting
season, as well as differences in kur-
tosis (Fig. 1). A Kruskal-Wallis rank
sum test showed significant differ-
ences between the residual sum-of-
squares for the models (x% = 215.1,
df = 21, p < 0.001), with all of the
GAMs, Gompertz 5 parameter, Log-
istic 5 parameter, Sigmoidal 5 para-
meter, Logistic 7 parameter, Sig-
moidal-1 7 parameter, Sigmoidal-2 7
parameter, Trigonometric-1 7 para-
meter and Trigonometric-2 7 para-
meter models generally showing
significantly lower residual sum-of-
squares than the remaining 7 models
(Table 3, Fig. 2). The mean absolute
error similarly showed significant dif-
ferences between the models (x? =
169.2, df = 21, p < 0.001), but high-
lighted different models with signifi-
cant differences; specifically, the
GAM with uniform weighting, Sig-
moidal-1 7 parameter and Trigono-
metric-2 7 parameter models had sig-
nificantly lower mean absolute errors

Table 3. Model comparison for residual sum-of-squares, mean absolute error
and Akaike's information criterion (AIC) showing significant differences
(marked with an ‘X') from post hoc analysis on a Kruskal-Wallis rank sum test.
GAM refers to generalized additive models with '-' denoting downweighting
and ‘+' denoting upweighting; Trig: trigonometric model; Poly: polynomial
model; Exp: exponential model; Gomp: Gompertz model; Sig: sigmoidal
model; par: (no. of) parameters. See Table 2 for full model descriptions
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Fig. 2. Mean + SD for model ranks, showing comparisons in
(a) residual sum-of-squares, (b) Akaike's information crite-
rion (AIC) and (c) mean absolute error. GAM refers to gen-
eralized additive models with ‘~' denoting downweighting
and '+’ denoting upweighting; Trig: trigonometric model;
Poly: polynomial model; Exp: exponential model; Gomp:
Gompertz model; Sig: sigmoidal model; par: (no. of) para-
meters. See Table 2 for full model descriptions

Fig. 3. Mean + SD for error in predicting annual nesting
abundance, showing comparisons using (a) full-season data,
(b) random samples using 50 % of the annual nightly counts
and (c) random samples using 20% of the annual nightly
counts. GAM refers to generalized additive models with ‘-’
denoting downweighting and '+' denoting upweighting;
Trig: trigonometric model; Poly: polynomial model; Exp:
exponential model; Gomp: Gompertz model; Sig: sigmoidal
model; par: (no. of) parameters. See Table 2 for full model
descriptions
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had significantly higher mean absolute error than
many other models (Table 3, Fig. 2). For parametric
models, there were significant differences in the rank
of AIC (x*=84.8, df = 14, p < 0.001), with the Logistic
5 parameter, Sigmoidal 5 parameter and Gompertz 5
parameter modes showing significantly lower AIC
rank than several other models, while the Trigono-
metric-2 5 parameter model showed a significantly
higher AIC rank than several other models (Table 3,
Fig. 2).

Mean error in estimating annual abundance was
low for all models (<3%; Fig. 3a) when using all
nightly counts. Error in estimating annual nesting
was still reasonably low for all models when using
20% and 50 % samples of data throughout the nest-
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Fig. 4. Underlying trends in nesting seasonality of logger-

head turtles Caretta caretta at Mon Repos, Australia, for 7

seasons, showing the trend generated from a generalized
additive model with uniform weighting to all data points

ing season; 50 % samples had a mean error of <8 %
(Fig. 3b), and 20 % samples gave a mean error of 8 to
10 % for all but 3 models (Fig. 3c). There was no sig-
nificant difference between any of the models in their
estimate of annual nesting abundance when using
random samples comprising of 20% or 50% of the
nightly counts (p > 0.05).

Intra-seasonal variability

Intra-seasonal trends in abundance were similar
between nesting seasons at each of the Mon Repos
and the Sabah Turtle Island populations (see Figs. 4
& 5). The largest variation was shown for 1 year
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Fig. 5. Underlying trends in nesting seasonality for green

turtles Chelonia mydas at Sabah Turtle Islands, Malaysia, for

7 seasons, showing the trend generated from a generalized
additive model with uniform weighting to all data points

Table 4. Annual variation in seasonal shape for green turtles Chelonia mydas nesting on the Sabah Turtle Islands, Malaysia

(n =7 yr) and loggerhead turtles Caretta caretta nesting at Mon Repos, Australia (n = 7 yr). The kurtosis value was calculated

by the peak value divided by total annual abundance. A low kurtosis value refers to a broad peak (platykurtic) and a high
kurtosis value refers to an acute peak (leptokurtic)

Species Peak Kurtosis value

Mean SD Range Mean SD Range
Green 18 Jul 50.3d 2 Jun - 27 Sep 0.0039 0.0008 0.0027-0.0049
Loggerhead 29 Dec 7.8d 11 Dec - 26 Jan 0.017 0.001 0.015-0.018

(1991) at the Sabah Turtle Islands, where the season
had an unusually abrupt end with very low nesting
during a 3 mo period (see Fig. 5a). Inter-seasonal
changes in the kurtosis of the nesting season were
low. Larger differences were seen between the pop-

ulations than between seasons within the 1 popula-
tion (see Table 4). The peak in nesting abundance
varied by 117 d for green turtles nesting on the Sabah
Turtle Islands and by 23 d for loggerhead turtles
nesting at Mon Repos (Table 4).
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DISCUSSION

It is not surprising that most of the models tested
showed a reasonable fit to the data, given the large
variation in nesting abundance between successive
nights for all populations investigated and the simple
functional form of the models investigated, with
parametric models following a peaked pattern with
both a skewed or symmetrical shape and non-para-
metric models having sufficient smoothing to depict
the general form of nesting. It is also probable that
moving averages, Lagrange interpolation, linear in-
terpolation or kernel density interpolation methods
would also give good fits to the data, but they would
not be as suitable for partial season counts. Using
residual sum-of-squares for model comparison, 15
models were highlighted as having significantly bet-
ter model fits than the other 7 models. Of these 15
models, a further 3 models showed significantly
lower mean absolute error than the other models: the
GAM with uniform weighting, Sigmoidal-1 7 para-
meter and Trigonometric-2 7 parameter models.

The major differences in the 3 best-fit models are
that the GAM is a non-parametric model which is not
constrained in its functional form, whereas Sigmo-
idal-1 7 parameter and Trigonometric-2 7 parameter
models are parametric models. The non-parametric
model is more flexible in its application across spe-
cies, populations and seasons, as it is more flexible in
its constraints, does not require initial parameter esti-
mates and will not substantially overestimate or
underestimate nesting activity where no data are
available. Conversely, the parametric models are
constrained to a single peak, so would not be suitable
for multi-modal seasonal data (e.g. Figs. 4 & 5; Che-
valier et al. 2000, Witt et al. 2009). Furthermore, if
data are not collected throughout the season, the
model may substantially overestimate nesting abun-
dance (Gratiot et al. 2006) unless the values are con-
strained to force the peak to occur within a certain
period. This is a major limitation for nesting popula-
tions where access to the beach is a major logistic
constraint. Furthermore, to increase the goodness-of-
fit of the parametric models while minimizing survey
effort, the SWOT (State of the World's Sea Turtles)
Scientific Advisory Board (2011) recommended
greater effort in sampling during the peripheries of
the nesting season when fewer turtles are encoun-
tered. Monitoring more at the peripheries of the nest-
ing season may be less effective if a capture-mark-—
recapture program is running alongside the track
count surveys as it would increase the error for
capture—-mark-recapture population estimates as a

smaller proportion of the population is seen. Given
that mark-recapture data can produce important
demographic data required by managers, we would
not recommend moving more on-ground effort to the
peripheries of the nesting season for marginal
increases in precision for track count abundance esti-
mates.

Due to the variable shapes of the nesting seasons
between years (Figs. 4 & 5), all of the models investi-
gated will show increased error when extrapolating
outside the sampled timeframe. Where sampling
occurs during 1 or 2 block periods during the nesting
season, linear regression models may be preferred to
estimate annual nesting abundance with lower error.
Linear regression models have been used previously
to estimate annual nesting abundance from mid-sea-
son counts and have generally shown consistently
good correlations between years for counts of 2 wk or
more (Kerr et al. 1999, Jackson et al. 2008, Limpus et
al. 2008, Limpus 2009). The variable phenology in
nesting may impact on the best-fit of the GAMs.
When using nightly data from the full season, GAMs
had a better fit when data points had uniform weight-
ing. Up-weighting the endpoints may be favourable
when an intermittent survey is conducted that is
skewed to either the beginning or the end of the nest-
ing season, or a mid-season count is conducted.

Although model fit can sometimes be optimized
using environmental parameters such as moon phase
and tidal height (Girondot et al. 2006), these impacts
are not consistent between populations or years
(Caldwell 1959, Bustard 1979, Frazer 1981, 1983,
Girondot & Fretey 1996, Dobbs et al. 1999, Lux et al.
2003, Girondot et al. 2006, Pike 2008), which indi-
cates that a more refined model would not be supe-
rior for use between populations, seasons or species.
A more complex model is also limited in its applica-
tion by requiring significant a priori information for
the nesting population investigated.

The seasonal trend models described within this
paper only investigated error in estimating the
annual abundance of the nesting activities or number
of tracks. Additional potential sources of error in the
data collected include error in identifying species
from tracks, error in assessing nesting success from
tracks, missing tracks caused by survey error or by
wind or tides removing signs of tracks, and errors in
recording and transcription. For example, assessing
nesting success by visually assessing tracks in the
sand has a much higher error and more impact from
the ability of the observer than assessing nesting suc-
cess from watching turtles or digging in the sand to
confirm the presence of eggs (see Schroeder & Mur-



244 Mar Ecol Prog Ser 508: 233-246, 2014

phy 1999 for discussion). Furthermore, assessing
annual nesting numbers using count data would not
detect potential changes in the population from
changes in reproductive effort per female within the
year (e.g. Broderick et al. 2003) or changes in remi-
gration intervals (e.g. Hays 2000), and limits abun-
dance estimates to 1 demographic state. Use of cap-
ture-mark-recapture methods on the nesting beach
and in in-water studies would therefore be desirable
to more accurately estimate the number of nesting
females (e.g. Pfaller et al. 2013), adult males (e.g.
Hays et al. 2010) and juveniles (e.g. Chaloupka &
Limpus 2001) in the population.

As there was no significant difference between any
of the models in estimating annual nesting abun-
dance, any of the models investigated could be
applied to random sampling with at least 20 % cover-
age of the nesting season to provide an annual esti-
mate with reasonable accuracy. Of the 3 models that
had the lowest mean absolute error, we recommend
using GAMs to estimate annual abundance due to
their ease of fitting, flexibility across populations and
seasonal shapes and their good predictive ability.
GAMs are easily applied to partial-season data and
allow the beginning and end of the season to be fixed
via weighting end-points. They also do not create
potential problems in fitting (as highlighted by Gra-
tiot et al. 2006), where data may be substantially
over- or underestimated unless specific parameter
restrictions are applied. As with all models investi-
gated within this paper, GAMs will provide a better
estimate of annual abundance if data are collected at
several different times throughout the season than
only 1 point source, as this minimizes the length of
time of extrapolation.
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