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INTRODUCTION

Across marine systems, the interactive effects of
multiple stressors are frequently more severe than the
predicted cumulative effects when each stressor is
considered independently (Crain et al. 2008). How-
ever, the magnitude and type of interaction (additive,
antagonistic, or synergistic) is dependent on which
community or trophic levels are being examined in ad-
dition to the unique stressor combination (e.g. warm-

ing, eutrophication, salinity, habitat loss, acidifica -
tion). In particular, individuals at the southern edge of
a species’ range are already near their thermal toler-
ance, and thus interactions between warming and an-
thropogenic stressors may accelerate local extinctions
(Harley et al. 2006, Carilli et al. 2010). The resulting
ecosystem effects may be most dramatic when a foun-
dation species becomes extirpated from an area, be-
cause individuals that rely on habitat forming species
will be displaced or die out (Doney et al. 2012).
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Eelgrass Zostera marina is a foundation species
that is widely distributed across estuaries in the
Northern Hemisphere, and between 33 and 65° N
along the Western Atlantic (Thayer et al. 1984, Green
& Short 2003). Coastal ecosystems are affected by
 climate-driven range shifts, eutrophication (due to
agri culture, silvaculture and coastal development),
and loss of top consumers (caused by overfishing), all
of which may have negative effects on eelgrass bio-
mass and distribution (Orth et al. 2006, Ralph et al.
2006). Considering the key ecosystem services sea-
grass meadows provide (Larkum et al. 2006) and
that seagrass cover has declined at a global scale
in recent decades (Waycott et al. 2009, Antón et al.
2011), it is important to understand the potential
synergis tic effects of these multiple stressors on eel-
grass  meadows.

At the southern limit of its range, the optimal tem-
perature for eelgrass growth is 22°C (Penhale 1977,
Lee et al. 2007) and since water temperatures are
above 25°C for most of July and August along this
boundary (Kenworthy 1981, Thayer et al. 1984), heat
stress drives the near complete loss of aboveground
biomass in many eelgrass meadows (Thayer et al.
1984). When water temperature exceeds the thermal
optimum, photosynthetic rates decline and respira-
tion rates increase, which reduces net photosynthesis,
inhibits leaf growth and eventually causes mortality
(Marsh et al. 1986). Seagrass at higher temperatures
also require more light to maintain a positive carbon
balance (Lee et al. 2007).With increasing durations of
water temperature exceeding 30°C due to warming
in the mid-Atlantic, models of eelgrass meadows
indicate that seasonal declines in eelgrass cover will
be magnified (Carr et al. 2012), which will exacer-
bate the loss of essential nursery habitat for fishes
and crustaceans (Micheli et al. 2008).

Simultaneously, nutrient enrichment (another ma jor
stressor that works through bottom-up pathways) has
been found to reduce eelgrass cover (Valiela et al.
1997, Hughes et al. 2004, Lotze et al. 2006, Burkholder
et al. 2007, Waycott et al. 2009). Although a slight in-
crease in nutrients can initially increase the biomass
in eelgrass meadows in nutrient-limited systems, fur-
ther enrichment (especially water column enrichment)
increases the biomass of algal epiphytes, reduces
light penetration to the blades, and ultimately reduces
eelgrass biomass (Burkholder et al. 2007). However, if
present, herbivorous mesograzers such as amphipods
can control epiphyte growth, mitigating the negative
effects of nutrient enrichment through top-down con-
trol (Hughes et al. 2004, Spivak et al. 2009b, Blake &
Duffy 2010, 2012, Myers & Heck 2013).

Interactions between multiple stressors have been
shown to disrupt bottom-up and top-down commu-
nity regulation, and can have interactive effects on
habitat forming species and associated fauna (Crain
et al. 2008). Seagrass systems, including eelgrass
meadows at the southern extent of their range, are
a good model for exploring the interactive effects of
environmental stressors and top-down mitigation of
bottom-up impacts because the effects of individual
stressors on eelgrass biomass and food web inter -
actions have already been established (Hughes et al.
2004). Burkholder et al. (1992) examined the vary-
ing seasonal effects of eutrophication on eelgrass
in experimental mesocosms in North Caro lina, USA,
and found that even low levels of nitrate enrichment
(3.5 µM NO3

−-N) promoted the decline of  eelgrass.
In addition, Burkholder et al. (1992) determined that
this loss was more pronounced in the summer months
when water temperatures were highest. Further work
indicated that increasing the average temperature
by 3 or 4°C intensified the ef fects of  water-column
nitrate inhibition on eelgrass growth (Touchette &
Burkholder 2002), suggesting that the effects of
increasing temperature interact with nutrient enrich-
ment. These studies are valuable for understanding
the physiological effects of nutrient enrichment and
warming within seagrass systems, but do not incor-
porate biological interactions (i.e. trophic top-down
control).

Top-down regulation also plays an important role
in structuring eelgrass ecosystems. Several meso-
cosm studies have investigated whether increases
in blue crab (secondary consumer) densities reduce
herbi vore densities and ultimately cause negative
cascading effects on seagrass biomass (Duffy et al.
2005, Canuel et al. 2007, Douglass et al. 2007). These
studies have demonstrated that crab presence can
reduce amphipod abundance through consumption
(Spivak et al. 2009b), or suppress amphipod grazing
(Duffy et al. 2005), both of which increase epiphyte
biomass. However, increases in epiphyte biomass,
due to the presence of a secondary consumer, had
no effect on eelgrass biomass. Pinfish Lagodon
 rhomboides is another  secondary consumer that is
extremely prevalent in seagrass habitats during sum-
mer months (e.g. comprised >80% of fishes in North
Carolina seagrass trawl surveys; Baillie et al. 2014).
The diet of juvenile pinfish consists predominantly of
amphipods, and pinfish are thought to drive dra-
matic, seasonal amphipod declines. Indeed, as pin-
fish and other juveniles recruit to nursery eelgrass
meadows, amphipod densities decline dramatically
and remain low throughout the summer months (Nel-
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son 1979). Since juvenile pinfish become omnivorous
and consume algal epiphytes as they grow larger
(Stoner 1979), they may also have a positive effect on
seagrass biomass and productivity (Heck et al. 2000).
The high densities of pinfish (along with other omni -
vorous secondary consumers) may play a critical role
in controlling epiphyte loads when amphipods are at
very low densities in eelgrass meadows in the sum-
mer months.

Extensive research has been conducted on the
independent effects of nutrient enrichment, tem -
perature, and food-web interactions on eelgrass, but
opportunities remain to explore the cumulative effects
of all 3 factors, particularly in explaining the future
geographic distribution of this foundation species. To
investigate the effects of top-down (secondary con-
sumer pressure), bottom-up (nutrient en richment)
and abiotic stressors (warming), we aimed to deter-
mine (1) how heat stress and nutrient loading affect
eelgrass biomass, (2) how the effects of heat stress
and nutrient loading change with the removal of sec-
ondary consumer pressure, and (3) if there are any
interactive or reciprocal effects between secondary
consumer pressure and abiotic stressors in eelgrass
meadows. We expected elevated water temperatures
to enhance heat stress, and nutrient enrichment to
increase epiphytic shading of the blades (both are
processes that reduce aboveground biomass). Also,
we anticipated that removing the secondary con-
sumer would release grazers from top-down control
and in turn reduce epiphytic cover and shading.
This would, in our predictions, mitigate the effects of
nutrient enrichment on eelgrass and prevent nutrient
enrichment from exacerbating extreme heat stress
effects.

MATERIALS AND METHODS

We conducted a 3-factor mesocosm experiment to
explore how elevated temperature and nutrient load-
ing affect eelgrass meadows, and whether removing
secondary consumer pressure influences the direc-
tion or magnitude of these effects. To mimic natural
eelgrass systems, we included a diverse community
of amphipods found in local eelgrass meadows as our
grazers, and manipulated the presence of pinfish, a
regionally dominant secondary consumer. Tempera-
ture (ambient, +1.5°C), nutrient loading (ambient,
+10 µM NH4NO3/1 µM KH2PO4) and consumer pres-
sure (grazers + secondary consumers, grazers only)
were crossed in a fully orthogonal design with 6
replicates.

We collected eelgrass cores (~26 cm diameter) from
a monospecific eelgrass meadow in Middle Marsh,
Back Sound, North Carolina in late July 2010. Cores
were transplanted into 18 l experimental mesocosms
in an outdoor flowing seawater system at the Univer-
sity of North Carolina at Chapel Hill’s Institute of
Marine Sciences in Morehead City. We rinsed cores
with fresh water, wiped blades to re move all mobile
invertebrates and macroalgae, and counted shoot
density (mean ± SE: 29.2 ± 1.3 shoots) before plac-
ing eelgrass mesocosms in a continuous-flow,  sand-
filtered seawater system to prevent outside colo -
nization of small invertebrates. A community of
50 amphipods, collected from water table cultures
that mimicked local eelgrass grazer communities
(predominately Gammarus spp. and Ampithoe spp.;
Nelson 1979), were added to each mesocosm.

To understand how warming will potentially affect
eelgrass biomass and its associated community, we
conducted this experiment from 10 August through
21 September 2010, when seasonal temperatures and
physiological heat stress were at peak levels. Heaters
were added to mesocosms to obtain elevated temper-
atures; mock heaters were used in treatments with
ambient water temperature to maintain consistent
habitat complexity. The water temperatures of meso-
cosms and adjacent Bogue Sound were monitored 3
times daily with a hand-held thermometer to quan-
tify the difference between heated and ambient
water treatments and to ensure that ambient meso-
cosm water matched the water temperature at the
same depth in the adjacent Sound.

Mesocosm nutrient concentrations were enriched
by an addition of 10 µM NH4NO3 and 1 µM KH2PO4

(20:1 N:P) every 3 d to mimic storm nutrient pulses.
These concentrations represent nutrient measure-
ments following stormwater runoff events from long-
term monitoring of coastal streams in the area (M. F.
Piehler unpubl. data). Because our system experi-
ences elevated nutrients following storm events as
opposed to a constant supply of elevated nutrients,
we chose to use this pulse design for water column
nutrient enrichment instead of slow release fertilizer.
NH4NO3 and KH2PO4 were dissolved in seawater
and the concentrated solution was added to the
mesocosms to increase nutrient concentration by
10 µM NH4NO3 and 1 µM KH2PO4. Water flow was
shut off for 30 min immediately following the addi-
tions to allow nutrients to mix in the water column.

Finally, we added 1 pinfish (52 ± 1.1 mm standard
length, 3.7 ± 0.2 g) to half of the mesocosms and ran
the experiment for 6 wk. This allowed time for
amphipod abundance to approach carrying capaci-
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ties representative of in situ conditions (Duffy &
Harvilicz 2001) and for eelgrass to respond to heat
stress in late summer. At the end of the experiment,
we removed the pinfish and re-measured each indi-
vidual’s standard length and weight to quantify
growth throughout the experiment. Amphipods were
filtered from the water, sorted from eelgrass blades,
and enumerated to quantify final densities.

To determine how elevated temperature, nutrient
pulses, and pinfish presence affected eelgrass bio-
mass, eelgrass was uprooted, shaken to gently re -
move grazers, and rinsed through a 0.5 mm sieve. We
sorted eelgrass into above- and belowground portions
after scraping each blade to remove all epibionts
growing on blades. We also separated all macroalgae
that had accumulated at the top of the mesocosm,
spun it to remove excess water before measuring wet
weight. All portions of the eelgrass were then dried in
an oven at 60°C for 3 d and weighed. Finally, we homo -
genized all above- and belowground portions of the
eelgrass from each mesocosm into a fine powder for
C:N analysis to understand the effects of nutrient en-
richment on nitrogen and carbon content of eelgrass.

We analyzed pinfish growth (change in standard
length and weight) and final amphipod density, epi -
biont load, macroalgal biomass, above- and below-
ground biomass using generalized linear models
(GLM) in JMP v.10.0. These analyses tested for the
fully crossed effects of water temperature, nutrient
enrichment, and pinfish presence, in addition to a
block effect (mesocosm position on water table) on
our independent variables, with significance level
set at α < 0.05. Three pinfish were lost at an unknown
time during the ex periment, thus we ex-
cluded these  mesocosms from the analyses,
reducing replication of the pinfish/nutri-
ents/1.5°C treatment to n = 4, and the pin-
fish/ambient nutrients/1.5°C treatment to
n = 5. Pinfish growth, amphi pod density
(Box-Cox power transformed), above ground
and belowground biomass met the as -
sumptions of normal distribution; therefore,
we used an identity link function for each
GLM. Macroalgal biomass fit the Poisson
distribution with a log link function. When
the water table block effect was signifi -
cant (macroalgal, aboveground, and be-
lowground biomass), we determined if
there were any interactive effects of block
and our manipulated factors. However,
there was never an interaction be tween
water table block and temperature, nutri-
ent, or consumer manipulation. Finally, we

ran correlations to determine the relationships be-
tween macroalgae, average mesocosm temperature,
and aboveground biomass across and within second-
ary consumer treatments.

RESULTS

Mesocosm water quality

Throughout the 6 wk experiment, the water tem-
perature in control mesocosms did not differ from that
of Bogue Sound (average temperature difference: 0.1 ±
0.9°C). Water temperature extremes ranged from 22.8
to 36.6°C in ambient treatment mesocosms and 25.2 to
39.7°C in heated mesocosms, while the average tem-
perature over the whole study was 27.4 ± 0.1°C in am-
bient treatments and 29.0 ± 0.1°C in heated treatments
(Fig. 1). The difference between ambient and heated
temperature treatments varied according to time of
day. In the morning the water temperatures were on
average 1.7 ± 0.1°C warmer in the +1.5°C treatment
and only 0.8 ± 0.1°C warmer in the even ing. Salinity
averaged 33.7 PSU, but Hurricane Earl affected our
experiment when it impacted eastern North Carolina
on 2 September 2010, which resulted in a large fresh
water influx and power outage (less than 3 h) that dis-
rupted water flow. Although this led to a system-wide
decrease in water temperature, heated temperature
treatments remained higher than control tempera-
tures following the storm, and we did not observe any
mass mortality of eelgrass, amphipods, pinfish or
macro algae associated with this perturbation.
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Secondary consumer

To understand how secondary consumer pres-
sure, nutrients, and warming potentially interact
and af fect eelgrass biomass, we first examined if
there were any effects of the 2 stressors on pinfish.
Although there were no differences in growth
measured as change in standard length (final stan-

dard length 57.8 ± 0.8 mm, growth 1.5 ± 0.2 mm),
nutrient enrichment significantly increased growth
measured in weight of pinfish (χ2 = 3.95, p = 0.047;
Table 1) from 1.19 ± 0.21 g in ambient nutrient
treatments to 1.76 ± 0.27 g in nutrient enrichment
treatments (Fig. 2A). In creased water temperature
had no effect on growth (standard length or
weight).
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Factors Pinfish Amphipod Biomass
Weight Length density Epibiont Macroalgae Aboveground Belowground
χ2 p χ2 p χ2 p χ2 p χ2 p χ2 p χ2 p

Pin 93.11 <0.001 2.54 0.111 1010.11 <0.001 1.63 0.201 0.00 0.953
Nut 3.95 0.047 1.37 0.243 1.16 0.281 2.56 0.110 0.00 0.999 0.07 0.794 0.01 0.926
Pin × Nut 0.87 0.352 0.17 0.681 0.00 1.000 0.81 0.369 0.50 0.478
Temp 2.12 0.145 0.94 0.331 0.09 0.759 0.08 0.773 0.00 1.000 11.22 0.001 0.12 0.728
Pin × Temp 2.42 0.120 0.09 0.764 0.00 0.999 7.49 0.006 0.19 0.659
Nut × Temp 2.22 0.136 0.84 0.358 1.10 0.294 7.75 0.005 0.64 0.424 0.14 0.707 0.12 0.725
Pin × Nut × Temp 0.11 0.743 2.89 0.089 0.57 0.452 0.00 0.988 3.75 0.053
Block 5.32 0.070 1.79 0.409 1.16 0.561 0.95 0.623 992.47 <0.001 22.95 <0.001 11.42 0.003

Table 1. Analysis of response of eelgrass community to the individual and interactive effects of consumer presence (Pin), nutrient
enrichment (Nut), and warming (Temp) using generalized linear models (df = 5 for treatments and 2 for all block analyses). Significant 

treatment effects at α < 0.05 are indicated in bold

Fig. 2. Mean (±SE) (A) pinfish growth, (B) amphipod density,
(C) epibiont load, (D) macroalgae biomass, and (E) above-
ground biomass at the end of the 6 wk experiment in mesoc-
soms with pinfish (black), without pinfish (gray), under
ambient temperature and nutrients (Ambient), elevated
water temperature (+1.5°C), elevated nutrients (+Nutrients)
or both elevated temperature and nutrients (+1.5°C, +Nu -
trients). Treatments were pooled when a factor was not 

significant at α < 0.05
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Grazer density

Removing secondary consumer pressure released
amphipods from top-down control. Pinfish consumed
nearly all amphipods when present (4.0 ± 1.5 amphi -
pods remaining at the end of the experiment), but
with no secondary consumer present, amphipod den-
sities reached 607.5 ± 113.0 ind. mesocosm−1 (χ2 =
93.11, p < 0.001; Fig. 2B). Nutrient enrichment (χ2 =
1.16, p = 0.281) and warming (χ2 = 0.09, p = 0.759)
had no effect on final amphipod density.

Epibiont load

We expected the increase in amphipod densities
due to pinfish removal to reduce the epibiont load, but
found that pinfish presence had no effect on epibiont
load (χ2 = 2.54, p = 0.111). However, nutrient enrich-
ment and temperature had an interactive effect on
epibiont load (χ2 = 7.75, p = 0.005; Fig. 2C). When
mesocosms did not receive nutrient enrichment, in-
creasing water temperature had no effect on epibiont
load (0.515 ± 0.090 epibiota (g) * aboveground biomass
(g)–1 in ambient treatment), whereas under nutrient
loading conditions, warming increased epibiont load
to 0.888 ± 0.237 epibiota (g) * aboveground biomass
(g)–1. Epibiont community composition was not quan-
tified, but we observed no obvious trends across treat-
ments. Epiphytes consisted predominantly of fleshy
algae (both turf microalgae and Ulva intestinalis);
however, some calcareous algae were also present.

Macroalgal biomass

Although removing pinfish and releasing amphi pods
from top-down control did not increase epi bionts, re-
moving pinfish did cause an increase in the macroalgae
U. intestinalis, which overgrew seagrass in mesocosms
(Fig. 2D). Macroalgae was almost completely absent
(0.03 ± 0.02 wet g) when pinfish were present, but bio-
mass reached 34.11 ± 10.10 wet g when pinfish were
removed (χ2 = 1010.11, p < 0.001). Additionally, macro-
algal biomass when pinfish were absent was positively
correlated (significant at α < 0.10) with average meso-
cosm water temperature (ρ = 0.258, p < 0.087).

Eelgrass biomass and nutrient content

There was a significant interaction between water
temperature and pinfish presence on aboveground

eelgrass biomass (χ2 = 11.22, p = 0.001; Fig. 2E), with
the loss of pinfish exacerbating effects of heat stress
on aboveground biomass (Fig. 2E). Increased water
temperature had no significant effect on above-
ground biomass when pinfish were present, but sig-
nificantly reduced biomass from 0.24 ± 0.089 g when
pinfish were present to 0.08 ± 0.035 g when pinfish
were absent. Aboveground biomass was also nega-
tively correlated with macroalgal biomass (ρ =
−0.365, p = 0.014). There were no significant differ-
ences in belowground biomass across treatments.

Although we did not find an effect of nutrients on
final epibiont load, macroalgal biomass, or eelgrass
biomass, nutrient enrichment significantly increased
the nutrient content of the eelgrass blades (Fig. 3A,
Table 2), decreasing the C:N ratio from 24.03 to 21.75
(χ2 = 4.32, p = 0.038). This was due to an increase in
nitrogen content (χ2 = 4.01, p = 0.045; Table 3) in the
blades from 1.85 ± 0.10 to 2.06 ± 0.07% N.
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Fig. 3. Mean (±SE) nutrient content of (A) above- and (B)
belowground eelgrass at the end of the 6 wk mesocosm trial
with (black) or without a pinfish (gray) under ambient
 temperature and nutrients (Ambient), elevated water tem-
perature (+1.5°C), elevated nutrients (+Nutrients) or both 

elevated temperature and nutrients (+1.5°C, +Nutrients)
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DISCUSSION

In this study, water temperature was the key factor
in controlling eelgrass biomass (Fig. 4). Elevating wa-
ter temperature by approximately 1.5°C (averaged
over a diel cycle) magnified seasonal heat stress and
led to a significantly greater loss of eelgrass biomass
than in ambient temperature treatments. Nutrient en-
richment alone did not cause an increase in epibiont
or macroalgal biomasses as expected, but did in-
crease the nutrient content of the eelgrass blades, and
 interactively with warming, increased epibiont loads.
Changes in blade nutrient content did not result in
discernible effects propagating up the food chain
through amphipod density, but did cause an increase
in pinfish biomass. Dramatic differences in grazer
densities caused by pinfish consumption had no effect
on epibiont or macroalgal biomass; however, we did
find that pinfish played a critical role in eelgrass sys-
tems by directly preventing macroalgal accumulation.
Pinfish consumed al most all macroalgae in the meso-
cosms, and when pinfish were absent, macroalgae
proliferated and presumably further reduced eelgrass
biomass through shading (Sand-Jensen 1977). Our re-

sults suggest that warming could reduce seasonal eel-
grass habitat through heat stress, which would be
compounded by an increase in macroalgae. However,
as our study demonstrated, there is also potential for
second ary consumers to mitigate macroalgal accumu-
lation through top-down pressure.

We conducted this experiment when abiotic stress
was greatest at the end of the growing season, when
(at the southern limit of its range) eelgrass meadows
annually die-off in the summer (Kenworthy 1981,
Thayer et al. 1984). Since all treatments were under-
going heat stress, low eelgrass biomass may have
prevented us from detecting clear interactions be -
tween stressors because heat-stress dominated the
response of aboveground biomass. However, since a
small increase in water temperature enhanced the
decline of eelgrass biomass dramatically, it is likely
that warming will continue to cause declines, shift
the growing season earlier, and eventually move the
species’ range poleward. Recent studies have deter-
mined that every 1°C increase results in a 5 to 6 d for-
ward shift in the eelgrass growing season (Clausen
et al. 2014). Some eelgrass meadows at their south-
ern range limit have already experienced a reduction
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Factors Aboveground Belowground
C:N % Carbon % Nitrogen C:N % Carbon % Nitrogen

χ2 p χ2 p χ2 p χ2 p χ2 p χ2 p

Pin 0.21 0.645 0.00 0.971 0.21 0.646 3.39 0.066 1.87 0.172 0.61 0.434
Nut 4.32 0.038 0.49 0.483 4.01 0.045 0.00 0.999 0.01 0.914 0.02 0.882
Pin × Nut 0.01 0.934 1.19 0.276 0.07 0.790 0.89 0.347 0.77 0.380 0.21 0.645
Temp 2.07 0.150 5.94 0.015 4.37 0.037 6.64 0.010 1.41 0.235 3.99 0.046
Pin × Temp 2.19 0.139 1.85 0.174 1.23 0.268 1.33 0.248 1.35 0.245 0.37 0.541
Nut × Temp 0.84 0.360 0.35 0.552 1.19 0.275 3.51 0.061 0.01 0.935 3.74 0.053
Pin × Nut × Temp 0.33 0.565 2.53 0.112 0.48 0.486 0.02 0.896 0.07 0.786 0.59 0.442
Block 2.39 0.303 0.96 0.617 2.85 0.240 7.93 0.019 6.30 0.043 20.62 <0.001

Table 2. Analysis of the response of above- and belowground eelgrass carbon and nitrogen content to the individual and inter-
active effects of consumer presence (Pin), nutrient enrichment (Nut), and warming (Temp) using a generalized linear model. 

Significant treatment effects at α < 0.050 are indicated in bold; df = 5 for all treatments and 2 for block analyses

Treatment Aboveground Belowground
% Carbon SE % Nitrogen SE % Carbon SE % Nitrogen SE

Ambient 37.76 0.21 1.85 0.10 31.15 0.90 0.93 0.02
Ambient, pinfish 37.51 0.31 1.93 0.07 30.74 1.29 0.93 0.03
+1.5°C 37.25 0.16 1.88 0.09 30.77 1.61 0.81 0.04
+1.5°C, pinfish 36.90 0.38 1.76 0.06 32.11 0.61 0.81 0.05
Nutrients 38.23 0.22 2.06 0.07 30.37 1.41 0.88 0.03
Nutrients, pinfish 37.73 0.21 2.08 0.11 31.31 0.86 0.88 0.08
+1.5°C nutrients 36.59 1.25 1.89 0.08 30.63 0.87 0.91 0.07
+1.5°C, nutrients, pinfish 37.77 0.14 1.91 0.03 32.82 1.42 0.84 0.01

Table 3. Nutrient content (mean ± SE) of eelgrass measured as percent carbon and nitrogen of aboveground biomass averaged 
within each treatment
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in biomass over the last 20 or 30 yr as temperatures
have increased by 1.4°C, and water quality has been
degraded between 1984 and 2005 (Micheli et al.
2008). Shoal grass Halodule wrightii, a tropical spe-
cies with a northern range limit also in North Caro -
lina, may be able to survive in warmer summers, but

there has been no change in its density in the last few
decades and it has not begun to colonize eelgrass
barrens (Micheli et al. 2008). Continued eutrophica-
tion of coastal estuaries may facilitate shoal grass
colo nization of old eelgrass meadows as was seen in
former turtle grass meadows  following bird guano
enrichment in southern Florida (Fourqurean et al.
1995). Ruppia maritima (widgeon grass) may also do
well under eutrophication because it has a physio -
logical mechanism to prevent excessive nitrate up -
take and grows well in enriched systems (Burkholder
et al. 1994). However, even if shoal or widgeon grasses
are able to colonize eelgrass meadows, there will be
significant shifts in the nursery value of seagrass
meadows in North Carolina since these grasses sup-
port a different community of fishes and crusta ceans
relative to eelgrass (Micheli et al. 2008, Baillie et al.
2014).

Increased temperatures have also been shown to
strengthen herbivore−algae interactions (O’Con nor
2009) as metabolic rates of consumers increase at a
greater rate than those of primary producers and
result in a trophic skew defined by increased con-
sumer: producer biomass (López- Urrutia et al. 2006,
Carr & Bruno 2013). However, the balance between
herbivores and primary producers in response to in -
creased temperatures can be dependent on absolute
temperature and nutrient supply. For instance, re -
cent work has found that top-down interactions only
streng then until temperatures reach an organism’s
thermal optimum where predator metabolism is
greatest, after which metabolic rates (and therefore
interaction rates) weaken (Englund et al. 2011).
Further more, experimental work has shown that in -
creasing temperatures only shift phytoplankton−zoo-
plankton systems toward greater relative abundance
of consumers in eutrophic environments (O’Connor
et al. 2009). When examining our pinfish− amphipod−
epibiont system, we also ob served an interaction be -
tween warming and nutrients; however, we found that
warming increased epibiont load under eutrophic
 conditions as opposed to strengthening the top-down
interaction. Be cause temperatures periodically ex -
ceeded the optimum in heated treatment (30 to 33°C
for pinfish; Muncy 1984), reduced metabolic rates
may have weakened the top-down interaction and re -
sulted in greater epibiont loads (Englund et al. 2011).

Unlike the dramatic effects of warming, we found
only moderate effects of nutrient enrichment on the
eelgrass community. We expected nutrient loading to
exacerbate the effects of heat stress on aboveground
biomass through algal overgrowth or nitrate induced
carbon limitation. Burkholder et al. (1992) documen -
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Fig. 4. Effects of secondary consumers, increased tempera-
ture, and nutrient enrichment on an eelgrass community.
Pinfish removal released both (1a) amphipods and (1b)
macroalgae from consumer control. Increases in amphipod
density had no cascading effects on eelgrass biomass, (2a)
while an increase in macroalgal biomass was correlated
with lower aboveground biomass (p < 0.1). (2b) The quantity
of macroalgal biomass that accumulated when pinfish were
absent was correlated with individual mesocosm average
water temperature (p < 0.05). (3) Increased water tempera-
ture reduced aboveground biomass, but heat stress and bio-
mass reduction was greatest when pinfish were absent. (4)
Pulsed nutrient enrichments increased epibiont load only
when temperature was elevated and had no discernable
cascading effects on eelgrass biomass. Nutrient enrichment
also (5a) decreased the C:N ratio of eelgrass blades, and (5b)
increased pinfish biomass. Solid black arrows: significant
effects at α < 0.05; gray arrows: correlations; dashed arrows: 

indirect effects
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ted 75 to 95% shoot mortality relative to un-enriched
controls under pulsed nitrate enrichment, and as
there were no differences in epiphyte load between
treatments, they attributed die-off to nitrate toxicity
exacerbated by heat stress. We did not see any
effects of nutrient toxicity compounding heat stress;
rather, nutrient enrichment had positive effects on
eelgrass nutrient content, increasing the nitrogen
content in the blades. The pulse design of our exper-
iment, reflecting measured nutrient concentrations
from local stormwater runoff events, prevented eel-
grass blades from constantly having to reduce nitrate
and maintain carbon stores in the blades as in pre -
vious experiments that used a press design and
higher nutrient concentrations (Burkholder et al.
1992, 1994). Nutrient enrichments also significantly
increase the biomass of pinfish. We observed no
change in amphipods, epibionts, or macroalgae across
pinfish treatments, but did observe a significant
increase in pinfish biomass. We suggest that the
nutrient enrichment caused enhanced primary pro-
duction in nutrient enrichment treatments, causing
pinfish to consume more resources and increase final
pinfish biomass. Alternatively, the nutrient content,
or quality, of the resources available may have
been higher in nutrient enrichment treatments and
increased pinfish biomass.

Across marine systems, positive effects of grazing
in reducing nuisance macroalgae can be equal in
magnitude to the negative effects of water column
nutrient enrichment on seagrass biomass (Hughes et
al. 2004). In both eelgrass mesocosms and field ex -
periments, epiphyte loads have rapidly responded to
water column nutrient enrichment, but amphipods
have been found to control fast epiphyte growth, pre-
venting nutrient loading from reducing eelgrass
 biomass (Neckles et al. 1993, Douglass et al. 2007,
Spivak et al. 2009a). Unfortunately, we did not suc-
cessfully quantify epibiont loads early in the experi-
ment (2 to 4 wk), so we do not know if nutrient en -
richment caused high initial epiphyte loads before
consumers grazed down epiphytes (as found previ-
ously). The limited response in epibiont load may
also be caused by having a full community of grazers,
which has been found to increase stability in res -
ponse to stressors such as nutrients and warming
(Spivak et al. 2009a, Blake & Duffy 2010, 2012,
Alsterberg et al. 2013). Additionally, our system was
more complex than previous work because there
were multiple consumers (pinfish, amphipods) feed-
ing on multiple resources (epibionts, macroalgae,
etc.). Spreading consumption across multiple con-
sumers may have also limited differences in final

epibiont load across treatments and prevented epi -
bionts from shading and reducing eelgrass above-
ground biomass.

Previous studies have found that omnivorous pin-
fish dampen trophic cascades because they consume
both mesograzers and macroalgae (Bruno & O’Con-
nor 2005). We collected pinfish that were representa-
tive of the sizes present in the Sounds in July when
the experiment began. The average pinfish length
(52 ± 1.1 mm) was within the omnivorous size class,
where 30% of their diet likely consists of epiphytes in
addition to mesograzers (Stoner 1979); however, their
diet is also determined by the relative abundance of
macrophytes (Stoner 1979). Instead of having large
effects on epibionts through cascading effects of
amphipod reduction, pinfish had the strongest
impact on eelgrass by consuming the macroalgae
growing on top of the eelgrass in the mesocosms
(Hughes et al. 2004, Heck & Valentine 2007). Contin-
ued nutrient enrichment (Hauxwell et al. 2003) and
warming (Blake & Duffy 2012) will favor ephemeral
and epiphytic algae over eelgrass biomass. Large
ephemeral algal mats are present within eelgrass
meadows and amphipod densities are high in spring
and early summer before juvenile fishes (>80% pin-
fish in eelgrass meadows) arrive, after which amphi-
pod density and macroalgal biomass quickly decline
and remain low until pinfish migrate out of coastal
sounds in winter. Our study suggests that pinfish may
play an important, possibly underappreciated, role in
controlling macroalgal accumulation, because even
at high densities, amphipods in our experiment were
unable to graze as much macroalgae as a single
omnivorous pinfish.

Conducting a mesocosm experiment may have pro -
duced some artefacts that must be considered when
making any extrapolations to natural eelgrass mead-
ows. For instance, mesocosms may have exacer bated
the quantity of macroalgae beyond what could feasi-
bly accumulate in situ. In eelgrass meadows, macro-
algae would be swept away by tidal currents, while
lower flushing rates, higher temperatures, and in -
creased attachment area may have facilitated macro-
algal accumulation in our experimental mesocosms.
Although post hoc laboratory measurements of light
attenuation found that macroalgae reduced light
penetration and presumably reduced photosynthesis,
light levels at the highest macroalgal biomass were
above 25% of ambient light, and therefore did not
completely prevent eelgrass photosynthesis (see
Fig. A1 in the Appendix). We do note that pinfish are
very abundant in North Carolina eelgrass meadows,
where macroalgal accumulation is rare in the sum-
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mer, and therefore the macroalgae we observed in
pinfish-absent treatments may simply highlight that
in the field, this consumer provides strong top-down
control, consistent in space and time, against macro-
scopic producers such as Ulva. We are also confident
that macroalgal consumption by pinfish was not sim-
ply an artefact of starvation, as mesocosms contained
ample epibiont biomass available for grazing and we
did not see any evidence of pinfish bites on eelgrass.
These observations suggest a preference for macro-
algae by omnivorous pinfish in our mesocosm trials.

Among top-down control, nutrient enrichment, and
warming, our mesocosm results imply that warming
is the primary factor controlling eelgrass biomass at
its southern limit. Continued warming may cause
die-backs to occur earlier, persist longer, and ulti-
mately result in a local loss of essential nursery habi-
tat. We also found that top-down control can reduce
algal overgrowth of eelgrass by consuming macro-
algae, preventing macroalgal shading from exacer-
bating heat stress. Future studies should test these
findings in situ and further quantify how warming
may affect the timing of seasonal die-offs and the cor-
responding negative effects on eelgrass communities
due to loss of this foundation species.
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Appendix. To understand how Ulva reduces light in mesocosm setting, we created a light attenuation curve for macroalgal
biomass (Fig. A1). We collected algae from the flowing seawater system and measured light attenuation after adding Ulva to
the surface of the mesocosm in 10 g increments. Ambient light levels were 1574 µE m−2 s−1, and with 60 g of Ulva at the surface
of the mescosm (the maximum biomass found in eelgrass mesocosms), light was reduced to 26% of surface light. These values
are above the minimum light requirements for eelgrass reported along the mid-North Atlantic (Lee at al. 2007) and are similar
to values measured in eelgrass meadows in Back Sound, North Carolina, USA (435.5 ± 5.6 µE m−2 s−1; F. J. Fodrie unpubl. 

data)

Fig. A1. Relationship of photosynthetically active radiation (PAR) (µE m−2 s−1) and irradiance with increasing macroalgal 
biomass (wet g) in experimental mesocosms measured in July 2014
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