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INTRODUCTION

Coral reefs are characterized by high benthic
 community biomass and primary production despite
being surrounded by oligotrophic waters (e.g. Odum
& Odum 1955, Gattuso et al. 1998). Up to 90% of
total carbon (C) fixation on coral reefs is derived
from benthic photosynthetic primary production,
where the highest production is often associated
with corals (zooxanthellae), turf algae or macroalgae

(Kinsey 1985, Gattuso et al. 1998). In comparison,
the sand-associated microphytobenthos displays
lower primary productivity rates per unit surface
area, but given the often large areal extent of
unconsolidated sandy sediments in reefs, net micro-
phytobenthic  primary productivity may be on the
same order of magnitude and equally important as
coral or macroalgal production (Kinsey 1985, Clavier
& Garrigue 1999, Werner et al. 2006, Garren & Azam
2012).
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Besides primary productivity, reef sands represent
an important biocatalytical filter system for organic
matter (Wild et al. 2004a,b, Werner et al. 2006). The
relatively large grain size of reef sands ensures high
permeability (>10−12 m2) for water exchange and pro-
vides settling space for microphytobenthic communi-
ties, which both represent key factors for efficient
organic matter degradation and concomitant nutrient
recycling (Rasheed et al. 2003a, Wild et al. 2004a,b,
Werner et al. 2006). Reef sands generally contain 103

times more bacteria and up to 80 times higher nutri-
ent concentrations than the surrounding seawater
(Rasheed et al. 2002), highlighting the importance of
this reef compartment for nutrient recycling in oligo-
trophic reef environments (Garren & Azam 2012). As
oligotrophic reefs receive low amounts of allochtho-
nous nutrient input, they strongly rely on the efficient
recycling and new generation of nutrients (Howarth
1988). In particular, nitrogen (N) is mostly the limit-
ing nutrient for primary productivity in coral reefs
(Eyre et al. 2008).

Besides recycling of essential nutrients, measure-
ments of dinitrogen (N2) fixation indicate that reef
sands also play an important role for the generation
of new bioavailable N (Shashar et al. 1994, Charpy-
Roubaud et al. 2001). Capone et al. (1992) found that
N2 fixation in the top layers (0 to 2 cm) of reef
 sediments accounted for more than 50% of the total
sedimentary ammonium production. Biological N2

fixation is a physiological process unique to dia-
zotrophic prokaryotes and, despite being energy-
costly, can represent an alternative nutrient supply if
growing under N-limited ambient conditions typical
for coral reef environments (Charpy-Roubaud et al.
2001, Scanlon & Post 2008). In coral reefs several
benthic substrates (e.g. sand, coral rubble, cyano -
bacterial mats and living corals) are actively fixing N2

(Cardini et al. 2014). Since reef sands can cover large
areas on a reef, previous studies have highlighted the
magnitude of sedimentary N2 fixation and its impor-
tance for the N requirement of the total reef benthos
(Shashar et al. 1994, Charpy-Roubaud et al. 2001,
Casareto et al. 2008). Shashar et al. (1994) calculated
for a lagoon in the Northern Red Sea that reef sands
contribute ~70% to the total N2 fixation within the
reef, while Charpy-Roubaud et al. (2001) estimated
that sedimentary N2 fixation covers ~24% of the
annual N requirements for the total benthic primary
productivity in the Tikehau Lagoon (French
 Polynesia).

The dominant sand type in reef environments is
biogenic carbonate sand, while in some regions ter-
rigenous silicate sands co-occur. At the Northern Red

Sea, the rare occurrence of flood events through
 otherwise desiccated river mouths lead to the deposi-
tion of silicate sands in many fringing reefs of the
area. These 2 sand types are exposed to identical,
seasonally variable environmental conditions but
exhibit different physico-chemical characteristics in
grain size, surface structure and area, permeability
and transparency to light (see Table 1). Together
these factors define 2 different habitats, which in turn
select sand-specific microbial communities (Schöt-
tner et al. 2011), subsequently affecting sedimentary
primary productivity and N2 fixation rates. Previous
studies have demonstrated the importance of micro-
phytobenthic photosynthesis and N2 fixation for total
 benthic primary productivity and biogeochemical
nutrient cycles within the reef ecosystem (Charpy-
Roubaud et al. 2001, Werner et al. 2008). Nonethe-
less, to our best knowledge, no study has investi-
gated both processes with particularly focus on the
effect of sand mineralogy and environmental key
parameters (e.g. temperature, light intensity, nutrient
concentrations).

Therefore, the main objectives of the present study
were (1) to quantify N2 fixation and microphytoben-
thic photosynthesis of 3 different reef sand communi-
ties (bare carbonate sands, silicate sands and micro-
bial mats on carbonate sands) in a seasonal
resolution in order to investigate the effects of sand
type along with seasonally changing environmental
key parameters, and (2) to calculate the respective
contribution of fixed N to the N requirements for
microphytobenthic primary productivity.

MATERIALS AND METHODS

Study site

This study was conducted at the Marine Science
Station (MSS) Aqaba in the Northern Gulf of Aqaba,
Jordan (29° 27`N, 34° 58`E). The MSS is situated
~10 km south of Aqaba City with access to a Red Sea
fringing coral reef inside a marine reserve. Strong
regional seasonality is reflected by substantial vari-
ability of environmental key parameters throughout
the year due to the annual water column stratification
cycle in the Gulf of Aqaba (Silverman et al. 2007,
Carlson et al. 2014). The hard coral dominated (38.6
± 2.6%) fringing reef site reveals an average bare
carbonate sand cover of 18.5 ± 2.8% with highest
coverage at 5 m water depth (50.7 ± 6.3%) followed
by the reef flat (19.0 ± 3.9%) and 10 m water depth
(16.2 ± 1.4%). At 1 and 20 m depth, the bare carbon-
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ate sand coverage is <4.0%. Overall for the site, <1%
of the total bare carbonate sand area is covered by
microbial mat communities throughout the year, with
the highest abundance (~3%) at 5 m water depth and
a seasonal development ranging from <1% in winter
and summer to 5% in fall and 7% in spring. The
fringing reef is interrupted by a ~100 m long area
completely covered by silicate sand from the shore
down to at least 40 m. This area is almost free of hard
coral structures but covered 10 to 20% by seagrass
beds. In order to study the effect of seasonality on N2

fixation and primary productivity by microbial com-
munities of the different reef sands, all experiments
described below were conducted once in each of the
following months representing a respective season:
February (winter), April (spring), September (sum-
mer) and November (autumn) during the year 2013.
Thermal stratification in the Gulf of Aqaba develops
from May to November with a maximum during
August/September, while deep-water mixing occurs
from January to April reaching the maximum mixing
depth in March/April (Manasrah et al. 2006).

Monitoring of environmental parameters

In situ water temperature (°C) and light intensity
(lux) were continuously recorded at the sampling
locations (10 m depth) using data loggers (Onset
HOBO Pendant UA-002-64; temperature accuracy:
±0.53°C, spectral detection range: 150 to 1200 nm).
The presented light data are seasonal means of max-
imum irradiance measured during 11:00 and 13:00 h
(see Table 2), and lux readings were converted to
photosynthetically active radiation (PAR; µmol
quanta m−2 s−1; 400 to 700 nm wavelengths) using the
following approximation: 1 µmol quanta m−2 s−1 =
52.0 lux. This conversion factor was obtained by
inter-calibrating the lux readings with data obtained
from a parallel deployed PAR sensor (LI-COR LI-
192SA underwater quantum sensor) during a simul-
taneous minute-by-minute measurement over 5 h.
Both readings correlated well (r2 = 0.83) and the
obtained conversion factor of 52.0 was similar to 51.2
reported by Valiela (1984). Weekly seawater samples
were collected at 10 m water depth (~1 m above the
sand) using high-density polyethylene canisters (5 l,
n = 4) and transported back to the laboratory within
30 min. There, subsamples for inorganic nutrients,
chlorophyll a (chl a), particulate organic carbon
(POC) and particulate nitrogen (PN) were collected.
Inorganic nutrient subsamples (50 ml) were filtered
through cellulose acetate membrane filters (nominal

pore size: 0.45 µm) for determination of dissolved
inorganic nitrogen (DIN: ammonium, nitrate and
nitrite) and dissolved inorganic phosphate (DIP)
 following standard methods (Murphy & Riley 1962,
Strickland & Parsons 1972, Holmes et al. 1999).
Ammonium was determined fluorometrically using a
Trilogy Fluorometer (Turner Designs), while all other
nutrients were measured photometrically with a
JASCO-V630 spectrophotometer (Jasco Analytical
Instruments). Detection limits for ammonium, DIP
and nitrogen oxides (nitrate and nitrite) were 0.09,
0.01 and 0.02 µM, respectively. Chl a subsamples (1 l)
were filtered onto pre-combusted GF/F filters (nomi-
nal pore size: 0.7 µm) and stored frozen at  −80°C in
the dark until analysis. Chl a was extracted with 90%
acetone (12 h in the dark at 4°C) and measured using
a Trilogy Fluorometer fitted with a non-acidification
module (CHL NA #046, Turner Designs). Additional
subsamples for POC (1 l) and PN (2 l) were filtered
onto pre-combusted GF/F filters, dried in the oven
(40°C, 48 h) and stored dry pending analysis. Prior to
analysis dried filters were wrapped in silver foil and
POC filters were acidified with 0.1 N HCl to remove
any inorganic carbon. POC and PN filter contents
were measured on a EuroVector elemental analyser
(EURO EA 3000) with analytical precision of ≤0.1% C
and ≤0.03% N.

Substrate sampling

Two neighbouring back reef sites at 10 m water
depth in front of the MSS covered by either carbon-
ate or silicate sand were chosen for substrate sam-
pling using SCUBA. The lateral distance between
the 2 sites was ~150 to 200 m, and both sites were in
close vicinity (5 m distance) to the adjacent coral reef
framework. Both sand types revealed distinct miner-
alogical, physical and biological characteristics as
repeatedly measured by several previous studies
(Table 1). Once during each season, carbonate sand
(n = 8) and silicate sand (n = 8) samples were taken
using custom-made PVC sediment corer (inner dia -
meter: 4.3 cm). Additional carbonate sand samples (n
= 8) showing dark-brown microbial mats (~1 to 2 mm
thick) on top were collected within 100 m distance
from the bare carbonate sand sampling site. Cores
were immediately transported back to the MSS
where the top 1 cm surface layer of each core was
individually transferred into a petri-dish of equal
diameter (planar surface: 14.52 cm2) before being
placed into individual incubation glass chambers
(500 ml chamber for carbonate and silicate sands,

49



Mar Ecol Prog Ser 527: 47–57, 2015

1000 ml chamber for microbial mats). During all han-
dling, special care was taken to keep the sediment
stratification and minimize the exposure time to air
(<30 s). All chambers were kept in an outdoor 800 l
flow-through aquarium during subsequent measure-
ments of sedimentary O2 fluxes and N2 fixation over
the next 2 d.

Quantification of O2 fluxes

All following incubations took place in the outdoor
800 l flow-through aquarium supplied with seawater
pumped directly from the reef at the 10 m sampling
depth (exchange rate: 4000 l h−1) to ensure in situ
water temperature and nutrient concentrations. Light
intensity was monitored with lux and PAR data log-
gers (see above) and adjusted with black netting to
those measured in situ at 10 m water depth. O2 fluxes
of the sand samples as a proxy for primary productiv-
ity were quantified in 2 individual incubations. The
first incubation was carried out on the sample collec-
tion day 1 to 2 h after sunset to measure dark respira-
tion (R), while the second incubation was started the
following day at 12:00 h for net photosynthesis (Pnet)
determination. Each sand substrate (n = 8) was incu-
bated individually and additional chambers (500 ml,
n = 8) only filled with seawater served as controls to
measure planktonic background metabolism. Cham-
bers were sealed and incubated under constant stir-
ring (600 rpm) for 2 to 6 h (CimarecTM i Telesystem
Multipoint Stirrers, Thermo ScientificTM). O2 concen-
trations were measured at the beginning and end of

each incubation period using a salinity- and temper-
ature-corrected O2 optode sensor (MultiLine® IDS
3430, WTW). End concentrations never exceeded
8.3 mg O2 l−1 during Pnet nor did they fall <5.4 mg O2

l−1 during R incubations. To calculate O2 fluxes, O2

start concentrations were subtracted from end con-
centrations, and the results were normalized by incu-
bation time. Finally, O2 fluxes were corrected for the
seawater control signal related to the chamber vol-
ume and normalized to the sand surface area (nmol
O2 cm−2 h−1). Gross photosynthesis (Pgross) rates were
calculated according to Pgross = Pnet − R. In order to
calculate the N requirement for Pgross, the daily O2

production was calculated assuming a daily 12 h
photoperiod and values were converted into C fluxes
using a community photosynthetic (PQ) and respira-
tory quotient (RQ) of 1.0 (1 mol O2 = 1 mol C) accord-
ing to Taddei et al. (2008) who experimentally deter-
mined similar PQ and RQ values for coral reef sands.

Quantification of N2 fixation

N2 fixation rates were quantified 3 to 4 h after the
Pnet incubation ended by applying a modified acetyl -
ene (C2H2) reduction technique (Capone 1993, Wil-
son et al. 2012). C2H2 gas was freshly generated from
calcium carbide and bubbled through fresh seawater
in order to produce C2H2-enriched seawater. Incuba-
tions were conducted in 500 ml glass chambers con-
taining 400 ml natural seawater of which 10% were
replaced with C2H2-enriched seawater. Chambers
were immediately sealed gas-tight with a spring-
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Parameter Carbonate sand Silicate sand Reference

CaCO3 content (%) 75−87 4−19 Rasheed et al. (2003b), 
Schöttner et al. (2011)

Grain size (µm) 553−559 229−326 Rasheed et al. (2003b), 
Schöttner et al. (2011)

Sorting coefficient 1.3 0.9 Rasheed et al. (2003b)
Permeability (m−2 × 10−12) 116−143 19−27 Rasheed et al. (2003b), 

Wild et al. (2005)
Porosity (%) 47 33 Rasheed et al. (2003b)
OC content (%) 0.36 0.24 Rasheed et al. (2003b)
OC decomposition (mg m−2 d−1) 3.0 2.0 Rasheed et al. (2003a)
DIN content (µmol l−1) 17−20 6−7 Rasheed et al. (2003b)
DIP content (µmol l−1) 1.4−1.9 0.5−0.6 Rasheed et al. (2003b)
Ammonium efflux (mmol m−2 d−1) 3.41 ± 0.32 2.15 ± 0.26 Rasheed et al. (2003a)
DIP efflux (mmol m−2 d−1) 0.03 ± 0.002 0.02 ± 0.001 Rasheed et al. (2003a)
Chl a (µg g−1) 0.72 ± 0.16 0.63 ± 0.12 Rasheed et al. (2003b)
Bacterial cell number (cm−3) 3.1 ± 0.9 × 109 1.5 ± 0.5 × 109 Schöttner et al. (2011)

Table 1. Sediment properties of carbonate and silicate sand in the Gulf of Aqaba previously measured at the study site. 
OC: organic carbon, DIN: dissolved inorganic nitrogen, DIP: dissolved inorganic phosphate
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loaded glass lid equipped with a rubber injection
port on top for gas sampling, and 10% of the air
headspace was replaced by freshly generated C2H2

gas. In addition, 4 different sets of controls were
tested for the reduction of C2H2 to ethylene (C2H4)
production: (1) unfiltered seawater control (without
sand samples, n = 8); (2) 0.2 µm-filtered seawater
control (without sand samples, n = 6); (3) petri-dish in
unfiltered seawater (without sand sample, n = 6); (4)
sand sample in unfiltered seawater without C2H2

addition (natural C2H4 production, n = 6). Over the
entire incubation period (24 h), all chambers were
magnetically stirred as described above, and gas
samples were taken at 0, 4, 12, 16 and 24 h. At each
of these time intervals, 1 ml of gas sample was col-
lected with a gastight syringe from each chamber,
transferred into gastight 2 ml vials previously filled
with distilled water, and stored frozen upside down
until analysis. C2H4 concentrations of gas samples
were measured in the field laboratory using a reduc-
ing compound photometer (RCP; Peak Laboratories)
with a detection limit of 100 ppb. Calibration of the
RCP was conducted using serial dilutions of a 200 ±
4 ppm C2H4 standard in air (Restek). The C2H4 evolu-
tion in each incubation chamber was calculated
according to Breitbarth et al. (2004). Values were
finally corrected for the unfiltered seawater control
signal related to the chamber volume and normalized
to incubation time and sand planar surface area. All
rates are reported as means ± SE and in C2H4 pro-
duction rates (nmol C2H4 cm−2 h−1) to allow good
comparison to previous studies using the C2H2 reduc-
tion assay. C2H4 rates were only converted to N2 fix-
ation rates in order to calculate the percentage
 contribution by N2 fixation to the N requirements for
microphytobenthic primary produc-
tion. Since no parallel 15N calibration
was applied, a theoretical ratio of
3 mol C2H2 reduced to 1 mol N2 fixed
was used, which has been previously
found for white coral reef sands dom-
inated by diatoms and dinoflagellates
(Charpy-Roubaud et al. 2001).

Statistical analysis

All statistical analyses were carried
out using Primer-E version 6 software
(Clarke & Gorley 2006) with the
PERMANOVA+ add-on (Anderson
2001). Analyses were based on Bray
Curtis similarities of the physiological

parameters (square root transformed). Two-factor
PERMANOVAs were performed to test for differ-
ences of the parameters N2 fixation, Pgross and R rates
between substrate type and season. Therefore, type I
(sequential) sum of squares was used with permuta-
tion of residuals under a reduced model (999 permu-
tations), and pairwise-tests were carried out if signif-
icant differences occurred. Finally, correlations
between N2 fixation rates and the environmental
water parameters as well as between N2 fixation and
sedimentary O2 fluxes (Pgross and R) were determined
via linear regression.

RESULTS

Environmental key parameters

All monitored environmental key parameters ex -
hibited strong seasonal patterns (Table 2) with the
most distinct differences between the stratified (sum-
mer and fall) and the deep-water mixed (winter and
spring) season. Highest irradiance (PAR) was meas-
ured in spring and summer compared to winter and
fall (Table 2). Summer also revealed the highest
water temperature before it decreased during fall
until it reached annual minimum values during win-
ter and spring. Inorganic nutrients (DIN and DIP)
were negatively correlated to water temperature
with at least twice as high concentrations during win-
ter and spring compared to summer and fall, thereby
clearly reflecting the seasonal change between strat-
ification and deep-water mixing of the water column.
The calculated DIN:DIP ratio ranged from 5.31 to
11.25 throughout the year but was consistently lower
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Environmental variable Winter Spring Summer Autumn

Irradiance (PAR) 180 (15) 257 (9) 317 (17) 159 (18)
Temperature (°C) 23.0 (0.1) 22.8 (0.1) 27.5 (0.2) 25.2 (0.2)
DIN (µM) 1.03 (0.02) 1.02 (0.11) 0.20 (0.04) 0.43 (0.08)
Ammonium (µM) 0.32 (0.04) 0.46 (0.03) 0.14 (0.03) 0.28 (0.06)
Nitrate (µM) 0.34 (0.03) 0.44 (0.04) 0.04 (0.01) 0.13 (0.05)
Nitrite (µM) 0.37 (0.06) 0.12 (0.04) 0.02 (0.01) 0.02 (0.01)
DIP (µM) 0.11 (0.01) 0.10 (0.01) 0.04 (0.01) 0.04 (0.01)
DIN:DIP 9.59 (1.09) 10.21 (0.43) 5.31 (3.40) 11.25 (2.22)
POM (µM) 7.18 (0.70) 11.52 (1.48) 8.92 (1.23) 9.68 (0.49)
POC:PN 7.34 (0.57) 8.18 (0.59) 8.34 (0.44) 10.20 (0.51)
Chl a (µg l−1) 0.21 (0.01) 0.22 (0.02) 0.10 (0.01) 0.19 (0.02)

Table 2. Summary of key environmental water parameters monitored at 10 m
water depth during 4 seasons. DIN: dissolved inorganic nitrogen, DIP: dis-
solved inorganic phosphate, POC: particulate organic carbon, PN: particulate
nitrogen, POM (POC+PN): particulate organic matter. Values are means 

(n = 4) (±SE)
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than the Redfield ratio (16:1), indica-
ting N limited conditions in the water
column, particularly during summer.
N limitation is further suggested by
the ratio of POC:PN in the water
 column that always exceeded the
Redfield ratio (106:16). POC and PN
revealed highest concentrations
 during spring together with highest
chl a concentrations in the water,
thereby indicating the seasonal
plankton bloom and the increased
production of biomass during this
period of the year.

O2 fluxes by reef sand communities

Pgross rates averaged 270 ± 25 and
233 ± 17 nmol O2 cm−2 h−1 for carbon-
ate sand and silicate sand, respec-
tively, across all seasons. Both bare
sands exhibited similar Pgross rates
during each season except during
spring when carbonate sand exhib-
ited significantly higher rates com-
pared to silicate sand. The seasonal
pattern was similar with significantly increased Pgross

rates during spring and summer for both sands
(Fig. 1, Table 3). Microbial mats showed no seasonal
variation of Pgross rates but the annual average of 809
± 43 nmol O2 cm−2 h−1 was 3 times higher compared
to carbonate and silicate sand. R was on annual aver-

age almost twice as low in carbonate (−70 ± 3 nmol
O2 cm−2 h−1) compared to  silicate sand (−126 ±
12 nmol O2 cm−2 h−1). While  carbonate sand showed
significantly higher R rates during spring and sum-
mer, R in silicate sand peaked during winter and
summer. R rates of microbial mats were significantly

the highest during summer and averaged
−135 ± 7 nmol O2 cm−2 h−1 over all seasons,
thus being in the range of R measured for
 silicate sands.

N2 fixation by reef sand communities

On annual average, N2 fixation by carbon-
ate sand communities (2.88 ± 0.41 nmol C2H4

cm−2 h−1) was significantly higher when
compared to silicate sand (1.52 ± 0.15 nmol
C2H4 cm−2 h−1). The 2 sands revealed a spe-
cific seasonal variability in N2 fixation rates
(Fig. 2, Table 3). Carbonate sand was signif-
icantly more active during spring and sum-
mer thereby following the seasonal pattern
of Pgross. This is supported by a significant
positive linear relationship with N2 fixation
explaining 69% of the variation in Pgross
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Fig. 1. Gross photosynthesis (Pgross) and dark respiration (R) rates
measured as O2 fluxes in the substrates carbonate sand, silicate sand
and microbial mat during all seasons. Values: mean (n = 8) ± SE. Dif-
ferent letters = significant differences for Pgross (A−C) and R (a−c) rates
between the 4 seasons for each substrate type, respectively, based on 

pair-wise PERMANOVA

Effect df SS MS Pseudo-F p-value

N2 fixation (nmol C2H4 cm−2 h−1)
Substrate (Su) 2 31607 15804 140.95 <0.001
Season (Se) 3 5384 1795 16.01 <0.001
Su × Se 6 11707 1951 17.40 <0.001
Residuals 76 8521 112
Total 87 57219

Pgross (nmol O2 cm−2 h−1)
Substrate (Su) 2 15933 7967 150.12 <0.001
Season (Se) 3 3990 1330 25.06 <0.001
Su × Se 6 2264 377 7.11 <0.001
Residuals 76 4033 53
Total 87 26221

R (nmol O2 cm−2 h−1)
Substrate (Su) 2 4204 2102 44.89 <0.001
Season (Se) 3 358 119 2.55 0.052
Su × Se 6 2385 398 8.49 <0.001
Residuals 76 3559 47
Total 87 10507

Table 3. Results of 2-factorial PERMANOVAs for N2 fixation, gross photosyn-
thesis (Pgross) and dark respiration (R) rates for the substrate types (carbonate
sand, silicate sand and microbial mat) during the 4 investigated seasons (win-
ter, spring, summer and autumn) in 2013. Substrate and season were fixed
effects. PERMANOVA was based on Bray-Curtis similarity after square root
transformation. Type I (sequential) sum of squares was used with permutation
of residuals under a reduced model (999 permutations). Significant p-values 

are in bold
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(Table 4). In contrast, silicate sand revealed signifi-
cantly the highest N2 fixation activity during winter
and summer similar to seasonal maxima of R rates.
Correlation revealed a significant positive linear
relationship between the 2 processes with 38% of
the variation in R being explained by N2 fixation
(Table 4). Overall, seasonal N2 fixation variability
was more pronounced in carbonate (1.14 to 5.25 nmol
C2H4 cm−2 h−1) compared to silicate sand (0.81 to
2.42 nmol C2H4 cm−2 h−1). Correlations to the key
environmental parameters for N2 fixation of carbon-
ate sand revealed a significant positive linear rela-
tionship to light intensity and POM content in the
water, while N2 fixation of silicate sand was nega-
tively correlated to POM content but not to light

intensity (Table 4). Additionally, N2 fixation of both
sands showed a  significant negative relationship to
the DIN:DIP ratio in the water column.

Compared to the 2 bare reef sands, N2 fixation
activity associated with microbial mats was always
almost one order of magnitude higher (seasonal
 average: 11.95 ± 1.16 nmol C2H4 cm−2 h−1). N2 fixation
in microbial mats was significantly different between
each season, with the highest rates in spring, fol-
lowed by fall, summer and winter (Table 3). How-
ever, no significant relationship was found between
N2 fixation activity and the key environmental water
parameters (Table 4). Correlation analysis between
N2 fixation and O2 fluxes in microbial mats revealed
significant positive relationships to both Pgross and R
(Table 4).

Besides the seasonal variability of N2 fixation aver-
aged over 24 h, all 3 substrates revealed specific dark
and light N2 fixation rates with either similar dark
and light N2 fixation or relatively higher dark N2 fix-
ation on a 24 h basis (Fig. 2). Higher dark N2 fixation
was measured for carbonate sand during summer, for
silicate sand during winter and for microbial mat
communities during summer and autumn.

DISCUSSION

Primary productivity and N2 fixation by 
reef sand communities

This is the first study comparatively describing pri-
mary productivity and N2 fixation activity of car -
bonate and silicate reef sand communities. We inves-
tigated the top sediment layer where highest
diazotrophic activity occurs (Werner et al. 2008). The
top sediment layer of both sands can be character-
ized as net-autotrophic and largely independent
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Parameter Carbonate Silicate Microbial 
sand sand mat

Environmental factor
Irradiance 0.491*** 0.023 0.057
Temperature 0.045 0.048 0.052
DIN 0.017 0.009 0.043
DIP 0.003 0.002 0.033
DIN:DIP 0.189* 0.259** 0.048
POM 0.212* 0.467*** 0.006

Sedimentary O2 fluxes
Pgross 0.690*** 0.153* 0.568***
R 0.215* 0.375*** 0.610***

Table 4. Linear regression analysis between N2 fixation rates
of the 3 sand substrates (carbonate sand, silicate sand,
microbial mat) and both the key environmental water
parameters (DIN: dissolved inorganic nitrogen, DIP: dis-
solved inorganic phosphate, POM: particulate organic mat-
ter) and the O2 fluxes (Pgross: gross photosynthesis, R: dark
respiration) of the sand substrates. Data presented as R2

 values at significant levels of *p < 0.05, **p < 0.005, ***p <
0.001. Significant positive relationships in bold; significant 

negative relationships in italics
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from allochthonous C input, as Pgross rates largely
exceeded R rates. N2 fixation rates for carbonate and
silicate sands presented here agree well with values
previously measured at different reef locations
(Table 5). Shashar et al. (1994) measured higher, yet
variable, N2 fixation rates in reef sediments from a
close site in the Gulf of Aqaba (Eilat). These differ-
ences may be explained by the use of mixed grain
sizes ranging from gravel (5 mm) to fine (0.1 mm) and
a higher proportion of large grain sized sands, while
the present study measured N2 fixation exclusively in
fine grained sands (0.2 to 0.6 mm; Table 1).

The present study measured significantly higher
N2 fixation rates in carbonate sand than in silicate
sand, and this may be explained by sediment type-
specific characteristics. The coarser carbonate sand
was less well sorted but had a much higher perme-
ability and porosity than the silicate sand (Rasheed et
al. 2003a, Wild et al. 2005). High permeability gen -
erates advective driven fluid fluxes between the
 sediment and the overlying water. This enhances
solute exchange and the flux of suspended organic
matter (Rasheed et al. 2003a), while a highly porous
grain structure increases the specific surface area
and thus the available substrate for microbial com-
munity growth. These characteristics support micro-
bial abundance in carbonate sands that largely
exceeds cell numbers in silicate sands (Wild et al.
2004a, 2006, Schöttner et al. 2011). Furthermore, sig-

nificantly higher organic matter degradation and C
turnover rates in carbonate sand occur (Rasheed et
al. 2003a, Wild et al. 2005), which increase organic
substrate availability (Table 1; Rasheed et al. 2003b).
This has previously been described as a main factor
controlling N2 fixation activity in shallow carbonate
sediments (O’Neil & Capone 1989). Since N2 fixation
 represents an energetically costly process (due to
breakage of the N2 triple-bond), diazotrophs have a
high need for energy-rich organic substrates, and
thus may benefit from the higher organic C content
in carbonate compared to silicate sands (Table 1).
Furthermore, Schöttner et al. (2011) investigated
microbial communities of carbonate and silicate sand
in the same area and identified sand type as a main
factor structuring sediment-associated microbial
assemblages. Similarly, diazotrophic assemblages
likely differ between the 2 sands. Overall, the pres-
ent findings highlight the influential role of sedi-
ment-specific characteristics (e.g. grain size, perme-
ability, diazotrophic composition) in controlling
sediment-associated N2 fixation activities.

Unconsolidated reef sands also provide open space
for the development of microbial mats which are
often dominated by cyanobacteria communities and
represent important contributors to benthic primary
productivity and N supply in coral reefs (Charpy et
al. 2010, 2012, Cardini et al. 2014). The presented
values for N2 fixation compare well with values pre-
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AR                               AR:NF                NF                         Location                 Method                             Reference

Carbonate sands
2.88 ± 0.41a                      3              0.46 ± 0.07                   Red Sea                    C2H2 Present study       
0.04−2.32                         4               0.01−0.28                  Caribbean                  C2H2 O’Neil & Capone (1989)
0.75−1.95                         3               0.12−0.31                       GBR                       C2H2 Capone et al. (1992)
19.52 ± 17.50b                 4              2.34 ± 2.10                   Red Sea                    C2H2 Shashar et al. (1994)
0.18−1.02                   1.8−4.8c         0.03−0.28            French Polynesia        C2H2; 15N2 Charpy-Roubaud et al. (2001)
−                                       −               0.10−0.16              Ishigaki Island               15N2 Miyajima et al. (2001)
0.32                                1.6c                  0.34                 French Polynesia        C2H2; 15N2 Charpy-Roubaud & Larkum (2005)
9.76 ± 3.21a                      4              1.17 ± 0.39             New Caledonia              C2H2 Charpy et al. (2007)
0.03−0.12                         3             0.004−0.019                     GBR                       C2H2 Werner et al. (2008)

Silicate sands
1.52 ± 0.15a                      3              0.24 ± 0.02                   Red Sea                    C2H2 Present study       

Microbial mats
11.95 ± 1.16a                    3              1.91 ± 0.19                   Red Sea                    C2H2 Present study       
2.7−47.8                           4                 0.3−5.7                    California                   C2H2 Paerl et al. (1993)
0.96                                1.6c                  0.57                 French Polynesia        C2H2; 15N2 Charpy-Roubaud & Larkum (2005)
0.59−2.97                         4               0.07−0.36               Indian Ocean                C2H2 Charpy et al. (2012)

aMean ± SE; bmean ± SD; cconversion factor was empirically determined

Table 5. Acetylene reduction (AR; nmol C2H4 cm−2 h−1) and inferred N2 fixation rates (NF; mmol N m−2 d−1) of the different reef
sand communities investigated in the present study in comparison with values reported from other coral reef areas worldwide. 

GBR: Great Barrier Reef, Australia. AR:NF is the respective C2H2:N2 conversion ratio used to calculate NF from AR
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viously reported for benthic microbial mats in other
coral reef ecosystems (Table 5). Compared to bare
carbonate sand, N2 fixation and Pgross rates of micro-
bial mats were ~4.5 and ~3 times higher, respec-
tively, thus indicating a higher de novo input of N
 relative to photosynthetically fixed C. This increased
N availability may enable rapid accumulation of
 biomass and the formation of dense mats in an
extremely oligotrophic environment. This is sup-
ported by the present study displaying highest
microbial mat development and abundance during
spring, the season also showing the highest year-
round N2 fixation activity by the mats. Nevertheless,
all microbial mats in the study site were of small size
and overall covered <1% of the bare carbonate sand
area on the reef. Considering such low coverage by
microbial mats compared to bare carbonate sand
(18% of total reef area), the contribution of bare reef
sand areas to total benthic N2 fixation is likely much
higher despite the lower fixation rates per unit of
 surface area.

Seasonal variability of primary productivity 
and N2 fixation

This study investigated the response of sediment-
associated primary productivity and N2 fixation to
seasonal changing environmental conditions. Car-
bonate and silicate sands were exposed to similar
changing environmental conditions, thus differences
in the biological variables reflect a sand type specific
response. Overall, seasonal variability was more pro-
nounced in carbonate than in silicate sands. This is
most likely due to sand-specific differences in per-
meability, specific surface area, microbial community
and mineralogy leading to tighter benthic−pelagic
coupling between the water column and sediment
pore-water in carbonate sand. Therefore, seasonal
variation in water column nutrient availability will
more directly affect the nutrient inventory in the
upper sediment layer (0 to 2 cm) of carbonate than
silicate sand (Rasheed et al. 2003b). Schöttner et al.
(2011) investigated the effects of season, sediment
depth and location on microbial community structure
in reef sediments in the Gulf of Aqaba and found that
season was the most significant structuring factor in
carbonate sands, while sediment depth was more
influential in silicate sands. Seasonality and sediment
depth may also determine the diazotrophic commu-
nity structure, thus explaining the stronger seasonal
variation in N2 fixation activity observed for carbon-
ate compared to silicate sand in the present study.

N2 fixation in carbonate sand was primarily stimu-
lated during spring and summer by seasonally
increased ambient light and POM availability. This
agrees with previous studies describing light as a
main factor influencing sedimentary N2 fixation
(Charpy-Roubaud et al. 2001, Charpy et al. 2007,
Werner et al. 2008) and suggests the dominance of
phototrophic diazotrophs. The increased N2 fixation
rates in carbonate sand are mainly due to elevated
diazotrophic activity during night, indicating a shift
towards a more non-heterocystous bacterial commu-
nity. Non-heterocystous diazotrophs separate the O2-
sensitive N2 fixing nitrogenase enzyme complex tem-
porally from O2 producing photosynthesis, whereas
heterocystous diazotrophs can fix N2 also during day-
light in specialized O2-free cells (heterocyst). Night-
time N2 fixation activity also depends on a photosyn-
thetic energy supply and correlates positively to the
intensity of the previous daylight period (Charpy et
al. 2007). Furthermore, N2 fixation activity het-
erotrophically profits from available organic C
sources. Thus, the 2-fold higher POM supply via sed-
imentation during spring and summer (Wild et al.
2009) likely provides additional energy for sediment-
associated N2 fixation. Despite seasonal changes in
POM availability, carbonate sand communities
revealed little seasonal variation in R rates, while pri-
mary productivity responded similarly as N2 fixation
to seasonality. This is in line with previous studies
(Rasheed et al. 2002, 2003b, Wild et al. 2009) and
suggests that the microphytobenthos is largely inde-
pendent from allochthonous C input and likely sus-
tains its primary productivity via N2 fixation.

N2 fixation in silicate sand was negatively corre-
lated to Pgross, positively to R and was not influenced
by ambient light availability; thus it strongly indi-
cates the dominance of heterotrophic diazotrophs.
Although activity of heterotrophic diazotrophs com-
pletely relies on external organic C sources, N2 fixa-
tion in silicate sand was negatively related to POM
concentrations in the water column. This implies a
minor organic C supply and trophic link between the
sediment and the overlaying water and is further
supported by a slower transport of organic substrates
through the rather diffusion-limited silicate sands
compared to the highly advection-driven carbonate
sands (Rasheed et al. 2003b). Despite a sand-specific
seasonal response, N2 fixation of both sands nega-
tively correlate to the DIN:DIP water column ratio.
The low DIN:DIP ratio over the year indicates N
 limited conditions and suggest N2 fixation as an
advantageous strategy for sedimentary primary
 productivity.
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Contribution of N2 fixation to primary productivity

The significant linear correlation between N2 fixa-
tion and Pgross suggests a tight coupling between the
2 processes. Averaged over all seasons, daily Pgross in
carbonate sand, silicate sand and microbial mats was
calculated to require 4.89, 4.21 and 14.66 mmol N
m−2 d−1, respectively, assuming the Redfield ratio
(106:16) for primary productivity applicable to micro-
phytobenthic communities of reef sands (Delesalle et
al. 1998, Charpy-Roubaud et al. 2001, Werner et al.
2008). Thus, on annual average, N2 fixation rates
measured here would supply 8.4, 8.1 and 13.3% of
the total N needed for microphytobenthic primary
productivity in carbonate sand, silicate sand and
 microbial mats, respectively. These estimates are
similar to a New Caledonian reef lagoon, where N2

fixation in reef sands and microbial mat communities
contributed between 5 and 21% of the N required for
primary productivity (Charpy et al. 2007, 2010). Also
at Sesoko, Japan, similar contributions of 5.7% for
sandy bottoms and 10.0 to 26.5% for microbial mats
were calculated (Casareto et al. 2008). However,
these estimates likely underestimate the contribution
of N2 fixation, as a substantial quantity of N is re -
cycled (autochthonous N-input) within the reef sedi-
ments (Crossland et al. 1991, Charpy-Roubaud et al.
2001) thereby largely reducing the photometabolic
demand for ‘new’ N (allochthonous N-input) but
 increasing the relative N input via N2 fixation.

DIN fluxes from the sediment to the overlaying wa-
ters were shown to importantly fuel primary produc-
tivity of the whole reef benthos (Charpy-Roubaud et
al. 1996, 2001, Rasheed et al. 2002). At the study site,
carbonate sand shows a 2.8 higher DIN content and
1.6 higher ammonium efflux to the overlaying water
compared to silicate sand, which may be explained
by its generally higher N2 fixation and organic matter
degradation rates (Table 1, Rasheed et al. 2003a,b).
Overall, the present findings highlight the significant
role of N2 fixation as an important N source for
 sedimentary primary productivity. By releasing large
quantities of fixed N to the overlaying water, reef
sediments, particularly carbonate sands, may signifi-
cantly support primary productivity of other benthic
organisms and of the entire coral reef ecosystem.
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