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INTRODUCTION

Caribbean coral reefs have changed dramatically
in the last 5 decades (Jackson et al. 2014); the abun-
dance of reef-associated organisms, especially corals
and fishes, have suffered massive declines through
hurricanes, disease outbreaks, bleaching, pollution,
sedimentation and overfishing (Hughes 1994, Aron-
son & Precht 2001, Kramer 2003, Weil et al. 2006,
Paddack et al. 2009). A number of studies have quan-

tified the state of Caribbean reefs at a regional scale
and, in some cases, their trajectory (Gardner et al.
2003, Côté et al. 2005, Bruno et al. 2009, Schutte et al.
2010, Jackson et al. 2014). Regional assessments
allow a benchmark to be set against which individual
reefs can be compared in space and time, quantify-
ing regional trends (Jackson et al. 2014) and compar-
ing different regions to identify the drivers of large-
scale differences (Roff & Mumby 2012). Most re gio -
nal assessments have used meta-analysis to integrate
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from an independent dataset for the basin (Atlantic and Gulf Rapid Reef Assessment). Further-
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the results of multiple studies carried out by different
surveyors, usually with different objectives in mind.
An exception has been the analysis of regionally
standardized survey methodologies, such as the
Atlantic and Gulf Rapid Reef Assessment (AGRRA)
(Kramer 2003), although this too suffers from the
issue of multiple surveyors and habitat types, as well
as some methodological inconsistencies that increase
the variability in the data (e.g. variable sampling
effort, haphazardly located transects) (Kramer 2003).

Regional meta-analyses have been shown to be
robust to common inconsistencies among data, such
as variable survey methodology (Côté et al. 2005),
however they cannot account for inconsistencies that
have not been recorded. In particular, it is typically
assumed that reefs can be grouped by major reef
zone (e.g. patch reef, backreef, forereef) and depth.
Yet, forereef environments, which can be identified
by their geomorphology (Andréfouët et al. 2006),
comprise at least 2 contrasting habitats even at the
same depth. The first are true coral habitats that
were generally built by the major framework-build-
ing corals Orbicella spp. and some species of acro -
porids (Goreau 1959, Geister 1977, Mumby & Har-
borne 1999). These habitats, hereafter Orbicella
reefs, can be structurally complex and usually pos-
sess high diversity and density of species, while also
supporting the most significant ecosystem services,
which include cultural, educational and fishery serv-
ices (Mumby et al. 2008, Harborne 2009). The second
are ‘gorgonian plains’ (Mumby & Harborne 1999,
Mumby 2014), also known as hardgrounds, which
are relatively featureless, flat pavement that typically
possesses very low relief and is dominated by octoco-
rals. Gorgonian plains are usually located in more
exposed environments (Burke 1982, Torres et al.
2001), and have very little scleractinian coral, likely
because higher exposure resuspends sediments near
the benthos, providing an un stable substrate for
recruitment. However, octo  corals, the predominant
benthic invertebrates on this habitat, are more resili-
ent to fluctuating habitats (Opresko 1973) and com-
monly recruit and survive in areas with water move-
ment (Barham & Davies 1968, Yoshioka & Yoshioka
1989). Few empirical studies identify habitat type
explicitly and, with the exception of CARICOMP
(Caribbean Coastal Marine Productivity Program)
(CARICOMP 2002), most regional survey methodolo-
gies, including AGRRA, combine all forereef habitats
together during analyses. Regio nal assessments of
coral reef condition have therefore potentially com-
bined hardbottom habitats that are naturally charac-
terized by low coral cover with coral-based bioherms.

Such confounding would tend to reduce the average
coral cover by including sites that lack and have
always lacked high abundance of coral, in an unbal-
anced design through time and space (i.e. proportion
of sites per habitat is un likely to be the same), which
would therefore add noise to the signal and obscure
spatial and temporal patterns within the basin.

Recent advances with remote sensing have now
made it possible to discriminate Orbicella reefs from
gorgonian plains at a large scale. Several techniques
are available, including the use of acoustic sensors
that detect the roughness and hardness of the seabed
(Bejarano et al. 2010, 2011), as well as measures of
wave exposure, which have been shown to accu-
rately (81%) discriminate Orbicella reefs from gor-
gonian plains within the forereef, given that gorgon-
ian plains thrive in heavily exposed environments
(Chollett & Mumby 2012). Wave exposure can be
obtained using only information on the configuration
of the coastline and prevailing wind speed and direc-
tion, representing a cheap alternative for the large-
scale mapping of forereef habitats (Chollett &
Mumby 2012). In the present study, one of our major
goals was to assess the impact of confounding for-
ereef habitats on average scleractinian coral cover
using a dataset gathered by the FORCE (Future of
Reefs in a Changing Environment) project, collected
with the same methods and surveyors in 12 countries
in the Caribbean. We validated our results with an
independent dataset available for the region,
AGRRA, and put our results into context by compar-
ing our estimates of current scleractinian coral cover
to other regional studies (Gardner et al. 2003, Jack-
son et al. 2014).

MATERIALS AND METHODS

Data collection (FORCE)

Coral reef benthic communities were surveyed from
2010 to 2012 in 12 countries: Honduras, Belize, Cu-
raçao, Bonaire, Jamaica, Barbados, Dominican Re pu -
blic, Antigua, St. Lucia, St. Vincent and the Grena -
dines, Costa Rica and Panamá (Fig. 1). Sites within the
forereef according to geomorphological maps pro-
duced by the Millennium Coral Reef Mapping project
(Andréfouët et al. 2006), were selected using the ‘gen-
erate random points’ tool of the Hawth Tools program
in ArcGIS 9.2 (ESRI 2009). Sites were assessed in situ
and defined as having a homogeneous habitat within
a spatial extent of at least 200 × 200 m. Originally, we
set our experimental design to assess the current state
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of forereefs across the Caribbean, and at the time of
sampling we lacked the recently developed tools to
identify forereef habitats based on wave exposure
(Chollett & Mumby 2012). Consequently, the number
of sites per habitat is not balanced among countries
(Table 1). This shortcoming has been taken into ac-
count in the statistical analyses (see following sub-
section). Surveys were conducted at 92 Orbicella
reefs (Fig. 2a) and at 28 gorgonian plains (Fig. 2b) at
10−15 m depths with the exception of Honduras and
Belize where surveys were conducted at 5−10 m and
15−20 m (Table 1). Coral cover did not vary signifi-
cantly between depths in Honduras and Belize, there-

fore transects from the different depth
zones were pooled for further statistical
ana lyses. At each site, benthic commu-
nities were assessed on 6 randomly
placed 10 m transect lines which were
set parallel to the coastline. Scleractin-
ian coral cover was measured using
the point intercept method and corals
were identified to species level and
recorded every 10 cm. There are some
shortcomings to using point intercept
technique, in that coral cover estimate
may be lower in habitats that are char-
acterized by small coral colonies, com-
mon on gorgonian plains.

To assess the sufficiency of our sam-
pling given the sample size, the mar-
gin of error in coral cover was calcu-
lated for each forereef habitat. The
margins of error were moderate, with
a median of 4% for gorgonian plains
and 6% for Orbicella reefs.

Statistical analysis

Habitat differences (FORCE data)

To test whether combining forereef habitat types
skewed coral cover estimate in the Caribbean basin
and within individual countries, we used generalized
linear mixed models (GLMM) (Bolker et al. 2009)
using the lme4 package (Bates et al. 2014) in R. We
identified the effects of forereef habitat on the cover
of coral using the entire FORCE dataset. Coral cover

was the response variable, while
habitat was treated as the fixed factor
and sites and countries were random,
with sites nested within countries. To
select the optimal structure of the
random component, we ran 2 models,
the first with no random term and the
second with the random component
using site nested in country. The opti-
mal model was chosen based on the
lowest Akaike’s information criteria
(AIC) value. We used Poisson distri-
butions, given that the response vari-
able was a proportion (percentage of
coral), and estimated the parameters
with Laplace approximations because
there were fewer than 5 random vari-
ables (Breslow & Clayton 1993) for
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Country                                              Orbi-    Gorgo-      Depth        Sampling 
                                                            cella       nian          (m)               date

Antigua (ANT)                                      3             5           10−15          Jul 2011
Barbados (BAR)                                    8             0           10−15         Mar 2011
Belize (BEL)                                          5            10     5−10, 15–20    Nov 2010
Bonaire (BON)                                      7             0           10−15         Jan 2011
Costa Rica (CR)                                     0             8           10−15           Apr 12
Curaçao (CUR)                                      8             0           10−15         Jan 2011
Dominican Republic (DR)                    7             7           10−15         Jun 2011
Honduras (HON)                                 11            3      5−10, 15–20    Oct 2010
Jamaica (JAM)                                     11            0           10−15         Feb 2011
Panamá (PAN)                                      8             0           10−15         Apr 2012
St. Lucia (STL)                                      7             1           10−15          Jul 2011
St. Vincent and Grenadines (SVG)    12            3           10−15         Aug 2011

Table 1. Sampling design including the number of Orbicella reefs and gorgon-
ian plains, depth, sampling month and year for each country surveyed during 

this study
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Fig. 1. Location of study sites (d) surveyed in 12 Caribbean countries
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GLMMs. The optimal model was validated by plot-
ting the residuals against the fitted values and using
a quantile-quantile plot. Significance levels (p- values)
were ob tained from Z tests (Zuur et al. 2009).

Consistency of results (AGRRA data)

To confirm the differences in coral cover between
habitats observed in the FORCE results, we repeated
the analysis using the AGRRA (www.agrra.org) data-
set. As a conservative measure we included pre-
bleaching data (2005), therefore focusing on benthic
surveys carried out between 1998 and 2011. Many
sites in the AGRRA database have repeated meas-
urements; therefore, we used the most current year
of data for each site.

The AGRRA dataset includes a variety of habitat
types; therefore, data were extracted from forereef
habitats and further classified as Orbicella reefs and
gorgonian plains using the method described by
Chollett & Mumby (2012). We calculated the proba-
bility of occurrence of Orbicella reefs within forereef
zones given a predictive binomial model that uses
wave exposure as a sole predictor of habitat (Chollett
& Mumby 2012); wave exposure values were ex -
tracted for each AGRRA site at a 50 m spatial resolu-
tion for the Mesoamerican Barrier Reef (Chollett &
Mumby 2012), and a 1 km spatial resolution for the
rest of the Caribbean (Chollett et al. 2012). Predicting
habitat type from wave exposure has shown to be
accurate (81%) at a spatial resolution of 50 m (Chol-
lett & Mumby 2012); however, the accuracy of the
method is unknown when data at a lower spatial res-

olution are used. Therefore, we tested the accuracy
of the 1 km2 spatial resolution data on predicting
habitat type using the FORCE dataset and permuta-
tion analysis. Orbicella reefs and gorgonian plains
were misclassified 23 and 12% (respectively) of the
time with FORCE surveys, indicating that the accu-
racy of the predictive model is adequate at the spatial
resolution for the assignment of habitat to the
AGRRA data (1 km2). To acknowledge the uncer-
tainty in habitat assignment in further analyses, we
resampled the AGRRA dataset, and the mean coral
cover reported is based on the propagated errors, i.e.
the mean and standard errors were calculated from
100 permutations of samples, whereby 12% of the
samples (randomly selected from gorgonian plains
data) were replaced with data from randomly se -
lected Orbicella reef coral cover. This procedure was
repeated for Orbicella reefs, replacing 23% of the
samples.

Within- and between-country comparisons
(FORCE data)

Given the unbalanced design of the dataset, we as -
sessed the variation in coral cover between the fore -
reef habitats in countries where data existed for both
habitats: Antigua (ANT), Belize (BEL), Dominican
Republic (DR), Honduras (HON), and St. Vincent and
Grenadines (SVG). We used a GLMM test to identify
the effects of forereef habitat on coral cover within a
particular country. Coral cover was the re sponse vari-
able, whilst country and habitat were fixed variables,
and site was the random variable. Subsequently, we
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Fig. 2. Contrasting Caribbean coral forereef habitats: (a) Orbicella reefs and (b) gorgonian plains
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tested the interaction between country and habitat,
with site as a random variable. The relevance of the
random component was asses sed by comparing the 2
models described above. Model distributions and
procedures for model selection, validation, and
obtaining p-values were identical to those used in
GLMMs for testing habitat differences (see ‘Habitat
differences [FORCE data]’).

RESULTS

Habitat differences (FORCE data)

Coral cover was significantly greater (GLMM; p
< 0.0001) on Orbicella reefs (24 ± 1.3%, mean ±
SE) than on gorgonian plains (10 ± 1.6%) (Table
2). We observed the random effects (site nested in
country, country) to be significant (p < 0.0001);
standard errors of the random effects were 0.41
and 0.22, while variances were 0.17 and 0.05 for
site nested in country and country, respectively.
The frequency distribution of coral cover was
skewed for both the habitats, whereby the median
scleractinian coral cover on Orbicella reefs was
23%, more than double that of gorgonian plains
(9%). Because Orbicella sites dominated the data-
set, the overall average cover on both habitats was
modestly high, at 20 ± 0.5%. Maximum recorded
coral cover was 22.3% on gorgonian plains and
44.1% on Orbicella reefs (Fig. 3). Sixty-seven per-
cent of gorgonian plain sites exhibited a coral
cover ≤10%, while 55% of Orbicella reefs com-
prised a coral cover >20%.

Consistency of results (AGGRA data)

We used AGRRA data in order to assess the con-
sistency of the results observed in the FORCE
GLMM model, therefore testing the significance of
the fixed factor (habitat) and random factors (site
nested in country). The entire AGRRA dataset in -
cludes a variety of habitat types, with 22% of the
sites (673 in total) characterized as Orbicella reefs
and 78% as gorgonian plains. As observed with the
FORCE data (see Table 2), coral cover significantly
differed between forereef habitats within the
AGRRA data (GLMM; p = 0.0001) (Table 3), with
mean coral cover (±SE) on AGRRA Orbicella sites
being 19.2 ± 0.04%, while the average at gorgonian
plains was 14.8 ± 0.05%. We observed the random
effects (site nested in country, country) to be signifi-
cant (p = 0.0001) in the model; standard errors of the
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FORCE: Coral cover      Estimate    SE    Z-value  p-value

Fixed      Intercept           3.08      0.08     38.56    <0.0001
effects     Habitat              −0.81      0.12    −6.94    <0.0001

                                       Variance    SD   Z-value  p-value

Random  Site (Country)    0.17       0.41                 <0.0001
effects     Country              0.05       0.22                 <0.0001

AIC: 5967.6

Table 2. Effects of forereef habitat (Habitat) on coral cover in
the Caribbean region observed in the FORCE dataset using
a generalized linear mixed effect model (GLMM). The
model presented was the optimal model, which included
random effects. Therefore, habitat was categorized as a
fixed factor, and country and site were random variables, 

with site nested within country

Fig. 3. Frequency distribution of coral cover in Orbicella
reefs and gorgonian plains for all 12 countries

AGRRA: Coral cover     Estimate    SE    Z-value  p-value

Fixed      Intercept            5.02       0.07     66.97   <0.0001
effects     Habitat               0.19       0.05      3.81       0.0001

                                       Variance    SD   Z-value  p-value
                                               
Random  Site (Country)    0.29       0.54                 <0.0001
effects     Country              0.08       0.29                 <0.0001

AIC: 7835.8

Table 3. Cross-validation of the FORCE generalized linear
mixed effect model (GLMM) using the entire AGRRA data-
set (1998−2011). The structure of the model was the same as
Table 2; coral cover was the response variable, habitat was
the fixed variable and random effects were site nested in 

country, and country
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random effects were 0.54 and 0.29, while variances
were 0.29 and 0.08 for site nested in country and
country, respectively.

Within- and between-country comparisons
(FORCE data)

The highest mean coral cover (± SE) on Orbicella
reefs was recorded in Bonaire (33.9 ± 1.7%), Panamá
(31.7 ± 1.4%), and Barbados (29.8 ± 1.7%), while the
lowest was observed at Antigua (11.7 ± 1.5%),
Jamaica (16.7 ± 0.9%), and St. Lucia (17.1 ± 1.4%)
(Fig. 4). For gorgonian plains, the highest mean coral
cover was recorded in Belize (14.6 ± 1.2%) and
Dominican Republic (14.3 ± 1.8%) and the lowest
cover was in St. Vincent and Grenadines (6.2 ±
1.3%), Honduras (7.0 ± 1.2%) and Costa Rica (7.7 ±
1.0%) (Fig. 4). We then assessed the variation in coral
cover between the forereef habitats in individual
countries where data were available (ANT, BEL, DR,
HON, SVG). The random variable, site, was signifi-
cant (p = 0.0001) in both the main and interaction
model (Table 4). As seen in the interaction model, the
difference in coral cover between the 2 forereef habi-
tats was insignificant in Antigua and Belize (Table 4).
In contrast, coral cover was significantly greater on
Orbicella reefs when compared to gorgonian plains
in Dominican Republic, Honduras and St. Vincent
and the Grenadines (Table 4). Coral cover on Orbi-
cella reefs in Honduras and St. Vincent and Grena -
dines was 19.9 and 15.9% greater, respectively, than
cover on gorgonian plains (Fig. 4).

DISCUSSION

Our Caribbean-wide analysis shows that
combining habitats that are characterized by
low coral cover (gorgonian plain) with those
habitats that have significant reef develop-
ment (Orbicella reef), can produce biased
estimates of coral cover. In both the FORCE
and AGRRA datasets, coral cover at Orbicella
reefs was significantly different and greater
than at gorgonian plains. Combining habitats
r esulted in an underestimation of mean coral
cover by 12%, when using consistent meth-
ods and surveyors. Since Orbicella sites dom-
inated the FORCE dataset, the overall cover
(±SE) on both habitats was modestly high at
20% (±0.5). Therefore, when combining
results from multiple studies, the exact value
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FORCE: Coral cover       Estimate    SE   Z-value  p-value
                  
Fixed         Intercept           2.64      0.18   14.65    <0.0001
effects        BEL                   0.53      0.20     2.60       0.009
                  DR                     0.54      0.21     2.58       0.01  
                  HON                 0.51      0.20     2.47       0.014
                  SVG                  0.28      0.20     1.38       0.167
                  Habitat            −0.72      0.12   −5.92    <0.0001
                                                                                        
                                        Variance   SD   Z-value  p-value

Random     Site                    0.16      0.39
effects

AIC=2979.3
                                                                                        
Fixed         Intercept           2.39      0.20   11.68    <0.0001
effects        Gorg × ANT   −0.21      0.29   −0.73      0.464
                  Orb × BEL         0.49      0.26     1.93       0.054
                  Gorg × BEL       0.25      0.24     1.03       0.303
                  Orb × DR          0.73      0.23     3.12       0.002
                  Gorg × DR        0.24      0.29     0.85       0.394
                  Orb × HON       0.89      0.23     3.89     0.0001
                  Gorg × HON  −0.51      0.30   −1.74      0.082
                  Orb × SVG        0.63      0.23     2.77       0.006
                  Gorg × SVG   −0.62      0.30   −2.09      0.037
                                                                                        
Random     Site                    0.22      0.33                 0.0001
effects

AIC=2967.4

Table 4. Effects of forereef habitat (Habitat), country (see
Table 1 for abbreviations) and interaction of habitat (Gorg =
gorgonian plains, Orb = Orbicella reefs) and country on
coral cover in individual countries where data were avail-
able for both habitats using a generalized linear mixed ef-
fect model (GLMM) and as observed in the FORCE dataset.
Country and habitat were categorized as fixed factors and
site as a random variable. Bold indicates significant inter-

action terms

Fig. 4. Coral cover (mean ± SE) on Orbicella reefs and gorgonian
plains in the 12 countries around the Caribbean. See Table 1 for country 

abbreviations
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would depend on the relative abundance of Orbicella
reefs vs. gorgonian plains in the particular study. Our
overall estimates of coral cover on Orbicella reefs
were based on extensive sampling from multiple
countries in the Caribbean. However, we did not
sample all physical environments in the Caribbean
(Chollett et al. 2012) and therefore the regional rep-
resentativeness of the dataset is impossible to assess.

Gardner et al. (2003) estimated 10% coral cover for
263 reefs in the Caribbean in 2001, but less than 6%
of the Orbicella sites surveyed in the FORCE study
fell at or below this value. The Gardner et al. (2003)
meta-analysis included data that was collected by dif-
ferent observers using contrasting monitoring meth-
ods and at different reef zones/habitats, depths, and
collection times. After identifying the habitats in-
cluded in Gardner et al. (2003), we found that 77% of
sites were forereef habitats, and based on wave expo-
sure regime (Chollett & Mumby 2012), only about
27% of the forereef sites were probably located on
Orbicella reefs (Fig. 5), suggesting the inclusion of
multiple habitats as a possible cause of low coral cover
reported in this region-wide study. In addition, some
of the sites included in the meta-analysis could have
been collected in Acropora palmata zones which have
suffered large declines from white band disease. The
differences in coral cover observed cannot be ex-
plained by coral recovery because such trends are
scarce in the region (Connell 1997, Roff & Mumby
2012). An alternative explanation of the discrepancy
could be geographic bias; however, this seems un-

likely to be the main cause of the disparity because
our dataset included countries with some of the lowest
coral cover in the Caribbean, such as Jamaica.

The most recent regional assessment of coral reef
conditions was carried out by Jackson et al. (2014). In
support of our findings, their regional coral cover
assessment was also considerably higher than the
coral cover reported in the Gardner et al. (2003)
study. Overall, our coral cover values do not vary far
from the values reported in 2014. There are a few
exceptions: for example, the coral cover on Barbados
and Panamá in our study was double the value re -
ported by Jackson et al. (2014). Disparities be tween
studies can be expected given the differences of
locations, time, depth and reef habitat of sites sur-
veyed. However, both studies agree that the reefs in
Bon aire are in a better condition compared to those
of other countries with highly degraded reefs, such as
Antigua, Jamaica, St. Lucia and Belize.

Many reefs in the Caribbean are degraded. How-
ever, on 94% of the Orbicella sites, mean coral cover
was well above 10%, a putative level below which
reef accretion might fail to outweigh erosion (Perry et
al. 2013), while others suggest that positive carbon-
ate budgets are still feasible throughout this century
provided that local and global stressors are managed
and where coral cover is higher than ~20% (Kennedy
et al. 2013). Taking a 20% coral cover threshold, 64%
of the Orbicella reef sites surveyed meet this target,
implying that there is considerable scope for contin-
ued ecosystem functioning in the Caribbean. How-
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ever, there are challenges in minimizing both local
and global stressors, while also accommodating the
resource needs of coastal human populations.

Distinguishing between forereef habitats before
any analysis is necessary to report a baseline for
future research or monitoring, or to provide data for
comparison with earlier surveys. To reduce the likeli-
hood of habitat confounding effects in the future,
habitat descriptors provided by in situ assessments or
new mapping techniques could be incorporated into
monitoring programs such as AGRRA and future
regional analyses of reef condition in the basin.
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