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ABSTRACT: We used small-scale species distribution models to predict the past and present spa-
tial distribution of 7 characteristic macrofauna species in response to climatic and environmental
changes that have been recorded for the Jade Bay (German Wadden Sea) over the last 4 decades
(1970s to 2009). Four presence−absence modelling algorithms (RF, MARS, GLM, GBM) were merged
within the ensemble forecasting platform ‘biomod2’. The present spatial distribution (represent-
ing 2009) was modelled based on statistical relationships between species presences, true species
absences and 7 high-resolution (5 m) environmental grids. The past spatial distribution (repre-
senting the 1970s) was then hindcast in response to climate change-induced (1) sea-level rise, (2)
water temperature increase and (3) seagrass recovery due to de-eutrophication. The past distribu-
tion scenario was evaluated using independent historical macrofauna data from the 1970s. Present
ensemble prediction maps accurately captured the potential ecological niches of the modelled
species throughout Jade Bay (i.e. good to excellent true skill statistic [TSS] and area under the
receiver operating characteristic curve [AUC] evaluation measures). The predicted present
macrofauna distribution correlated most significantly with hydrodynamic conditions (submer-
gence time, shear stress) and sediment characteristics (mud content). The past distribution sce-
nario revealed significant changes in small-scale spatial distribution patterns of the characteristic
modelled species (1970s to 2009) and showed a very good match with historical macrofauna data.
Climate change-induced sea-level rise and its local implications for Jade Bay (changes in topo -
graphy, tidal range and submergence time), and water temperature increase explained the poten-
tial macrofauna distribution shifts over the last 4 decades.
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INTRODUCTION

In recent decades, severe climatic and environmen-
tal changes have been observed in coastal waters (e.g.

water temperature increases, sea-level rise, changes
in coastal morphology), shelf seas (temperature in-
crease, acidification) and the open oceans (acidifica-
tion), which has resulted in pronounced changes in the
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abundance and spatial distribution of characteristic
marine species (Fujii & Raffaelli 2008, Wolff et al.
2010, Kröncke et al. 2011, 2013, Fujii 2012, Birch en -
ough et al. 2015, Hiddink et al. 2015). Predictive mod-
elling of potential changes in the distribution patterns
of vulnerable ecological communities and endangered
or invasive species can be useful in testing hypotheses
regarding the role of these changing environmental
factors on species distributions, providing valuable
guidelines for global or regional  nature conservation
and management purposes (Frank lin 2010, Reiss et al.
2014). Species distribution modelling (SDM) is still a
novel discipline for marine ecosystems compared to
the broad array of terrestrial applications (Robinson et
al. 2011). Ecosystem management in the marine envi-
ronment is often confronted with fragmentary infor-
mation on the spatial distribution of marine species
and habitats (Reiss et al. 2011, Robinson et al. 2011).
SDM techniques provide the tools needed to reduce
these gaps in knowledge by calculating full-coverage
species distribution maps, correlating sparse biotic
data with environmental grid layers (Guisan & Zim-
mermann 2000, Guisan & Thuiller 2005). Full-cover-
age and high-resolution environmental data are now
more readily available due to recent technological ad-
vances, including improved acoustic remote sensing
techniques, satellite observations and physical models
(Brown et al. 2011, Reiss et al. 2014). Furthermore, in-
novations in modelling methods (e.g. Elith et al. 2006,
Elith & Graham 2009, Franklin 2010) and software
packages (e.g. OPENMODELLER, de Souza Muñoz et al.
2011; MODECO, Guo & Liu 2010) enable the user to
compare the model performance of multiple model-
ling algorithms. The ensemble forecasting platform
BIOMOD (Thuiller et al. 2009) and its updated version
‘biomod2’ (Thuiller et al. 2015) allow the user to
merge different modelling methods (i.e. classification,
regression and machine learning techniques) into a
so-called ‘ensemble model’, reducing the uncertain-
ties arising from using a single algo rithm method
(Araújo & New 2007, Thuiller et al. 2009). Numerous
SDM studies recommend comparing and/or merging
multiple modelling techniques (e.g. random forest,
generalized linear models, multivariate adaptive re-
gression splines), and calculating different evaluation
measures (e.g. Cohen’s kappa, area under the
receiver operating characteristic curve) (e.g. Elith et
al. 2006, Araújo & New 2007, Reiss et al. 2011, 2014,
Georges & Thuiller 2013, Hijmans & Elith 2016).

The Jade Bay is a tidal basin in the German part of
the UNESCO Wadden Sea World Heritage Site. It is
under the protection framework of numerous
national (e.g. 3 designated national parks in Ger-

many) and international environmental legislations
(e.g. Ramsar Convention, European Habitat- and
Birds directive) (Wolff et al. 2010). Because of their
relatively sessile habit, benthic species are ideal
organisms for small-scale SDM, and are important
indicators of environmental changes and distur-
bances (Herman et al. 1999). Furthermore, the mar-
ine benthos is an important food source for secondary
consumers (e.g. crusta ceans, fish and birds), and
plays a key role in nutrient cycling and detritus
decomposition (Reiss et al. 2011). Thus, knowledge
about potential changes in the spatial distribution of
characteristic benthic species is essential for under-
standing and management of the whole Wadden Sea
ecosystem — particularly with regard to potential
changes in the food web.

Three macrofauna studies that were carried out in
the Jade Bay during the 1970s and in 2009 revealed
significant changes in the abundance and spatial dis-
tribution of characteristic benthic species (Dörjes et
al. 1969, Michaelis 1987, Schückel & Kröncke 2013,
Schückel et al. 2015a). These changes were linked to
strong climatic and environmental changes that were
recorded in the study site over the last 4 decades,
such as sea-level rise, water temperature increase,
seagrass recovery due to de-eutrophication and
 species introduction (Schückel & Kröncke 2013,
Schückel et al. 2015b). Long-term quantitative ben-
thic studies conducted in the Wadden Sea (Riesen &
Reise 1982, Jensen 1992, Kraan et al. 2011) and
North Sea (Kröncke et al. 2013) have also indicated
strong changes in benthic community structures in
response to climatic and environmental changes.
However, to our knowledge, few studies have ap -
plied SDM to the protected Wadden Sea, focusing on
the identification of present suitable habitats for con-
servation purposes (e.g. macrobenthic species in the
western Dutch Wadden Sea: Ysebaert et al. 2002,
Kraan et al. 2013; Zostera marina in the Ems estuary:
Bos et al. 2005, Valle et al. 2013). In the subtidal
North Sea, most SDM was carried out on a local scale
and modelled the potential present distribution of
marine benthic invertebrates (Degraer et al. 2008,
Meißner et al. 2008). More recent SDM studies inves-
tigated the potential future distribution of native
(Jones et al. 2013a, Valle et al. 2014) and invasive
species (Jones et al. 2013b, Raybaud et al. 2014)
under climate change scenarios, or focused on the
entire North Sea (Reiss et al. 2011, Neumann et al.
2013).

The purpose of this study was to apply SDM to pre-
dict present and past spatial distributions of charac-
teristic macrofauna species in response to the cli-
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matic and environmental changes
recorded for the Jade Bay since the
1970s. The availability of high-qual-
ity species presences and true spe-
cies absences (for 2009), multiple
high-resolution (5 m) environmental
grids (for 2009) and independent his-
torical macrofauna data (for the
1970s) offered a unique opportunity
to hindcast and evaluate small-scale
macrofaunal distribution patterns for
this UNESCO-protected tidal basin.
We hypothesized that (1) the present
prediction maps accurately represent
the potential ecological niches of the
7 characteristic macrofauna species
in Jade Bay, (2) characteristic macro-
fauna distribution shifts between the
1970s and 2009 were attributed to
sea-level rise, water temperature
increase and seagrass recovery due
to de-eutrophication, and (3) the
independent historical macrofauna
data from the 1970s would accurately
evaluate our 1970s past distribution
scenario.

MATERIALS AND METHODS

Study area

The Jade Bay (Fig. 1) is a macrotidal basin (tidal
range: ca. 3.8 m) with a total area of ca. 158 km2. It is
located in the German National Park of Lower Sax-
ony, and is part of UNESCO’s Wadden Sea World
Heritage Site. During each tide, strong ebb and flood
currents transport ca. 400 000 000 m3 of North Sea
water through a narrow bottleneck east of Wil-
helmshaven in and out of Jade Bay (Götschenberg &
Kahlfeld 2008). During low tide, ca. 114 km2 of tidal
flats are exposed to atmospheric conditions and only
3 large tidal channels and the tidal inlets remain per-
manently submersed (Schückel et al. 2013, 2015a).
The 5.8 km long training wall, built in the 1890s,
ensures the accessibility of the Wilhelmshaven Har-
bour (Götschenberg & Kahlfeld 2008). The training
wall regulates the tidal currents, resulting in muddier
sediments in the western and southern parts of the
bay (Linke 1939). Three different sediment types can
be distinguished: sandflats, mixed sediments and
mudflats. Furthermore, mussel beds (Mytilus edulis,
2.07 km2 in 2009) and seagrass beds (Zostera noltii,

10.9 km2 in 2008) form characteristic biogenic struc-
tures within the bay (see Schückel & Kröncke 2013).
Water column salinity varies between 26 and 30
(Böning & Schnetger 2011).

Macrofauna data

The macrofauna (>0.5 mm) data (i.e. species pres-
ences and absences) were collected between April
and July 2009. A total of 128 stations covering the en-
tire intertidal area of Jade Bay were established along
8 transects, according to the sampling design of
Michaelis (1987) for the 1970s; these transects ade-
quately sampled the 3 different sub-habitats (sand-
flats: 18 stations; mixed sediments: 29 stations; mud-
flats: 81 stations). In addition, 29 stations were
sampled in the subtidal area of Jade Bay, following
the sampling design of Dörjes et al. (1969) for the
1970s. In total, 157 stations were sampled during 2009
(Fig. 2). The intertidal stations were sampled during
low tide with a 10 cm diameter cylindrical corer to a
depth of 30 cm (total surface: 0.008 m2, 5 replicates);
subtidal stations were sampled via motor boat (0.02 m2

van Veen Grab, 5 replicates) or on board the RV
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Fig. 1. Study area in the Jade Bay, showing the 3 tidal channels (ST: Stenken-
tief; VF: Vareler Fairway; A: Ahne), the training wall (built in the 1890s), 2
topographic ridges (S: Schweinsrücken; J: Jappensand) and the 2 tidal gates 

(near the towns of Dangast and Varel)
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‘Senckenberg’ (0.2 m2 van Veen Grab, 2 replicates).
Methods and sampled surface areas were comparable
between inter- and subtidal sampling campaigns
(Schückel & Kröncke 2013, Schückel et al. 2015a).
Statistical analysis revealed that the replicates and
spatial resolution of the samples were sufficient to de-
tect the spatial distribution/presence of the dominant
species. For further details on sampling procedures
and laboratory work, see Schückel & Kröncke (2013)
and Schückel et al. (2015a).

For SDM, the 7 characteristic macrofauna species
were chosen according to the criteria that they (1) en-
compass a wide variety of habitat preferences, (2)
model broad and narrow ecological niches, (3) ac -
count for diversity (4 different taxa), and (4) model
species that showed a significant increase or de crease
in abundance over the last 4 decades (Schückel &
Kröncke 2013). Based on the analyses of Schückel &
Kröncke (2013), we selected the following 7 dominant
species: 2 bivalves (Maco ma balthica, Cerastoderma
edule), 2 polychaetes (Scoloplos armiger, Areni cola
marina), 1 oligochaete (Tubificoides benedii) and 2
gastropods (Peringia ulvae, Retusa obtu sa). For details
on the different species’ biological traits (feeding
modes, mobility, habits) and the number of presences

and true absences used for SDM, see
Table 3 and ‘Results: Present macro-
fauna distribution’). The correct
nomenclatural authorities of all 7 se-
lected macrofauna species were based
on the World Register of Marine Spe-
cies (WoRMS 2015).

Environmental data

Present environmental grids
 (representing 2009)

Table 1 provides an overview of the
9 collected and processed environ-
mental variables, the data type, units,
reference period and associated data
sources. In total, 7 predictor variables
were used for SDM; 2 were omitted
prior to the modelling procedure
because of a high predictor collinear-
ity (r > 0.7, Booth et al. 1994; see
‘Materials and methods: Species dis-
tribution modelling’).

The Institute for Biology and Chem-
istry of the Marine Environment
(ICBM) provided the data for total or-

ganic carbon (TOC), mud and chlorophyll a (chl a)
content, along with submergence time, shear stress
and summer bottom water temperature (Tsbw). Sam-
ples were taken from the uppermost surface layer in
Jade Bay for analyses of TOC, mud and chl a content,
on a similar spatial and temporal scale as carried out
for the macrofauna samples (Beck et al. 2013,
Schückel et al. 2013). Tide-induced submergence
time and shear stress were modelled with the Finite
Volume Coastal Ocean Model (FVCOM, e.g. Chen et
al. 2003) for the German Bight, with a focus on Jade
Bay (horizontal resolution: 75 m) (Lettmann et al.
2010). For Tsbw, the Regional Ocean Modelling
System (ROMS, e.g. Haidvogel et al. 2008) with a hori-
zontal resolution of 150 m was applied. Bottom water
salinity (Sbw) was supplied by the Helmholtz-Centre
Geesthacht (HZG), using the General Estuarine
Transport Model (GETM) for the German Bight with a
horizontal resolution of 1 km (Staneva et al. 2009).
The topography grid was provided by the Coastal Re-
search Station Norderney (NLWKN) and derived with
Airborne Laser scan and Fan Echosounder (horizontal
resolution: 5 m). The ArcGIS (ESRI) shapefile for Z.
noltii beds was provided by the National Park Admin-
istration Wadden Sea Lower Saxony (NLPV), and ob -
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Fig. 2. Sampled macrofauna data used for species distribution modelling (sam-
pling campaign: 2009, n = 157) (Schückel et al. 2013) and model evaluation
(sampling campaign: 1976/77, n =135) (Michaelis 1987) plotted on the topo-

graphic grid for 2009 (Coastal Research Station Norderney)
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tained by aerial monitoring and ground truthing.
All environmental point data were interpolated

with Geostatistical Analyst in ArcGIS 10.2, using the
ordinary kriging interpolation method. All processed
environmental grids were converted with ArcGIS
10.2 to have the same extent (158 km2), coordinate
system (DHDN Gauss-Krüger zone 3) and resolution
(5 m). Topographic data were preferred over bathy-
metric data because of their higher spatial resolution
at the edges of Jade Bay, where important benthic
habitats prevail. Tsbw during high tide were averaged
over the months of June and July 2011 to avoid the
effects of the cold winter in 2010/ 2011. Beck et al.
(2013) revealed that most heavy metal contents in
Jade Bay were below biologically harmful thresh-
olds. Therefore, little impact of heavy metal pollution
on the macrofauna distribution at the study site was
assumed and thus neglected in this study.

Past distribution scenario (representing the 1970s)

Based on previous environmental surveys, the 2009
environmental variables submergence time, Tsbw and
Zostera sp. beds were altered for the 1970s past dis-
tribution scenario. These variables showed the most
significant changes throughout Jade Bay over the
last 4 decades. Changes in macrofauna distribution
patterns during the last few decades in the European
Wadden Sea can be linked to climate change-
induced sea-level rise, water temperature increase
and de-eutrophication (after agricultural and indus-
trial wastewater discharges) (Reise et al. 2008, Fujii

2012, Kröncke et al. 2013, Schückel & Kröncke 2013,
Schumacher et al. 2014).

For the Jade Bay, a mean topographic increase of
ca. 28 cm was calculated between the 1970s and 2009
(mean topographical difference between the 2009
and 1969 topography grid). The 1969 grid was pro-
vided by the NLWKN and derived from 2 maps: the
topographic intertidal map of 1969 (scale 1:25 000)
and the intertidal map for 1959 (scale: 1:5000).
Götschen berg & Kahlfeld (2008) determined that a
rise in the mean tidal range of ca. 10 cm has occurred
since the 1970s (due to stronger mean high water vs.
almost constant mean low water), which caused the
abovementioned topography increase at the study
site. Based on this topography increase (i.e. ca. 28 cm
since the 1970s), a linear regression between the
2009 topography and the 2009 submergence time (at
the 2009 intertidal sampling points) was calculated,
and the potential 1970s mean daily submergence
time was extracted from the regression line (Fig. 3).
According to Fig. 3, the submergence time was
increased by 1 h d−1 for the 1970s hindcast scenario
(i.e. 0.5 h d−1 for each incoming tide). Summer sea
sur face temperatures in the western Wadden Sea
have increased by ca. 1.5°C since the 1970s (Van
Aken 2008); therefore, the Tsbw was decreased by
1.5°C for the 1970s hindcast scenario. Due to the tide-
induced permanent mixing of the water column in
the Jade Bay tidal basin (Linke 1939), sea surface
temperature was assumed to be representative of
changes in bottom water temperature. The past spa-
tial distribution of the Zostera sp. beds was digitized
with ArcGIS 10.2 from a 1970s historical map (Micha -
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                                          Data type                          Unit         Reference period             Source

(a) Environmental variables used for SDM
Submergence time          Modelled data                 h d−1         2009 (mean)                      ICBM, K. Lettmann
Shear stress                      Modelled data                 N m−2        2009 (mean)                      ICBM, K. Lettmann
Mud content (<63 µm)    Sampled data                     %           April−July 2009                ICBM, M. Beck
Chl a                                  Sampled data                 mg m−2      April−July 2009                ICBM, H. Freund, SaM, U. Schückel
Tsbw                                    Modelled data                   °C           June/July 2011 (mean)    ICBM, K. Lettmann, A. Vanselow
Sbw                                     Modelled data                   psu          2009 (mean)                      HZG, C. Geimecke, J. Staneva
Zostera noltii beds           ArcGIS shapefile              p/a          2008                                  NLPV, G. Millat

(b) Environmental variables omitted prior to SDM 
Total organic carbon        Sampled data                     %           April−July 2009                ICBM, M. Beck
Topography                      Laserscan and               m a.s.l.       1999−2010                        NLWKN, H. Westphal
                                          hydroacoustic data

Table 1. Environmental variables and associated information (a) the 7 variables employed in our species distribution modelling
(SDM) and (b) the 2 variables omitted prior to SDM due to high predictor collinearity (>0.7, Booth et al. 1994). Tsbw: summer
bottom water temperature; Sbw: bottom water salinity; p/a: present/absent; m.a.s.l.: m above sea level. Sources: NLWKN:
Coastal Research Station Norderney; ICBM: Institute for Biology and Chemistry of the Marine Environment; SaM: Sencken-
berg am Meer; HZG: Helmholtz-Centre Geesthacht; NLPV: National Park Administration Lower Saxony Wadden Sea
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elis 1987). In the 1970s, Zostera sp. beds were ca.
8.2 km2 smaller compared to the area encompassed
in 2009 (see Schückel & Kröncke 2013 and Fig. S1 in
Supplement 1 at www. int-res. com/ articles/ suppl/
m551p013_ supp. pdf).

SDM: ‘biomod2’ ensemble forecasting platform

Model algorithms and settings

SDM correlates species presences or abundances
with environmental variables for the same grid cell to
calculate the species’ ecological niche. Computer
algorithms are then used to identify suitable habitats
across a user-defined landscape in geographical
space (Pearson 2007, Elith & Leathwick 2009). Be -
cause of the availability of true species absences, 4
commonly used presence− absence SDM techniques
were selected for this study: 2 machine learning
methods (random forest, RF: Breiman 2001; and gen-
eralized boosting models, GBM: Ridgeway 1999) and
2 regression-based methods (multivariate adaptive
regression splines, MARS: Friedman 1991; and gener-
alized linear models, GLM: McCullagh & Nelder
1989). A short description of the 4 applied and
merged SDM algorithms and their respective key lit-
erature can be found in Table 2.

For the purpose of this study, the ensemble fore-
casting platform ‘biomod2’ v.3.1-64 (Thuiller et al.
2015) was applied for species distribution modelling,
implemented in R v.3.2.1 (R Development Core Team

2015) (see Supplement 2 at www. int-res. com/ articles/
suppl/  m551 p013_ supp. pdf). Both ‘biomod’ and its
updated version ‘biomod2’ have been successfully
applied in numerous recent terrestrial and marine
SDM studies (e.g. Reiss et al. 2011, Jaeschke et al.
2012, Aguirre-Gutiérrez et al. 2013). Biomod2 en -
ables the user to apply and compare 10 commonly
used modelling algorithms (i.e. classification, regres-
sion and machine learning techniques). In addition,
different evaluation measures can be calculated,
such as Cohen’s kappa, the true skill statistic (TSS)
and the area under the receiver operating character-
istic curve (AUC) (Thuiller et al. 2009, 2015). Further-
more, multiple modelling algorithms can be merged
in the so-called ‘ensemble model’, accounting for
inter-model variability and reducing the uncertain-
ties arising from using a single algorithm method
(Araújo & New 2007, Thuiller et al. 2009). 

Biomod2 provides several ensemble building tech-
niques, such as the mean of probabilities or commit-
tee averaging. In this study, the mean of probabilities
of the selected models was used, which supplies
more robust predictions than other ensemble build-
ing techniques (Marmion et al. 2009). In addition, the
following model settings were altered from default
parameters defined by Georges & Thuiller (2013): for
GBMs, 3000 trees were used as fitting basis; for RF,
500 trees were built (see Reiss et al. 2011). To esti-
mate the importance of each em ployed variable for
the ensemble model, biomod2 uses a randomization
procedure that is independent of the applied model-
ling algorithm. This procedure uses Pearson’s corre-
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Fig. 3. Topography versus submergence time (for the 2009 intertidal sampling points); extraction of the potential 1970s mean
daily submergence time from the regression line was based on a calculated mean increase of ca. 28 cm between the 1970s and 

the 2009 topographic grids (Coastal Research Station Norderney)
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lation between the standard predictions (i.e. fitted
values) and predictions where the environmental
variable has been randomly permuted. Each variable
importance score is then displayed as a rank value
(i.e. 1 minus the correlation score), with high values
indicating high importance of the predictor (Thuiller
et al. 2009, 2015). To ensure comparability in the spe-
cies-specific model, raw variable importance scores
were standardized by dividing the score of each pre-
dictor by the sum of all predictor scores. Ensemble
model response curves were calculated within bio-
mod2 via the algorithm-independent evaluation strip
method, recommended by Elith et al. (2005). There-
fore, n − 1 variables were set constant to a fixed value
(here: mean) and the ob tained curve only showed the
sensitivity of the model to the specific variable
(Thuiller et al. 2015).

Because of high predictor collinearity (Pearson’s
correlation coefficient, r > 0.7; Booth et al. 1994) 2 en-
vironmental variables (TOC and topography) were
omitted prior to the modelling procedure. TOC con-
tent was highly correlated with mud content (r = 0.82),
and topography was highly correlated with shear
stress (r = −0.80) and submergence time (r = −0.72).
The remaining environmental grids had a maximum
collinearity of r = 0.67 (submergence time and shear
stress) and therefore fell below the critical threshold
of r ≥ |0.7|. A major problem in SDM is that the combi-
nation of few species presences and many predictor

variables easily leads to model overfitting. Due to this
overfitting, model generalizability is reduced, and
thus the transferability to new data (Vaughan &
Ormerod 2005, Breiner et al. 2015). According to the
rule of thumb that species presences should be 10
times larger than the number of environmental vari-
ables used for SDM (Harrell et al. 1996), we modelled
with a minimum of 40 species presences and 7 envi-
ronmental predictors that were proven to be essential
for the marine benthos at the study site (Schückel et
al. 2013, 2015a). We assumed a negligibly small sam-
pling bias in our macrofauna data, as our sampling
design captured the entire environmental gradient of
the study site, and samples were taken with adequate
distance (min. 50 m) for benthic species and full
spatial coverage.

Model evaluation: TSS, AUC and independent
historical macrofauna data

To assess model accuracy, species presences were
randomly split into test data (30%) and training data
(70%). In total, 40 runs species−1 (10 replicate runs
algorithm−1) were performed to account for model
variability. Two evaluation measures were calculated
within the biomod2 R package: TSS (Allouche et al.
2006) and AUC (Fielding & Bell 1997). In addition, to
validate model predictions with an independent data

Modelling technique                              Description                                                                         Key references

RF: Random Forest                                 Classification and regression based model,                    Breiman (2001), Prasad et al. (2006)
                                                                generates multiple classification trees with a 
                                                                randomized subset of predictors, trees are 
                                                                aggregated by averaging

GBM: Generalized Boosting Models      The individual models consist of classification               Ridgeway (1999)
                                                                or regression trees, in an iterative process a final 
                                                                model is built by progressively adding trees while 
                                                                re-weighting the data poorly predicted by the 
                                                                previous tree

MARS: Multivariate Adaptive                Non-parametric regression technique, combines          Friedman (1991)
Regression Splines                                 linear regression, spline functions and binary 
                                                                response cursive partitioning, the coefficients differ  
                                                                based on the levels of the explanatory variables

GLM: Generalized Linear Models         Regression models, extensions of linear models,           McCullagh & Nelder (1989)
                                                                allow for non-linearity (e.g. binomial or Poisson 
                                                                distributions) and non-constant variance structures 
                                                                in the data. A stepwise GLM is run using linear, 
                                                                quadratic or polynomial terms; the stepwise procedure 
                                                                either uses Akaike’s or Bayesian information criteria 
                                                                (AIC or BIC) to select the most parsimonious model

Table 2. Presence/absence modelling methods merged within the ‘biomod2’ ensemble forecasting platform (Thuiller et al. 2015) and 
key references
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set, the 1970s past distribution scenario was com-
pared with historical macrofauna presences, sampled
in the 1970s (summer 1976 and 1977) on a compara-
ble spatial and temporal scale as the 2009 data
(Fig. 2) (n = 135; details given in Michaelis 1987).

Both evaluation measures were calculated via the
proportion of the 2 prediction types ‘sensitivity’
(correctly predicted presences) and ‘specificity’ (cor-
rectly predicted absences) in the error matrix. Sen-
sitivity and specificity were used because they take
into account all 4 elements of the error matrix
derived from the test data (true and false presences
and absences) (Pearson 2007). The TSS is a preva-
lence (proportion of presences relative to the num-
ber of sampled sites) independent alternative to
Cohen’s kappa, while retaining all of its advantages
(Allouche at al. 2006). Kappa and the TSS require a

specific threshold level, which is essential for the
calculation of binary prediction maps. The TSS (for-
mula: ‘sensitivity + specificity − 1’) ranges from −1
to +1, with values >0.4 indicating a statistically reli-
able model performance (Landis & Koch 1977,
Allouche et al. 2006). The AUC is threshold- and
prevalence independent, defined by plotting sensi-
tivity against the corresponding proportion of false
positives (‘1 − specificity’) across the range of possi-
ble thresholds (Pearson 2007). The AUC ranges
from 0 to 1, with values >0.7 indicating statistically
reliable model performance (Hosmer & Lemeshow
2000). To guarantee the most ac curate model pre-
dictions, only the best fitted model runs above criti-
cal TSS values (>0.4) were im plemented in the final
ensemble model run.
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Fig. 4. All 7 environmental variables (for 2009) employed in the predictive mod-
els: (a) mud content, (b) submergence time, (c) shear stress, (d) bottom water
salinity (Sbw), (e) summer bottom water temperature (Tsbw), (f) chlorophyll a and
(g) Zostera noltii beds, converted in ArcGIS 10.2 to have the same extent
(158 km2), coordinate system (DHDN Gauss-Krüger zone 3) and resolution 

(5 m). Data source given in Table 1
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RESULTS

Small-scale present habitat conditions (2009)

An overview of all 7 high-resolution environmental
grids employed in the SDM and their respective
environmental range at the study site is provided in
Fig. 4. The hydrodynamic conditions, expressed as
tide-induced submergence time (0.3 to 24.0 h d−1;
Fig. 4b) and shear stress (0.0 to 1.7 N m−2; Fig. 4c)
gradually decreased with increasing distance to the
bottleneck that connects Jade Bay to the open North
Sea. Mud content (9.1 to 97.1%; Fig. 4a), Sbw (26.4 to
29.0; Fig. 4d) and Tsbw (19.1 to 19.9°C; Fig. 4e) fol-
lowed the above-mentioned hydrodynamic gradient.
The highest mud content occurred in the sheltered
western and southern upper intertidal areas. Highest
Tsbw prevailed at the topographically exposed outer-
most boundaries of Jade Bay. The highest chl a con-
tents (4.6 to 38.8 mg m−2; Fig. 4f) were found in the
shallow northeastern and western parts of the study
site. The 2 omitted environmental grids (predictor
collinearity >0.7), i.e. topography and TOC content,
are displayed in Fig. S2 in Supplement 1 at www. int-
res. com/ articles/ suppl/  m551 p013_ supp. pdf). The topo -
graphy in Jade Bay ranged from a depth of 23.3 m in
the navigation channels to 3.8 m a.s.l. on the upper
tidal flats. The TOC content ranged from 0.2 to 2.3%,
with highest values near the tidal gates in the south-
western parts of the basin and close to the Wilhelms -
haven Harbour.

Present macrofauna distribution (2009)

Present ensemble predictions for all 7 modelled
species had TSS values >0.70 and AUC values >0.90
(Table 3), indicating good to excellent model per-
formance. The polychaete Scoloplos armiger (TSS =
0.91, AUC = 0.98) had the highest model accuracy,
whereas the gastropod Peringia ulvae (TSS = 0.75,
AUC = 0.93) exhibited the lowest model accuracy.

With regard to all 7 studied species, the environ-
mental variables that correlated most significantly
with the macrofauna distribution in Jade Bay (≥0.10
standardized variable importance [VI] scores), were
submergence time (5 species), mud content (4 spe-
cies) and shear stress (4 species), followed by chl a
content (3 species) and Tsbw (2 species). Sbw and Zos -
tera noltii beds were of minor importance for the
macrofauna distribution at the study site (Table 3).
Furthermore, 2 species showed a more specialized
response to the environmental conditions in Jade Bay

(i.e. their spatial distribution was mainly explained
by a single environmental variable; VI ≥ 0.70): Ceras-
toderma edule (submergence time: VI = 0.75) and
P. ulvae (shear stress: VI = 0.77). The remaining 5
species showed a more generalistic response, i.e. 2 or
more environmental variables explained VI ≥ 0.70 of
the species’ spatial distribution at the study site. The
distribution of the more generalistic bivalve Macoma
balthica, for example, was mainly explained by the 4
predictor variables mud content (VI = 0.51), shear
stress (VI = 0.17), submergence time (VI = 0.10) and
chl a content (VI = 0.10).

The present ensemble prediction maps (Fig. 5) ac-
curately captured the potential small-scale spatial dis-
tribution of the 7 modelled macrofauna species in
Jade Bay. Each species was significantly correlated
with specific hydrodynamic conditions and related
sediment characteristics along the prevailing environ-
mental gradient (exposed, lower sandflats to shel-
tered, upper mudflats). The polychaete S. armiger
(Fig. 5c) mainly occurred on the hydrodynamically
exposed sandflats in the centre of Jade Bay. In con-
trast, the bivalve C. edule (Fig. 5a) and the polychaete
Arenicola marina (Fig. 5d) were mainly ab sent in
these exposed, subtidal regions. The 2 bi valves (C. ed-
ule, M. balthica; Fig. 5a,b), 2 annelids (A. marina,
Tubi ficoides benedii; Fig. 5d,e) and the 2 gastropods
(P. ulvae, Retusa obtusa, Fig. 5f,g) mainly occurred on
the sheltered intertidal flats. In addition, some pelo -
philous species had suitable habitats in the perma-
nently submersed tidal inlets on the upper tidal flats
(T. benedii, P. ulvae) and/or in the 3 large navigation
channels (M. balthica, T. benedii). The 2 gastropods
(P. ulvae, R. obtusa) and the polychaete S. armiger had
a high probability of occurrence (PO) on the ‘Jappen-
sand’ (see Fig. 1), a topographically ex posed feature
in the centre of the study site, whereas all remaining 4
species had a very low PO. Additionally, A. marina, C.
edule and R. obtusa had a low PO on the uppermost
tidal flats where the benthic habitat was characterised
by the highest mud content and the lowest submer-
gence time and shear stress area-wide.

The species-specific response curves (Fig. 6) re -
vealed significant species−environment relationships
in the Jade Bay tidal basin, where a PO above 70%
showed most significant positive correlations. The
sessile bivalve C. edule (suspension feeder) had a sig-
nificant positive correlation with submergence time
(VI = 0.75) between ca. 2.0 and 8.0 h d−1 and Tsbw (VI =
0.12) below ca. 19.65°C. The sessile bivalve M. balth-
ica (interface feeder, IF) showed a significant positive
correlation with mud contents (VI = 0.51) above ca.
30.0%. The polychaete S. armiger (subsurface deposit
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Species                Taxa Biological trait     Presences   True absences        Variable importance Evaluation measures 
                                                 Feeding      Habit      (2009)             (2009)                                              (ensemble model)
                                                   mode                                                                                                                          TSS       AUC

Cerastoderma    Bivalvia           SUS         Sessile         64                    87             1) Submergence time (0.75)       0.81        0.96
edule                                                                                                                         2) Tsbw (0.12)                                   
                                                                                                                                 3) Mud content (0.03)                                    
                                                                                                                                 4) Sbw (0.03)                                     
                                                                                                                                 5) Seagrass beds (0.02)                                  
                                                                                                                                 6) Shear stress (0.02)                                      
                                                                                                                                 7) Chl a (0.00)                                                 

Macoma              Bivalvia             IF           Sessile         98                    53             1) Mud content (0.51)                   0.8         0.97
balthica                                                                                                                    2) Shear stress (0.17)                                    
                                                                                                                                 3) Submergence time (0.10)                         
                                                                                                                                 4) Chl a (0.10)                                                
                                                                                                                                 5) Sbw (0.07)                                     
                                                                                                                                 6) Tsbw (0.04)                                    
                                                                                                                                 7) Seagrass beds (0.01)                                  

Scoloplos            Polychaeta      SSD         Sessile         43                   108            1) Submergence time (0.46)       0.91        0.98
armiger                                                                                                                     2) Mud content (0.41)                                   
                                                                                                                                 3) Tsbw (0.05)                                    
                                                                                                                                 4) Shear stress (0.04)                                      
                                                                                                                                 5) Chl a (0.03)                                                 
                                                                                                                                 6) Sbw (0.00)                                     
                                                                                                                                 7) Seagrass beds (0.00)                                  

Arenicola            Polychaeta      SSD        Burrow       43                   108            1) Submergence time (0.48)       0.86        0.97
marina                                                       dwelling                                                2) Mud content (0.25)                                   
                                                                                                                                 3) Shear stress (0.15)                                    
                                                                                                                                 4) Sbw (0.04)                                     
                                                                                                                                 5) Tsbw (0.03)                                    
                                                                                                                                 6) Chl a (0.03)                                                 
                                                                                                                                 7) Seagrass beds (0.02)                                  

Tubificoides        Oligochaeta    SSD         Sessile         97                    54             1) Mud content (0.47)                  0.86        0.96
benedii                                                                                                                     2) Tempsbw (0.28)                                           
                                                                                                                                 3) Shear stress (0.09)                                      
                                                                                                                                 4) Submergence time (0.09)                          
                                                                                                                                 5) Sbw (0.03)                                     
                                                                                                                                 6) Chl a (0.03)                                                 
                                                                                                                                 7) Seagrass beds (0.01)                                  

Peringia              Gastropoda      SD            Free          94                    57             1) Shear stress (0.77)                   0.75        0.93
ulvae                                                             living                                                  2) Chl a (0.10)                                                
                                                                                                                                 3) Mud content (0.06)                                    
                                                                                                                                 4) Tsbw (0.02)                                    
                                                                                                                                 5) Sbw (0.01)                                     
                                                                                                                                 6) Submergence time (0.01)                          
                                                                                                                                 7) Seagrass beds (0.01)                                  

Retusa                 Gastropoda      PD            Free          94                    57             1) Shear stress (0.41)                   0.79        0.96
obtusa                                                           living                                                  2) Chl a (0.23)                                                
                                                                                                                                 3) Submergence time (0.18)                         
                                                                                                                                 4) Mud content (0.08)                                    
                                                                                                                                 5) Tempsbw (0.06)                                            
                                                                                                                                 6) Sbw (0.04)                                     
                                                                                                                                 7) Seagrass beds (0.00)

Table 3. Modelled macrofauna species’ biological traits (feeding mode, habit, mobility), presences and true absences used for spe-
cies distribution model (SDM), including the species-specific variable importance (mean of 10 ensemble model runs) and the val-
ues of the 2 calculated evaluation measures (true skill statistic [TSS] and area under the receiver operating characteristic curve
[AUC]). SUS: suspension feeder; IF: interface feeder; SD: surface deposit feeder; SSD: subsurface deposit feeder; PD: predator
(Stamm 1995). Chl a: chlorophyll a, Tsbw: summer bottom water temperature; Sbw: bottom water salinity. Predictor variables with a 

standardized biomod 2 variable importance score VI ≥ 0.1 are shown in bold
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feeder, SSD) showed a significant positive correlation
with submergence time (VI = 0.46) above ca. 12.0 h
d−1 and mud contents (VI = 0.41) below ca. 70.0%. The
burrow-dwelling polychaete A. marina (SSD) corre-
lated significantly positively with submergence time
(VI = 0.48) below ca. 8.0 h d−1, mud contents (VI =
0.25) below ca. 70.0% and shear stress (VI = 0.15) be-
low ca. 0.7 N m−2. The sessile oligochaete T. benedii
(SSD) showed a significant positive correlation with
mud contents (VI = 0.47) above ca. 30.0% and Tsbw

(VI = 0.28) above ca. 19.2°C. The free living, surface
deposit feeder (SD) gastropod P. ulvae correlated sig-
nificantly positively with shear stress (VI = 0.77)
below ca. 0.7 N m−2. The free living gastropod R. ob-
tusa (predator) correlated significantly positively with
shear stress (VI = 0.41) below ca. 0.7 N m−2 and chl a
(VI = 0.23) below ca. 30.0 mg m−2.

Hindcast (1970s) and model evaluation with
 independent historical macrofauna data

The past distribution scenario showed a very good
match with the independent macrofauna presences
from the 1970s (Fig. 7). In addition, the 1970s past
prediction maps revealed significant changes in the
distribution patterns of the characteristic modelled
species. The PO of the oligochaete T. benedii was
significantly lower on the upper mudflats and in the

tidal channels (Fig. 7e). The bivalve C. edule was
more widespread on the central sandflats and on the
uppermost tidal flats, where it was clearly absent in
2009 (Fig. 7a). The polychaete S. armiger was more
widespread on the lower tidal flats (mixed sediments,
Fig. 7c). Potential suitable habitats for the bivalve
M.  balthica, the gastropod P. ulvae and the poly-
chaete A. marina remained relatively constant be -
tween the 2 time periods (Fig. 7b,d,f). In contrast, the
PO of M.  balthica and P. ulvae was significantly
lower throughout the entire Jade Bay, while the PO
of the gastropod R. obtusa was significantly lower on
the hydrodynamically exposed eastern, lower tidal
flats and higher on the uppermost western and
southern tidal flats (Fig. 7g).

DISCUSSION

Present macrofauna distribution (2009)

Five of the 7 modelled macrofauna species (Ceras -
to derma edule, Macoma balthica, Scoloplos armiger,
Arenicola marina, Retusa obtusa) showed a signifi-
cant correlation with submergence time, highlight-
ing the importance of sea-level rise and its local
implications for the study site (i.e. changes in topog-
raphy, tidal range and submergence time) and the
characteristic species under study. Clear effects of
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Fig. 5. Present species distribution maps (for 2009) modelled for the Jade Bay: (a) Cerastoderma edule (Bivalvia), (b) Macoma
balthica (Bivalvia), (c) Scoloplos armiger (Polychaeta), (d) Arenicola marina (Polychaeta), (e) Tubificoides benedii

(Oligochaeta), (f) Peringia ulvae (Gastropoda), (g) Retusa obtusa (Gastropoda)
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sea-level rise-induced changes in topography and
submergence time on the spatial distribution of char-
acteristic macrobenthic species have also been found
in other Wadden Sea regions (e.g. Fujii & Raffaelli
2008, Fujii 2012, Schumacher et al. 2014).

According to Table 3 (variable importance) and
Fig. 6 (response curves), the different biological traits
were well reflected in the model results. Suspension

feeders filter organic matter directly in the water col-
umn, which explains the significant correlation of C.
edule (a suspension feeding bivalve) with submer-
gence time (Herman et al. 1999). SD feeders consume
organic matter at the sediment surface (Herman et al.
1999, Kröncke 2006), which is represented in the gen-
erally higher correlation of the gastropod Peringia ul-
vae (SD) and the bivalve M. balthica (IF) with chl a

24

Fig. 6. Response curves of all 7 modelled macrofauna spe-
cies for the 5 most significantly correlated environmental
variables (ensemble model): mud content, submergence
time, shear stress, summer bottom water temperature (Tsbw)
and chlorophyll a; derived with R package ‘biomod2’. See 

Fig. 7 for full species names
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content, compared to the remaining species under
study. IF feeders, such as M. balthica, exhibit a certain
degree of generalism, i.e. they are able to switch be-
tween the ingestion of organic matter from the water
column (at the benthic boundary layer) and SD feed-
ing (Kröncke 2006). This generalistic response to en-
vironmental conditions is re flected in the variable
 importance of M. balthica, where 4 of the 7 environ-
mental variables (i.e. mud content, shear stress, sub-
mergence time and chl a content) were significantly
correlated with the species spatial distribution at the
study site. Both studied gastropods showed a very
high correlation with shear stress, which can be re-
lated to the drifting behavior of the mud snail P. ulvae,
which floats at the water surface during high tide us-
ing a mucus raft (Anderson 1971). The free living gas-
tropod R. obtusa (predator) primarily feeds on Forami-
nifera and small P. ulvae individuals (Stamm 1995).
This predator− prey relationship explains the high PO
of R. obtusa being associated with P. ulvae, and thus
its high correlation with shear stress and chl a content.
In the present study, all 3 SSD feeders (i.e. the anne -
lids S. armiger, Tubificoides benedii and A. marina)
showed a high correlation with mud content. SSDs
consume decomposed organic matter already incor-
porated in the sediment matrix and are therefore lim-
ited by specific grain size characteristics (Fauchald &
Jumars 1979, Kröncke 2006).

Because of the shallow and tide-controlled charac-
ter of tidal flat ecosystems, benthic species are gener-
ally eurythermal and thus naturally adapted to strong
(daily and seasonal) temperature fluctuations (Linke
1939). Nevertheless, the model output of 2 character-
istic species (i.e. C. edule, T. benedii) revealed a high
sensitivity towards specific Tsbw in Jade Bay. The PO
of the sessile oligochaete T. benedii decreased signif-
icantly when Tsbw fell below ca. 19.3°C. In contrast,
the PO of the sessile bivalve C. edule decreased sig-
nificantly when Tsbw exceeded ca. 19.6°C. High sen-
sitivity towards specific water temperatures has also
been observed for the filter-feeding Pacific oyster
Crassostrea gigas in the East Frisian Wadden Sea,
where 19.0°C was determined as minimum tempera-
ture for successful reproduction (Brandt et al. 2008).
Extremely cold winters and extremely warm sum-
mers, caused by variations in the North Atlantic
Oscillation Index since the late 1980s, were deter-
mined to be limiting factors for macrobenthic species
in the Wadden Sea area, triggering biological regime
shifts or changes in recruitment success (Beukema &
Dekker 2005, Kröncke et al. 2013). The weaker cor-
relation of all 7 species with the environmental pre-
dictor Sbw, generally a major factor influencing the
macrofauna spatial distribution in estuaries (Yse-
baert et al. 1998, Ysebaert & Herman 2002), can be
attributed to the tidal bay character of the polyhaline

Fig. 7. Past distribution scenario (for the 1970s) for the Jade Bay and model evaluation using independent historical macro-
fauna data from the 1970s for (a) Cerastoderma edule (Bivalvia), (b) Macoma balthica (Bivalvia), (c) Scoloplos armiger (Poly-
chaeta), (d) Arenicola marina (Polychaeta), (e) Tubificoides benedii (Oligochaeta), (f) Peringia ulvae (Gastropoda), (g) Retusa 

obtusa (Gastropoda)
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study site, with little freshwater discharges (Göt -
schen berg & Kahlfeld 2008). Although seagrass beds
correlated weakly with the predicted present macro-
fauna distribution in our study, they function as
biostabilizers by enhancing sedimentation processes
of finer sediments, reducing turbidity and increasing
light penetration, which in turn clearly alters benthic
habitats (Bos et al. 2007, Van Katwijk et al. 2010,
Schückel et al. 2013).

The present prediction maps of the 7 modelled
macro fauna species accurately represent the  species-
specific ecological niches that have been described
for the study site in numerous historical and recent
benthic studies (Linke 1939, Dörjes et al. 1969,
Michaelis 1987). The model results of the lugworm A.
marina (Fig. 5d) differ from the results of previous
studies, as it is known to have a more widespread oc-
currence on intertidal sandflats (Michaelis 1987, Van
Bernem 1991, Ysebaert & Herman 2002). We assume
that this deviation might have been caused by the
sampling design, because the low oc cur rence of A.
marina at the study site is difficult to quantify with a
10 cm diameter cylindrical corer. Nevertheless, the
species’ response curves (Fig. 6) still supply ecologi-
cally meaningful information on the relationship be-
tween A. marina and the environmental conditions at
the study site.

Sediment characteristics and hydrodynamic condi-
tions (tidal elevation, tidal current velocity) have
been identified as major determinants of benthic
communities in numerous studies on tidal flat ecosys-
tems (e.g. Ysebaert et al. 2003, Van Colen et al.
2009). Schückel et al. (2013) revealed that proxies for
hydrodynamic conditions (mud content, submer-
gence time) and food availability (chl a content) best
explained the variability in the present macrofauna
community distribution in the Jade Bay intertidal
zone. In the subtidal Jade Bay, the present macro-
fauna community distribution could be statistically
related to tidal current velocity and depth, followed
by sediment characteristics (Schückel et al. 2015a).
The abovementioned findings agree with our 2009
model results, in which hydrodynamic conditions
(submergence time, shear stress) and sediment char-
acteristics (mud content) correlated most signifi-
cantly with the predicted present (intertidal and sub-
tidal) macrofauna distribution in Jade Bay, followed
by chl a content and Tsbw. Two historical studies con-
ducted in the Jade Bay intertidal zone during the last
8 decades confirmed the high impact of sedimentol-
ogy and hydrodynamics on the spatial distribution
and biological traits of the macrofauna (Linke 1939,
Michaelis 1987). In the subtidal North Sea, benthic

species are primarily limited by species-specific bot-
tom water temperatures and depth (as a surrogate
variable for other prevailing environmental factors,
e.g. primary production) (e.g. Schückel et al. 2010,
Reiss et al. 2011).

Environmental, climatic and biological changes
since the 1970s

Our modelled 1970s past distribution scenario sup-
ports our hypothesis that macrofauna distribution
shifts between the 1970s and 2009 were attributed to
climate change-induced sea-level rise (expressed as
changes in mean daily submergence time) and water
temperature increase. As seagrass beds did not have
a major impact on the spatial distribution of macro-
fauna at the study site (weak correlation with all 7
species; Table 3), our hypothesis that macrofaunal
distribution shifts between the 1970s and 2009 were
attributed to seagrass recovery due to de-eutrophica-
tion was not supported.

Sea-level rise (as a proxy for morphological and
sedimentological changes) and water temperature
increase are generally the major environmental vari-
ables affecting spatial distribution patterns of marine
benthic species with regard to global warming (e.g.
Fujii & Raffaelli 2008, Fujii 2012, Birchenough et al.
2015). In particular, sea-level rise has been accelerat-
ing significantly in the entire German Bight since the
1990s (Wahl et al. 2011). For the Wadden Sea World
Heritage Site, climate change-induced sea-level rise
and increases in water temperature have been
widely monitored over the past centuries (e.g. Flem-
ming & Bartholomä 1997, Van Aken 2008, Wolff et al.
2010, Behre 2011). Tide-induced basins (such as Jade
Bay) and estuaries often function as sediment traps
(Little 2000). In these systems a sea-level rise-
induced topography increase can cause a rise in the
tidal range, thus altering overall submergence time
(e.g. Götschenberg & Kahlfeld 2008, Flemming
2011). According to Flemming & Bartholomä (1997),
Dolch & Hass (2008), Fujii & Raffaelli (2008) and Fujii
(2012), sea-level rise will (at least temporarily) in -
crease the tidal basin volume and cause an increas-
ing demand for external sediment supply as an adap-
tation towards new morphodynamic equilibria.

Our hindcast model results revealed that a higher
mean daily submergence time (plus 1 h d−1) and a
lower Tsbw (minus 1.5°C) in the 1970s caused signifi-
cant changes in the distribution patterns of the char-
acteristic macrofauna species at the study site. In our
model we identified a significantly lower PO of the
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oligochaete T. benedii on the upper mudflats and a
significantly lower PO of 3 modelled species (M. bal -
thica, P. ulvae, R. obtusa) area-wide. Clear effects of
changes in submergence time and/or water tempera-
tures on the spatial distribution of characteristic
macrobenthic species have also been documented
for other Wadden Sea regions (e.g. Fujii & Raffaelli
2008, Fujii 2012, Kröncke et al. 2013, Schumacher et
al. 2014). The key role of environmental parameters
for changes in species’ spatial distributions revealed
by SDM in the present study (1970s to 2009), was also
confirmed by differences in benthic food web models
for the Jade Bay (Schückel et al. 2015b).

Evaluation measures and independent historical
macrofauna data

Commonly used evaluation measures (e.g. AUC,
Cohen’s kappa) have been widely criticized in scien-
tific expert circuits (e.g. Allouche et al. 2006, Lobo et
al. 2008). The AUC is controversial because of its nu-
merous shortcomings; for example, the extent to
which models are carried out highly influences the
AUC scores and the rate of well-predicted absences
(Lobo et al. 2008). Nevertheless, the AUC has still
been recommended as a useful measure to determine
model accuracy in numerous SDM studies (e.g.
Franklin 2010, Merow et al. 2013). Cohen’s kappa has
been criticized because it inherently depends on
prevalence, which is argued to produce statistical
artefacts to estimates of predictive accuracy (Allouche
et al. 2006). Therefore, Allouche et al. (2006) intro-
duced the TSS as a prevalence-independent alterna-
tive to kappa, while keeping all of its advantages.

SDM is confronted with issues of model uncertain-
ties, which can significantly decrease the accuracy of
model prediction. Model uncertainties can be caused
by spatially biased input data, the selection of an
inappropriate modelling method or the incorporation
of false species absences (e.g. Guisan & Thuiller
2005, Araújo & Guisan 2006, Elith & Leathwick 2009,
Franklin 2010). Nevertheless, we assume that our
model results provide accurate present and past
macro fauna distribution scenarios, because of (1) the
high-quality and full-coverage macrofauna sampling
design (species presences, true species absences)
(Fig. 2), (2) the high-quality and high-resolution
environmental data basis (Table 1, Fig. 4), (3) the
good to excellent evaluation measures in terms of
AUC and TSS (Thuiller et al. 2010) (Table 3), and (4)
the successful correlation of our past distribution sce-
nario with independent historical macrofauna data

from the 1970s (Fig. 7). Our results show that predic-
tive models are important tools for the identification
of conservation areas and for the understanding of
potential future changes in marine benthic systems,
by testing hypotheses regarding the role of changes
in environmental parameters on species’ spatial dis-
tributions, and thus, ecosystem functioning.
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