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INTRODUCTION

The Gulf of Mexico is the ninth largest body of water
in the world, supports one-third of the fisheries pro-
duction in the continental United States, and accounts
for more than one billion dollars in seafood annually
(Karnauskas et al. 2013). However, fisheries catch and
production vary considerably over annual to decadal
time scales; the causes of which remain poorly under-
stood (Karnauskas et al. 2013, 2015) but may be influ-
enced by climate variability, climate change, human
activity, and their interactions (Shepard et al. 2010,
Cowan et al. 2011, Karnauskas et al. 2013).

In the most comprehensive integration of physical
and biological datasets, Karnauskas et al. (2013)
identified the Atlantic Multidecadal Oscillation
(AMO) as a key climate driver of Gulf of Mexico eco-
systems. The AMO index is the leading empirical
orthogonal function of sea surface temperature (SST)
anomalies from 0 to 60° N in the Atlantic basin, cycles
between warm and cool phases approximately every
30 to 40 yr, and is linked to Gulf of Mexico water tem-
perature, depth of the mixed layer, and hurricane
activity, as well as to precipitation in the Mississippi
River basin (Schlesinger & Ramankutty 1994, Kar-
nauskas et al. 2015). These climate factors help gov-
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ern stratification, plankton production, eutrophica-
tion, and development of hypoxia in the Gulf of
 Mexico with indirect effects on upper trophic levels,
and ultimately, the economies of coastal communi-
ties (Karnauskas et al. 2015). However, the greatest
obstacle to assessing climate−biology relationships
in the Gulf of Mexico is the absence of annually
resolved time series that are sufficiently long to cap-
ture extreme events, regime shifts, or multiple cycles
of decadal-scale variability (Legendre & Legen dre
1998). Existing biological datasets start at the earliest
in the 1980s and largely involve fisheries catch data
(Karnauskas et al. 2013) that can be biased by fishing
regulations and fleet effort (Rochet & Trenkel 2003,
de Mutsert et al. 2008).

In an attempt to better connect biology to climate, a
dendrochronology (tree-ring analysis) approach has
been increasingly applied to growth-increment
widths in fish otoliths (Rountrey et al. 2014, Stocks et
al. 2014, Doubleday et al. 2015, Ong et al. 2015).
These biochronologies have annual resolution, are
ex actly dated, can span multiple decades (Black et al.
2005), and reflect population-wide fish condition,
measured in one example as mean anomaly in the
population-level length−weight relationship (Black
et al. 2013). Given their exact placement in time,
otolith chronologies can be readily integrated with
instrumental records to quantify growth responses to
climate or other observational environmental indica-
tors (Morrongiello et al. 2012). Target fish species for
this approach include long-lived species or those
with archival otolith collections, which ensures that
chronologies are sufficiently long to capture as much
of the historical range of variability as possible, in -
cluding low-frequency variability and extreme
events (Black et al. 2005).

In the northern Gulf of Mexico, otolith biochronolo-
gies have been developed for red snapper Lutjanus
campechanus caught off the Louisiana coast, and gray
snapper L. griseus from the Florida coast (Black et al.
2011a, our Fig. 1). The 2 chronologies span 30 yr and
significantly correlate with one another as well as
springtime (March/April) SST, wind speed and direc-
tion (Black et al. 2011a). Indeed, the climate of the
Gulf of Mexico has been categorized into distinct win-
ter and summer patterns (Morey et al. 2003a). During
the boreal summer, the Intertropical Convergence
Zone (ITCZ) is at its most northern extent and coin-
cides with persistently high atmospheric pressure in
the western Atlantic (Bermuda High), resulting in
predominantly southeasterly winds across the Gulf of
Mexico and the Caribbean (Morey et al. 2003a, Poore
et al. 2003). In contrast, winter winds are variable but

dominated by north and northwesterly flows coincid-
ing with the passage of cold fronts (Morey et al. 2003a).
An early (late) transition to this summer pattern ap-
pears to be associated with favorable (unfavorable)
growth, as indexed by these chronologies (Black et al.
2011a). Such a strong seasonal shift would be ex-
pected to influence growth in upper-trophic indi -
cators given that temperatures and wind-driven cur-
rents affect growth and metabolic rates of consumers
(Hoff & Fuiman 1993, Neer et al. 2007, Black et al.
2011a), as well as the location and extent of primary
production (Chen et al. 2000, Russell & Montagna
2007, Muller-Karger et al. 2015) and hypoxia (Feng et
al. 2012,  Rabalais et al. 2002). In the California
Current along the west coast of North America, the
timing of the spring transition has been widely shown
to affect ecosystem functioning, and a similar phe-
nomenon may be occurring in the Gulf of Mexico
(Huyer et al. 1975, 1979, Bograd et al. 2009, Holt &
Mantua 2009).

Here, we quantify a Gulf of Mexico spring transi-
tion and examine its importance to fish in the north-
ern Gulf of Mexico using otolith chronologies of red
snapper, gray snapper, king mackerel Scombero-
morus cavalla, and black drum Pogonias cromis.
Study species were chosen due to their longevity,
availability of otoliths, and clarity of growth-incre-
ment boundaries, as well as the wide range of life
histories, habitats, and geography they represent.
Additionally, each species is economically important,
supporting commercial and recreational fisheries
with a combined take of over 6000 metric tonnes yr−1

(National Marine Fisheries Service landings query).
Given its recognized importance to Gulf of Mexico
ecosystem functioning, relationships to the AMO
(Kar nauskas et al. 2015) are also examined. Ulti-
mately, the multidecadal, annually-resolved, exactly
dated otolith chronologies facilitate direct compar-
isons across species and instrumental climate re -
cords, enabling an ecosystem-level assessment of
biophysical coupling from the perspective of these
upper-trophic indicators.

MATERIALS AND METHODS

Study species and sample collection

Adult red and gray snapper co-occur, exhibit little
movement away from reef habitat, and feed prima-
rily on crustaceans and benthic fish (Moran 1988,
Wells et al. 2008, Flaherty et al. 2014). Juvenile red
snapper inhabit shallow reef and rocky substrate,
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while juvenile gray snapper inhabit mangrove chan-
nels and seagrass beds. Juveniles of both species
feed on zooplankton and mysid shrimp (Moran 1988,
Hettler 1989, Flaherty et al. 2014). Black drum are
demersal, estuarine fish that have limited  inter-
estuary movement and consume primarily crus-
taceans, mollusks, and shrimp (Osburn & Matlock
1984, Sutter et al. 1986). King mackerel are generally
found over the continental shelf and seasonally mi -
grate between Texas/Louisiana and the Florida Keys/
southeast Florida or the Yucatan Peninsula (Fable et
al. 1987, Finucane et al. 1990, Wall et al. 2009). King
mackerel are principally piscivorous throughout their
life and are often associated with baitfish that aggre-
gate along ocean fronts (Finucane et al. 1990, Wall et
al. 2009). Red snapper and black drum can live more
than 40 yr, while gray snapper and king mackerel
can attain ages into the upper 20s (Murphy & Tay-
lor 1989, Baker & Wilson 2001, Fischer et al. 2005,
Shepard et al. 2010).

Otoliths used in this study were obtained from
archival collections from a variety of sources. The
NOAA National Marine Fisheries Service Panama
City Laboratory (Panama City, FL) provided red
snapper otoliths collected from the Texas coast (TX
red snapper) and king mackerel otoliths collected
within the northern Gulf of Mexico. The Louisiana
Department of Wildlife and Fisheries (Baton Rouge,
LA, via the NOAA Southeast Fisheries Science Cen-
ter) provided black drum otoliths from the Louisiana
coast. A total of 500 black drum otoliths (collected be -
tween 1994 and 2009), 43 TX red snapper otoliths
(collected from 2010 to 2013), and 80 king mackerel
otoliths (collected between 1990 and 2011) were
available for chronology development. Ninety black
drum otoliths were selected for chronology develop-
ment based on otolith age and collection year. One
red snapper chronology and one gray snapper chro-
nology were previously developed by Black et al.
(2011a) from samples collected from the Louisiana
coast and Florida coast, respectively, and are subse-
quently referred to as LA red snapper and FL gray
snapper (see Fig. 1).

Chronology development

All sagittal otoliths were embedded in epoxy and
then thin-sectioned to 0.4 mm through the transverse
plane. Red and gray snapper otoliths were sectioned
on a high-speed saw following the methods of Cowan
et al. (1995), whereas black drum and king mackerel
were sectioned on a Buehler Isomet low-speed saw.

Sections were mounted on a slide using Crystalbond
then polished using 12 and 8 µm lapping film. Only
those otoliths that had well-defined growth-increment
boundaries and that were sufficiently long-lived were
retained. Due to differences in maximum age among
species, otoliths aged >19 yr (black drum and red
snapper), >14 yr (gray snapper), and >8 yr (king
mackerel) were retained. Each otolith was pho-
tographed with a Leica DFC295 3.1 megapixel digital
camera attached to a Leica M125 dissecting micro-
scope. Black drum, TX red snapper, and king mack-
erel otoliths were photographed with transmitted
light at 40, 50, and 50× magnification, respectively. All
otolith growth-increment analyses were performed
on the dorsal side of the sulcal groove.

To ensure that the correct calendar was assigned to
each otolith growth increment, all individuals were
visually crossdated. Crossdating works under the
assumption that some aspect of climate influences
growth, and as it varies over time it induces a syn-
chronous pattern or ‘bar code’ in the otolith incre-
ment-widths of individuals from a given region or
species (Douglass 1941, Fritts 1976). If one increment
was accidentally missed or falsely added, the growth
pattern would be offset by 1 yr in that individual rel-
ative to the others, indicating that an error had
occurred (Fritts 1976). Note that these growth pat-
terns were never ‘forced’ on these samples. If a pat-
tern ap peared to be offset in an individual, a correc-
tion was made only if the error could be confirmed
upon visual inspection of the otolith.

After visual crossdating, growth-increment widths
were measured continuously along a transect perpen-
dicular to the axis of growth, starting at the marginal
increment and ending as close to the core as possible,
using ImagePro Premier v.7.4 (Media Cyber netics).
One year of growth was measured starting at the
distal side of the previous year’s opaque zone to the
distal side of the current year’s opaque zone.

Crossdating was statistically corroborated using
the program COFECHA (Holmes 1983, Grissino-
Mayer 2001), which has been used in a variety of
marine fish and bivalve species (Black et al. 2005,
Matta et al. 2010, Gillanders et al. 2012). First, each
set of measurements was fit with a cubic spline that
had a 50% frequency response of 15 yr. Then each
measurement was divided by the value predicted by
the spline, thereby removing low-frequency variabil-
ity and isolating high-frequency, year-to-year vari-
ability. Each detrended measurement time series was
correlated with the mean of all others, and any sam-
ples for which the correlation was not highly signifi-
cant (p < 0.01) were visually inspected for possible
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errors (Grissino-Mayer 2001). The average correla-
tion between each individual time series and the av-
erage of all others was reported as the interseries cor-
relation. Additionally, COFECHA calculated mean
sensitivity as an index of high-frequency variability.
Mean sensitivity ranges from 0 to 2, with a value of 0
indicating increments of the same width and a value
of 2 indicating a pair of increments in which one has
a width of zero (locally absent) (Fritts 1976).

Once crossdating was completed, the original
measurement time series were detrended to remove
age-related growth declines. TX red snapper incre-
ment-width time series were detrended by fitting a
negative exponential curve to each measurement
time series then dividing observed values by those
predicted. All detrended increment measurements
were subsequently averaged using a biweight robust
mean to form a master chronology (Cook 1985). The
same detrending technique was used to generate the
LA red snapper and FL gray snapper chronologies,
all using the program ARSTAN (Cook & Holmes
1986, Cook & Krusic 2005).

The king mackerel and black drum increment
series were detrended by (1) grouping all increment
widths by age-of-formation, (2) calculating the mean
increment width for each age group, and (3) dividing
each measurement by the age-specific mean. De -
trended growth-increments were averaged with re-
spect to calendar year to yield the master chronology.
This method better preserved low-frequency variabil-
ity for these species collected over a range of years,
especially for the relatively short-lived mackerel.

The expressed population signal (EPS) statistic,
calculated by ARSTAN, is a measure of how well the
chronology represents the theoretical population
from which it was drawn and was used to assess the
quality of each chronology (Wigley et al. 1984).
Although there is no significance level associated
with EPS, a value >0.85 is considered adequate and
only those portions of the chronologies that exceeded
this value were retained (Wigley et al. 1984). This
corresponded to a minimum sample depth of >15
increment measurements per year for TX red snap-
per and black drum. EPS could not be calculated for
mackerel; their short lifespan precluded attempts to
calculate correlations among measurement time
series, which is part of the EPS formula. Thus, the
chronology for mackerel was limited to portions with
>15 measurements per calendar year.

A principal components analysis (PCA) was calcu-
lated in R v.3.2.2 (‘prcomp’) and was used to extract
the dominant patterns of variability in growth-incre-
ment widths shared by all chronologies (PCAfish).

PCA was calculated over the shared interval where
all chronologies had an EPS of >0.85 or sample depth
>15 for mackerel.

Climate−biology relationship

Northern Gulf of Mexico SST, wind stress, and sea
level pressure (SLP) were chosen as primary climate
drivers based on the results for red and gray snapper
in Black et al. (2011a). Wind stress and SLP data were
obtained from the NOAA-CIRES 20th Century Re -
ana lysis V2c 2 × 2 degree dataset (www. esrl. noaa.
gov/ psd/  data/gridded/data.20thC_ Rean V2 c. html),
and SST data were obtained from the Hadley
HadISST 1.1 1 × 1 degree dataset (http:// hadobs.
metoffice.gov. uk/ hadisst). SST, U wind stress (west
to east), and V wind stress (south to north) used for
correlations with the chronologies and were aver-
aged over the northern Gulf of Mexico, targeting the
shelf region <180 m deep (26° to 32° N × 80° to 98° W,
excluding 26° to 28° N × 85° to 94.5° W; see Fig. 1).
SLP data spanned the region of the Bermuda High
(27° to 37° N and 65° to 85° W). Mississippi River dis-
charge at Tarbert Landing (river mile 306.3) as ob -
tained through the US Army Corps of Engineers was
also included (http://rivergages.mvr.usace.army.mil/
WaterControl/stationinfo2.cfm?sid=01100Q&fid=&dt
=S).

Each chronology was correlated with monthly-
averaged U wind stress, V wind stress, SST, SLP, and
Mississippi River discharge (60 variables total). Sig-
nificant Bonferroni-corrected Pearson correlations
(p < 0.05) between climate variables and fish chro no -
logies were retained for further analysis. These and
all other statistical analyses were performed in R
v.3.2.2 (R Core Team 2015).

Seasonal climate patterns and spring transition index

We attempted to quantify the transition between
the winter and summer climate patterns and whether
this ‘spring transition’ index was detectable in fish
chronologies. To accomplish this, U wind, V wind,
SST, and SLP data spanning 1900 to 2011 were stan-
dardized to a mean of 0 and standard deviation of 1.
Matrices of U wind stress, V wind stress, and SLP
were then combined into one composite climate
matrix (36 columns × 111 years) for a PCA analysis
(PCAclimate). SST has higher autocorrelation than the
other 3 variables due to the high specific heat capac-
ity of water; as such, monthly-averaged SST was
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entered into a separate PCA (PCASST). Loadings
were examined for seasonal patterns.

Black et al. (2011a) identified March as a month for
peak climate sensitivity for red and gray snapper.
Thus, March SST, SLP, V wind stress, and U wind
stress (March climate) were entered into a principal
component regression with PCAfish. Principal compo-
nents regression was used to derive uncorrelated
(orthogonal) variables from this suite of collinear cli-
mate variables, which better meets the assumptions
of multiple linear regression. The Durbin-Watson sta-
tistic (DW; durbinWatsonTest <stats> in R v.3.2.2)
was used to test for autocorrelation in the regression
residuals.

Mean values of gridded SST, winds, and SLP were
calculated for the highest quartile and then the low-
est quartile for values of PC1fish. Differences between
mean climate values for high and low growth years
were tested using a Student’s t-test. Lastly, each
chronology was correlated with monthly and mean
annual AMO index obtained from the NOAA Earth
System Research Laboratory (www.esrl.noaa.gov/
psd/ data/ climateindices).

RESULTS

Chronology development

Black drum and king mackerel otolith increments
had boundaries that were more clearly defined than
those in TX red snapper. Of the 43 TX red snapper
otoliths of sufficient age, 26 were used to develop the
final chronology aged 15 to 35 yr. Seventy-five out of
80 king mackerel otoliths aged 9 to 18, and 78 out of
90 black drum otoliths aged 16 to 46 were used for
chronology development. Otoliths were discarded if
they had distorted or diffuse increments, or if they
could not be visually crossdated. However, of all
otoliths across all species, only 4 black drum otoliths
were discarded due to lack of crossdating.

Among otoliths measured, growth was synchro-
nous within each species, as reflected by high inter-
series correlations (Fig. 1b, Table 1). There was also
synchrony among species; chronologies were partic-
ularly well correlated among the coastal/reef species
(red snapper, gray snapper, and black drum)
(Table 2). In contrast, the king mackerel chronology
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was not significantly correlated with any of the other
chronologies (Table 2). However, when the low-fre-
quency signal was removed using a 15 yr 50% fre-
quency response spline, the mackerel chronology did
significantly (p < 0.05) correlate with the black drum
and TX red snapper chronologies (Table 2).

Increment-width values for the years 1986 to 2002
were used in PCAfish, as all chronologies had sufficient
sample depth and EPS > 0.85 over this time span.
PC1fish explained 61.9% of the variability, and the res-
ident coastal/reef species had the strongest loadings
(Fig. 1c, Table S1 in the Supplement at www. int-res.
com/ articles/ suppl/  m565 p149_ supp. pdf). PC2fish ex-
plained 21.2% of the variability and had highest load-
ings for king mackerel (Fig. 1c). Scores on PC2fish

were linearly related to the king mackerel growth
chronology (R2 = 0.81, p < 0.001; Table S2 in the Sup-
plement). In order to simplify interpretation of the
data, the king mackerel chronology was used in place
of PC2fish for the remaining analyses.

Climate−biology relationship

March SST, August U wind stress, and March V
wind stress were positively correlated with PC1fish,
while March U wind stress was negatively correlated
with PC1fish (p < 0.05; Fig. 2). Thus, years with overall
high growth were associated with warm SST and

winds from the south and east during March, while
poor growth years were associated with cool SST in
March and winds from the north and west. In addi-
tion, the strength of winds from the north in August
seemed to contribute to higher overall annual fish
growth (Fig. 2). SST was most strongly correlated
with PC1fish, generally within 2° of the coast in the
northern Gulf of Mexico (Fig. 3a). U and V wind
stress had a broader area of high correlation that
spanned most of the northern Gulf of Mexico and
extended onto land (Fig. 3b−d). Mississippi River dis-

charge was not significantly corre-
lated with any of the chronologies
(see Fig. S1 in the Supplement).

March SST, V wind, and U wind
were more strongly correlated with
PC1fish (p < 0.05) than any other
months of the year (Fig. 2). March
SLP was also most strongly correlated
with PC1fish, although this relation-
ship was not significant (r = 0.43, p =
0.081; Fig. 2). Thus, these 4 March
variables were entered into a princi-
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Species              Interseries correlation   Mean sensitivity

LA black drum                 0.54                            0.18
TX red snapper                0.54                            0.18
King mackerel                  0.43                            0.17
LA red snapper                0.54                            0.13
FL gray snapper               0.76                            0.18

Table 1. Interseries correlation and mean sensitivity for LA
black drum, TX red snapper, and king mackerel chronolo-
gies. LA red snapper and FL gray snapper values taken from 

Black et al. (2011a)

                                LA red   LA black   TX red       King     King mackerel 
                               snapper      drum     snapper  mackerel     (high freq.)

FL gray snapper       0.76*         0.62*        0.72*         0.20                0.48
LA red snapper                         0.55*        0.73*         0.04                0.52
LA black drum                                           0.63*         0.43              0.56*
TX red snapper                                                            0.19              0.57*

Table 2. Pearson correlation coefficients between all of the chronologies
 developed in the Gulf of Mexico. King mackerel (high freq.) contains only
 interannual variability, all long-term trends removed (*) indicates significant 

(p < 0.05, Bonferonni corrected) correlation
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pal components regression with PC1fish to identify the
relationship between March climate and growth
(Table S1 in the Supplement). The first and second
PC of March climate (PC1MC, PC2MC) explained 50.1
and 29.0% of the variability in the physical datasets,
respectively. Only PC1MC was significant in a regres-
sion with PC1fish with an R2 of 0.51 (p = 0.001; DW =
1.9, p = 0.6) (Fig. 2, Table S2).

The king mackerel chronology negatively corre-
lated with SST in the north central Gulf of Mexico
(25° to 30° N × 93° to 85° W) from February through
May and in December, with peak correlation in
April (Fig. 4a). The king mackerel chronology also
significantly correlated with all monthly means of
the AMO index as well as the annual mean (R2 =
0.42, p < 0.002; Fig. 3c, Table S2). The mean an nual
AMO index significantly correlated with SST in the

southeastern Gulf of Mexico and western Caribbean
Sea from May to September, with the strongest cor-
relations in August (Fig. 3b). The high-frequency
component of the king mackerel was not signifi-
cantly correlated with any climate variable or the
AMO.

Lastly, March wind stress, SST, and SLP were aver-
aged over quartiles with the highest (1986, 1990,
1999, 2000) and lowest (1989, 1993, 1996, 1998) val-
ues of PC1fish (Fig. 5). March in years of good growth
(high PC1fish values) was characterized by higher SLP
in the area of the Bermuda High, winds from the
southeast and east-southeast, and 1.2°C (t-test, p =
0.082) warmer SST relative to low growth years
(Fig. 5a,c). Conversely, cool SST and winds from the
north and northwest characterized years of poor
growth (low PC1fish values) (Fig. 5b,d).
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Seasonal climate patterns: the spring transition

In order to quantify a spring transition in the
climate data, principal components analysis was per-
formed on 111 yr of SLP, U wind, and V wind data
from the northern Gulf of Mexico. The first 12 princi-
pal components of PCAclimate had eigenvalues >1.
Each was examined for seasonal patterns and corre-
lations with PC1fish and king mackerel. PC1climate ex-
plained 10.2% of the variability in the climate data,
with highest loadings to March (Fig. 6). PC1climate also
explained (R2 = 35.8%; p = 0.011) of the variability in
PC1fish in a linear regression, but was not correlated
with king mackerel (Table 3, Table S2). Neither
PC1fish nor king mackerel were significantly corre-
lated with any other components, so those compo-
nents were excluded from further analysis.

Given its high levels of autocorrelation, a separate
principal components analysis was performed with
SST data in order to identify the presence of a spring
transition. The first 4 principal components of PCASST

had eigenvalues >1 and each had seasonal patterns in
their loadings. PC1SST (26.8% of variance) had strong
summer seasonality with positive peak loadings from
June through September (Fig. 6b). PC2SST (21.2% of
variance) was significantly correlated with PC1climate

(r = 0.47, p < 0.001) and had a similar seasonality with
negative peak loadings in March (Fig. 5b). However,
neither PC1SST nor PC2SST were significantly related
to PC1fish or the king mackerel chronology (Table 3).

DISCUSSION

Chronology development

Given the growth synchrony among samples,
exact ly dated, multidecadal chronologies could be
developed for each species considered in this study.
Mean interseries correlation, an index of synchrony,
was relatively high and comparable to that of North
Pacific fish species including rockfish Sebastes spp.
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(0.54 to 0.65; Black 2009) and yellowfin sole Limanda
aspera (0.66; Matta et al. 2010). Interseries correla-
tion was lowest for the king mackerel chronology,
which could be a function of such a short measure-
ment time series (~10 yr) combined with a relatively
low sample depth (15 samples) between 1994 and
1999. Moreover, large mackerel may stay in the
northern Gulf throughout the year while smaller
individuals migrate to the southeast near the Florida
Keys or to the south to the Bay of Campeche during
the winter (Fable et al. 1987, Wall et al. 2009). Such
broad movement of at least some individuals across
climate zones could reduce synchrony in the dataset.
Notably, synchrony was still greater than has been
reported for other species such as the western blue
groper Achoerodus gouldii (0.112; Rountrey et al.
2014) and black bream Acanthopagrus butcheriin
(0.13; Doubleday et al. 2015) in coastal Australian
waters.

Two different detrending techniques were used to
generate chronologies, the choice of which largely
depended on the range of years over which fish were
caught. The first approach (individual detrending)
was to fit a separate negative exponential function to
each growth-increment time series and then divide
each observed increment width by the predicted
value. In the second technique, detrending was per-
formed using a single negative exponential function
that best fit the average, sample-wide age-related
growth decline. This ‘regional curve standardization’
approach can better preserve low-frequency vari-
ability, especially in situations in which samples are
collected over a wide range of years, but at the cost of
adding uncertainty (Briffa et al. 1992). We found that
regional curve standardization preserved long-term
trends in the mackerel sample set and made almost
no difference to the outcome of the black drum chro-
nology (data not shown). It did, however, add some-
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what more uncertainty to the red and gray snapper
chronologies, which is why individual detrending
was chosen for these species. Thus, we attempted to
maximize the retention of low-frequency variability
while minimizing uncertainty for each sample set.
Applying these 2 detrending techniques in all spe-
cies also increased confidence that long-term trends
were almost certainly unique to mackerel.

Climate−biology relationship

Distinct winter and summer climate patterns have
been described previously in the northern Gulf of
Mexico (Morey et al. 2003a). During the summer, the
Bermuda High is at its strongest, which results in per-
sistent south and southeasterly winds across the Gulf
of Mexico and Caribbean Sea (Morey et al. 2003a).
Winter is dominated by the passage of cold fronts
that result in north and northwesterly winds (Morey
et al. 2003a). Spring is thus highly variable within
and between years and is a critical transitional period
between the 2 dominant seasonal climate patterns.
Given their strong loadings to March, PC1climate and
PC2SST can be used as indices of the spring transition,
capturing whether the shift from winter to summer
climate has occurred relatively late (low PC1climate

values, high PC2SST values) or early (high PC1climate

values, low PC2SST values) in the year. The fact that
March was captured by the leading PCs also sug-
gests that conditions during this month are highly
variable from one year to the next. This is further
supported by the fact that March SST and SLP have
higher coefficients of variation than those of any
other month of the year.

The correlation between the chronologies and cli-
mate suggests an early spring transition enhances
growth. The mechanisms underlying this relationship
may relate to variations in growing season length. An
early start of optimal growing temperatures would
presumably result in a wider annual increment
(Brown et al. 2004). Alternatively, these climate−biol-
ogy relationships may be indirect and mediated
through prey quality or quantity. For example, rock-
fish Sebastes spp. chronologies in the California
 Current negatively relate to SST due to its inverse re-
lationship to coastal upwelling and associated pro-
ductivity (Black 2009, Black et al. 2011b). In the north-
ern Gulf of Mexico, primary production is strongly
influenced by riverine nutrient input, the transport of
which varies with respect to season (Chen et al. 2000,
Morey et al. 2003a, Karnauskas et al. 2013). During
summer months, dominant winds favor a stratified
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Chronology                                Correlation               
                            PC1climate             PC1SST              PC2SST

FLGS                    0.61*                0.38              −0.51*
LARS                    0.50*              0.53*              −0.43
LABD                    0.50*                0.12                −0.27
TXRS                    0.58*                0.30                −0.08
KMK                     −0.097               −0.11            0.0055
PC1fish                            0.60*                0.37                −0.37

Table 3. Pearson correlation coefficients between PC1climate,
PC1SST, PC2SST, and all chronologies developed for the Gulf
of Mexico. (*) indicates significant (p < 0.05) correlation; SST:
sea surface temperature. For species definitions, see Fig. 1b
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layer of low-salinity water that extends across the en-
tire shelf (Morey et al. 2003a). By contrast, winter
winds limit nutrient-rich freshwaters to the shallow
coastal zone (Morey et al. 2003a). The early distribu-
tion of freshwater may stimulate primary production
and ultimately enhance growth in upper-trophic level
fish (Polis et al. 1997, Morey et al. 2003b). Wind-
driven advection would also explain the low correla-
tion with total Mississippi River inflow. Lastly, there
may be interactions between direct and indirect link-
ages of climate and growth, especially if warm water
stimulates lower trophic production (Sharples et al.
2006, Ouellet et al. 2011) and thereby increases prey
biomass. Indeed, higher temperatures have been
linked to increased prey quantity and quality across
a range of ectotherms (Berrigan & Charnov 1994,
Angilletta et al. 2004). However, the high-frequency
synchrony among chronologies, despite a range of
 diets across species, suggests that environmental
variability is more important than food limitations.

Low-frequency variability

The king mackerel chronology was the only chro-
nology with a strong low-frequency signal, which
could be associated with long-term changes in popu-
lation density. From the 1970s to 1996 king mackerel
were overfished, and reduced competition could
stimulate individual growth rates (Shepard et al.
2010). Another explanation for rising trends in the
chro no logy could be fisheries-induced pressure to
quickly reach maturity (Conover & Munch 2002,
Carlson et al. 2007, Shepard et al. 2010). Trends in
the chronology are also consistent with climate, espe-
cially considering king mackerel’s migrations to the
southern Gulf of Mexico where, unlike the high-fre-
quency pattern in northern Gulf of Mexico, SST
varies at a ~60 yr cycle consistent with the AMO
(Yáñez-Arancibia & Day 2004, del Monte-Luna et al.
2015). Indeed, the strongest correlations between
chronology and AMO occur in the winter when king
mackerel are believed to be present in the southern
Gulf of Mexico (Wall et al. 2009).

Given that the king mackerel chronology spans
about one-half of an AMO cycle, its relationship to
such a low-frequency phenomenon cannot be firmly
established. Ideally, the chronology should span mul-
tiple cycles of the AMO to establish a robust relation-
ship (Legendre & Legendre 1998). However, the cor-
relation is worth considering given that catch data for
other mobile pelagic predators, such as bonito, per-
mit, and jacks, show a similar negative correlation

with the AMO (Karnauskas at al. 2015). The AMO is
related to SST and wind speed in the Gulf of Mexico,
which are controls for primary production (Kar-
nauskas et al. 2015, Muller-Karger et al. 2015). In the
southern Gulf of Mexico, primary production peaks
in the winter when the mixed layer is deepest, allow-
ing for the greatest influx of nutrients (Muller-Karger
et al. 2015). Anomalously warm winter SST and coin-
cident weak wind fields during positive AMO phases
could reduce winter upwelling, decrease primary
productivity, and thus reduce mackerel growth.

Several other factors in the northern Gulf of Mexico
are also consistent with the strong correlation be -
tween king mackerel and AMO. Hypoxia in creases
during positive phases of the AMO and restricts
habitat quality for pelagic planktivorous fishes,
which form a major food source for king mackerel.
Warm temperatures and greater levels of eutrophica-
tion exacerbate any effects, which are also associated
with positive phases of the AMO (Karnauskas et al.
2015). In combination, these factors in crease mortal-
ity and reduce the physiological condition of fishes
(Karnauskas et al. 2015), as has been found in bay
anchovy Anchoa mitchilli and Gulf menhaden Bre -
voortia patronus (Zhang et al. 2014), both of which
are prey of king mackerel (Godcharles & Murphy
1986). Similarly, anomalously warm temperatures
over the thermal optimum could reduce growth and
physiological performance of these forage species
(Pörtner & Knust 2007). Moreover, king mackerel
have a narrow thermal optimum (20 to 26°C) that
could be more readily exceeded during positive
AMO phases, compelling mackerel to move into less
favorable feeding grounds or live in sub-optimal con-
ditions (Wall et al. 2009). Indeed, 24 of 36 fish stocks
examined along the US northeast coast had statisti-
cally significant poleward or depth shifts in abun-
dance in association with the positive phase of the
AMO (Nye et al. 2009).

CONCLUSIONS

The group of chronologies developed here suggest
the timing of the transition from a winter climate pat-
tern to a summer climate pattern is important to fish
growth, especially resident coastal species in the
northern Gulf of Mexico. However, dramatically dif-
ferent growth patterns and climate relationships
were observed for king mackerel, suggesting life his-
tory and geography are also important factors. Espe-
cially notable is the fact that an early shift to warm
conditions is favorable for the resident northern spe-
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cies, while a warm phase of the AMO is associated
with poor growth for the pelagic, migratory mack-
erel. Even within the same system, species with dis-
parate life histories, movements, and habitats can
have opposing climate−growth relationships, though
there are still commonalities among more closely
related species.

A number of environmental changes are underway
in the Gulf and they may become increasingly impor-
tant to ecosystem functioning and fish growth. The
Gulf of Mexico has warmed approximately 0.6°C in
the past 20 yr, and this has coincided with the range
expansion of tropical fish species, including gray
snapper, to the north (Fodrie et al. 2010, Gericke
et al. 2014, Muller-Karger et al. 2015). In addition,
eutrophication and associated dead zones as well as
human exploitation of fisheries remain important
pressures. It is important to note that otolith chrono -
logies do not reflect population size, recruitment lev-
els, or reproductive success, but are most likely asso-
ciated with body condition and fat re serves (Black et
al. 2013). Chronologies can therefore provide a
uniquely long and annually resolved history of
growth by which to evaluate environmental effects.
In this case, the chronologies suggest the importance
of a spring transition in the northern Gulf of Mexico,
and they also support a growing body of evidence on
the relevance of AMO to this region.
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